1
|
Tang S, Botchway BOA, Zhang Y, Wang X, Huang M, Liu X. Resveratrol can improve spinal cord injury by activating Nrf2/HO-1 signaling pathway. Ann Anat 2024; 251:152180. [PMID: 37879499 DOI: 10.1016/j.aanat.2023.152180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Spinal cord injury (SCI) often induces severe sensory and motor dysfunction. Oxidative stress is an important pathophysiological process of secondary SCI, and its inhibition could facilitate the alleviation of the injury. Resveratrol is a natural plant polyphenol compound that has significant antioxidant and anti-inflammatory effects. It can inhibit oxidative stress by activating the Nrf2/HO-1 signal pathway. In this report, we analyze the antioxidant effect of resveratrol in SCI, clarify the specific mechanism of action and provide a theoretical basis for the clinical employment of resveratrol for SCI.
Collapse
Affiliation(s)
- Shi Tang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | | | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China.
| |
Collapse
|
2
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 376] [Impact Index Per Article: 125.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Roy PK, Biswas A, Deepak K, Mandal M. An insight into the ubiquitin-proteasomal axis and related therapeutic approaches towards central nervous system malignancies. Biochim Biophys Acta Rev Cancer 2022; 1877:188734. [PMID: 35489645 DOI: 10.1016/j.bbcan.2022.188734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
The Ubiquitin-Protease system (UPS) is a major destruction system that is responsible for the elimination of dysfunctional/misfolded proteins, thus acting as a pivotal regulator of protein homeostasis in eukaryotic cells. In this review, the UPS system and its various functions in the cell and their detailed impact such as cell cycle control, DNA damage response, apoptosis, and cellular stress regulations have been elucidated with a focus on the central nervous system. Since the Ubiquitin-Protease pathway(UPP) plays a prominent role in the sculpting of the CNS cells and their maintenance, it is naturally deeply involved in many malignancies that develop due to dysregulation of the UPS. Understanding the major disruptive players of the UPS in the development of these malignancies, for example, insoluble protein aggregates or inclusion bodies deposits due to malfunctioning of the UPS has paved the pathway for the development of new therapeutics. Here, the de-regulation of the UPS at various checkpoints in CNS malignancies has been detailed, thus facilitating an easy comprehension of the different targets that remain to be explored yet. The present therapeutic advancements in the field of CNS malignancies management through UPS targeting have also been included thus broadening the scope of drug development. Thus, this review while shedding sufficient light on the details of the UPS system and its connection to CNS malignancies, also opens new avenues for therapeutic advancements in the form of novel targetable UPP proteins and their interactions.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India..
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India..
| |
Collapse
|
4
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Zhou H, Ling H, Li Y, Jiang X, Cheng S, Zubeir GM, Xia Y, Qin X, Zhang J, Zou Z, Chen C. Downregulation of beclin 1 restores arsenite-induced impaired autophagic flux by improving the lysosomal function in the brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113066. [PMID: 34929507 DOI: 10.1016/j.ecoenv.2021.113066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Arsenite is a toxic metalloid that causes various adverse effects in the brain. However, the underlying mechanisms of arsenite-induced neurotoxicity remain poorly understood. In this study, both adult beclin 1+/+ and beclin 1+/- mice were employed to establish a model of chronic arsenite exposure by treating with arsenite via drinking water for 6 months. The results clearly demonstrated that exposure to arsenite profoundly caused damage to the cerebral cortex, induced autophagy and impaired autophagic flux in the cerebral cortex. Heterozygous disruption of beclin 1 in animals remarkably alleviated the neurotoxic effects of arsenite. To verify the results obtained in the animals, a permanent U251 cell line was used. After treating of cells with arsenite, similar phenomenon was also observed, showing the significant elevation in the expression levels of autophagy-related genes. Importantly, lysosomal dysfunction caused by arsenite was observed in vitro and in vivo. Either knockdown of beclin 1 in cells or heterozygous disruption of beclin 1 in animals remarkably alleviated the lysosomal dysfunction induced by arsenite. These findings indicate that downregulation of beclin 1 could restore arsenite-induced impaired autophagic flux possibly through improving lysosomal function, and correct that regulation of autophagy via beclin 1 would be an alternative approach for the treatment of arsenite neurotoxicity.
Collapse
Affiliation(s)
- Hongmei Zhou
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hong Ling
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yunlong Li
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | | | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China; Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
6
|
Kang S, Guo Z, Zhao F, Song L, Lu L, Wang C, Liu Z, Zhao J. Lanzhou Lily polysaccharide fragment protects human umbilical vein endothelial cells from radiation-induced DNA double-strand breaks. Hum Exp Toxicol 2022; 41:9603271221140110. [DOI: 10.1177/09603271221140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Radiotherapy is widely used in the treatment of tumors. However, while killing tumor cells, radiation may also cause damage to the surrounding normal tissues. Therefore, it is very important to find safe and effective radiation protection agents. Purpose To investgate the radiation protection effect of Lanzhou Lily polysaccharide fragments (LLP). Methods: The crude polysaccharides of Lanzhou Lily were extracted from the dried bulb powder of Lilium lilium by ultrasonic-assisted hot water method, and then five different fragments were separated from the polysaccharides by DEAE-52-cellulose column. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, neutral comet and immunofluorescent staining were used to investigate the effect of LPe fragment on Human Umbilical Vein Endothelial Cells (HUVEC) survival and the possible radioprotective mechanism. Results The LPe fragment (composing of mannose and glucose, with a ratio of 5.5:2.9, and the average molecular weight is 8629.8 Da), significantly promoted the proliferation of HUVECs and protected cells from X-ray-induced double-strand breaks (DSBs) in DNA, in which pretreatment with the LPe fragment at 100 μg/mL showed the most pronounced protection. In addition, the occurrence of X-ray-induced γH2AX foci was significantly reduced by treatment with the LPe fragment at 50, 100, and 200 μg/mL. Furthermore, caffeine or wortmannin in combination with the LPe fragment at 25 μg/mL significantly reduced the number of X-ray-induced γH2AX foci, indicating phosphoinositide-3 kinases (PI3K) is involved in H2AX phosphorylation in HUVECs. Conclusion These results indicate the LPe fragment has a protective effect against radiation-induced DSBs and may be used as a natural antioxidant agent.
Collapse
Affiliation(s)
- S Kang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, Lanzhou, China
| | - Z Guo
- Medical College of Northwest Minzu University, Lanzhou, China
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China
| | - F Zhao
- Medical College of Northwest Minzu University, Lanzhou, China
| | - L Song
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China
| | - L Lu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, Lanzhou, China
| | - C Wang
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Z Liu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, Lanzhou, China
| | - J Zhao
- Medical College of Northwest Minzu University, Lanzhou, China
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China
| |
Collapse
|
7
|
Bata N, Cosford NDP. Cell Survival and Cell Death at the Intersection of Autophagy and Apoptosis: Implications for Current and Future Cancer Therapeutics. ACS Pharmacol Transl Sci 2021; 4:1728-1746. [PMID: 34927007 DOI: 10.1021/acsptsci.1c00130] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 12/25/2022]
Abstract
Autophagy and apoptosis are functionally distinct mechanisms for cytoplasmic and cellular turnover. While these two pathways are distinct, they can also regulate each other, and central components of the apoptosis or autophagy pathway regulate both processes directly. Furthermore, several upstream stress-inducing signaling pathways can influence both autophagy and apoptosis. The crosstalk between autophagy and apoptosis has an integral role in pathological processes, including those related to cancer, homeostasis, and aging. Apoptosis is a form of programmed cell death, tightly regulated by various cellular and biochemical mechanisms, some of which have been the focus of drug discovery efforts targeting cancer therapeutics. Autophagy is a cellular degradation pathway whereby cells recycle macromolecules and organelles to generate energy when subjected to stress. Autophagy can act as either a prodeath or a prosurvival process and is both tissue and microenvironment specific. In this review we describe five groups of proteins that are integral to the apoptosis pathway and discuss their role in regulating autophagy. We highlight several apoptosis-inducing small molecules and biologics that have been developed and advanced into the clinic and discuss their effects on autophagy. For the most part, these apoptosis-inducing compounds appear to elevate autophagy activity. Under certain circumstances autophagy demonstrates cytoprotective functions and is overactivated in response to chemo- or radiotherapy which can lead to drug resistance, representing a clinical obstacle for successful cancer treatment. Thus, targeting the autophagy pathway in combination with apoptosis-inducing compounds may be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Nicole Bata
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicholas D P Cosford
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
8
|
Zhang H, Xia P, Liu J, Chen Z, Ma W, Yuan Y. ATIC inhibits autophagy in hepatocellular cancer through the AKT/FOXO3 pathway and serves as a prognostic signature for modeling patient survival. Int J Biol Sci 2021; 17:4442-4458. [PMID: 34803509 PMCID: PMC8579461 DOI: 10.7150/ijbs.65669] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Autophagy regulates many cell functions related to cancer, ranging from cell proliferation and angiogenesis to metabolism. Due to the close relationship between autophagy and tumors, we investigated the predictive value of autophagy-related genes. Methods: Data from patients with hepatocellular carcinoma were obtained from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. A regression analysis of differentially expressed genes was performed. Based on a prognostic model, patients were divided into a high-risk or low-risk group. Kaplan-Meier survival analyses of patients were conducted. The immune landscapes, as determined using single-sample gene set enrichment analysis (ssGSEA), exhibited different patterns in the two groups. The prognostic model was verified using the ICGC database and clinical data from patients collected at Zhongnan Hospital. Based on the results of multivariate Cox regression analysis, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate (IMP) cyclohydrolase (ATIC) had the largest hazard ratio, and thus we studied the effect of ATIC on autophagy and tumor progression by performing in vitro and in vivo experiments. Results: Fifty-eight autophagy-related genes were differentially expressed (false discovery rate (FDR)<0.05, log2 fold change (logFC)>1); 23 genes were related to the prognosis of patients. A prognostic model based on 12 genes (ATG10, ATIC, BIRC5, CAPN10, FKBP1A, GAPDH, HDAC1, PRKCD, RHEB, SPNS1, SQSTM1 and TMEM74) was constructed. A significant difference in survival rate was observed between the high-risk group and low-risk group distinguished by the model (P<0.001). The model had good predictive power (area under the curve (AUC)>0.7). Risk-related genes were related to the terms type II IFN response, MHC class I (P<0.001) and HLA (P<0.05). ATIC was confirmed to inhibit autophagy and promote the proliferation, invasion and metastasis of liver cancer cells through the AKT/Forkhead box subgroup O3 (FOXO3) signaling pathway in vitro and in vivo. Conclusions: The prediction model effectively predicts the survival time of patients with liver cancer. The risk score reflects the immune cell features and immune status of patients. ATIC inhibits autophagy and promotes the progression of liver cancer through the AKT/FOXO3 signaling pathway.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China
| | - Peng Xia
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China
| | - Jie Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China
| | - Zhang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China
| |
Collapse
|
9
|
Rong X, Xu J, Jiang Y, Li F, Chen Y, Dou QP, Li D. Citrus peel flavonoid nobiletin alleviates lipopolysaccharide-induced inflammation by activating IL-6/STAT3/FOXO3a-mediated autophagy. Food Funct 2021; 12:1305-1317. [PMID: 33439200 DOI: 10.1039/d0fo02141e] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nobiletin, a polymethoxyflavone widely present in the peel of citrus fruits, has significant anti-inflammatory activity. Autophagy plays a critical role in maintaining cell homeostasis by promoting the degradation of intracellular structures in response to various stress. Recent research suggests the involvement of autophagy in the inflammatory process and therefore some inflammation-related diseases. However, the "cross-talk" between autophagy and nobiletin's anti-inflammation response remains not well elucidated. Therefore, this study was initiated with the aim of investigating the role of autophagy in nobiletin's protective effect against inflammation in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Results showed that nobiletin significantly (P < 0.05) inhibited the release of nitric oxide (NO) and decreased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Moreover, nobiletin significantly (P < 0.05) promoted autophagy as evidenced by the appearance of more autophagosomes, up-regulated LC3II protein, low-regulated p62 protein, and increased autophagy-related (Atg) genes' expression compared with the control treated with LPS alone. Addition of chloroquine, an autophagy inhibitor, alleviated nobiletin's anti-inflammatory effect, further supporting the requirement of an active autophagy process for the citrus peel flavonoid's biological activity. Mechanistically, we found that nobiletin treatment leads to activation of the IL-6/STAT3/FOXO3a signal pathway through the down-regulation of IL-6 and STAT3 phosphorylation and the upregulation of FOXO3a phosphorylation in the cell nucleus, which is responsible for induction of macrophage autophagy. Taken together, our study provides evidence that nobiletin suppresses inflammatory response through enhancing autophagy through activating the IL-6/STAT3/FOXO3a pathway in macrophage cells.
Collapse
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Jie Xu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Yilun Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute and Departments of Oncology, Pharmacology and Pathology, Wayne State University School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
10
|
Miles MA, Caruso S, Baxter AA, Poon IKH, Hawkins CJ. Smac mimetics can provoke lytic cell death that is neither apoptotic nor necroptotic. Apoptosis 2021; 25:500-518. [PMID: 32440848 DOI: 10.1007/s10495-020-01610-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Smac mimetics, or IAP antagonists, are a class of drugs currently being evaluated as anti-cancer therapeutics. These agents antagonize IAP proteins, including cIAP1/2 and XIAP, to induce cell death via apoptotic or, upon caspase-8 deficiency, necroptotic cell death pathways. Many cancer cells are unresponsive to Smac mimetic treatment as a single agent but can be sensitized to killing in the presence of the cytokine TNFα, provided either exogenously or via autocrine production. We found that high concentrations of a subset of Smac mimetics could provoke death in cells that did not produce TNFα, despite sensitization at lower concentrations by TNFα. The ability of these drugs to kill did not correlate with valency. These cells remained responsive to the lethal effects of Smac mimetics at high concentrations despite genetic or pharmacological impairments in apoptotic, necroptotic, pyroptotic, autophagic and ferroptotic cell death pathways. Analysis of dying cells revealed necrotic morphology, which was accompanied by the release of lactate dehydrogenase and cell membrane rupture without prior phosphatidylserine exposure implying cell lysis, which occurred over a several hours. Our study reveals that cells incapable of autocrine TNFα production are sensitive to some Smac mimetic compounds when used at high concentrations, and this exposure elicits a lytic cell death phenotype that occurs via a mechanism not requiring apoptotic caspases or necroptotic effectors RIPK3 or MLKL. These data reveal the possibility that non-canonical cell death pathways can be triggered by these drugs when applied at high concentrations.
Collapse
Affiliation(s)
- Mark A Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Sarah Caruso
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| |
Collapse
|
11
|
BmFoxO Gene Regulation of the Cell Cycle Induced by 20-Hydroxyecdysone in BmN-SWU1 Cells. INSECTS 2020; 11:insects11100700. [PMID: 33066376 PMCID: PMC7602224 DOI: 10.3390/insects11100700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary Ecdysteroid titer determines the state of the cell cycle in silkworm (Bombyx mori) metamorphosis. However, the mechanism of this process is unclear. In this study, we reported that 20-Hydroxyecdysone (20E) can promote BmFoxO (Bombyx mori Forkhead box protein O) gene expression and induce BmFoxO nuclear translocation in BmN-SWU1 cells. Overexpression of the BmFoxO gene affects cell cycle progression, which results in cell cycle arrest in the G0/G1 phase as well as inhibition of DNA replication. Further investigations showed that the effect of 20E was attenuated after BmFoxO gene knockdown. The findings of this study confirmed that BmFoxO is a key mediator in the cell cycle regulation pathway induced by 20E. This suggests a novel pathway for ecdysteroid-induced cell cycle regulation in the process of silkworm metamorphosis, and it is likely to be conserved between Lepidoptera insects. Abstract Ecdysteroid titer determines the state of the cell cycle in silkworm (Bombyxmori) metamorphosis. However, the mechanism of this process is unclear. In this study, we demonstrated that the BmFoxO gene participates in the regulation of the cell cycle induced by 20-Hydroxyecdysone (20E) in BmN-SWU1 cells. The 20E blocks the cell cycle in the G2/M phase through the ecdysone receptor (EcR) and inhibits DNA replication. The 20E can promote BmFoxO gene expression. Immunofluorescence and Western blot results indicated that 20E can induce BmFoxO nuclear translocation in BmN-SWU1 cells. Overexpression of the BmFoxO gene affects cell cycle progression, which results in cell cycle arrest in the G0/G1 phase as well as inhibition of DNA replication. Knockdown of the BmFoxO gene led to cell accumulation at the G2/M phase. The effect of 20E was attenuated after BmFoxO gene knockdown. These findings increase our understanding of the function of 20E in the regulation of the cell cycle in B. mori.
Collapse
|
12
|
Zhang SL, Li ZY, Wang DS, Xu TY, Fan MB, Cheng MH, Miao CY. Aggravated ulcerative colitis caused by intestinal Metrnl deficiency is associated with reduced autophagy in epithelial cells. Acta Pharmacol Sin 2020; 41:763-770. [PMID: 31949292 PMCID: PMC7471395 DOI: 10.1038/s41401-019-0343-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/02/2019] [Indexed: 01/26/2023]
Abstract
Metrnl is a newly identified secreted protein highly expressed in the intestinal epithelium. This study aimed to explore the role and mechanism of intestinal epithelial Metrnl in ulcerative colitis. Metrnl-/- (intestinal epithelial cell-specific Metrnl knockout) mice did not display any phenotypes of colitis under basal conditions. However, under administration of 3% dextran sodium sulfate (DSS) drinking water, colitis was more severe in Metrnl-/- mice than in WT mice, as indicated by comparisons of body weight loss, the presence of occult or gross blood per rectum, stool consistency, shrinkage in the colon, intestinal damage, and serum levels of inflammatory factors. DSS-induced colitis activated autophagy in the colon. This activation was partially inhibited by intestinal epithelial Metrnl deficiency, as indicated by a decrease in Beclin-1 and LC3-II/I and an increase in p62 in DSS-treated Metrnl-/- mice compared with WT mice. These phenomena were further confirmed by observation of autophagosomes and immunofluorescence staining for LC3 in epithelial cells. The autophagy-related AMPK-mTOR-p70S6K pathway was also activated in DSS-induced colitis, and this pathway was partially blocked by intestinal epithelial Metrnl deficiency, as indicated by a decrease in AMPK phosphorylation and an increase in mTOR and p70S6K phosphorylation in DSS-treated Metrnl-/- mice compared with WT mice. Therefore, Metrnl deficiency deteriorated ulcerative colitis at least partially through inhibition of autophagy via the AMPK-mTOR-p70S6K pathway, suggesting that Metrnl is a therapeutic target for ulcerative colitis.
Collapse
|
13
|
Cheung CHA, Chang YC, Lin TY, Cheng SM, Leung E. Anti-apoptotic proteins in the autophagic world: an update on functions of XIAP, Survivin, and BRUCE. J Biomed Sci 2020; 27:31. [PMID: 32019552 PMCID: PMC7001279 DOI: 10.1186/s12929-020-0627-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP), survivin, and BRUCE are members of the inhibitor-of-apoptosis protein (IAP) family known for their inhibitory effects on caspase activity and dysregulation of these molecules has widely been shown to cause embryonic defects and to promote tumorigenesis in human. Besides the anti-apoptotic functions, recent discoveries have revealed that XIAP, survivin, and BRUCE also exhibit regulatory functions for autophagy in cells. As the role of autophagy in human diseases has already been discussed extensively in different reviews; in this review, we will discuss the emerging autophagic role of XIAP, survivin, and BRUCE in cancer cells. We also provide an update on the anti-apoptotic functions and the roles in maintaining DNA integrity of these molecules. Second mitochondria-derived activator of caspases (Smac) is a pro-apoptotic protein and IAPs are the molecular targets of various Smac mimetics currently under clinical trials. Better understanding on the functions of XIAP, survivin, and BRUCE can enable us to predict possible side effects of these drugs and to design a more “patient-specific” clinical trial for Smac mimetics in the future.
Collapse
Affiliation(s)
- Chun Hei Antonio Cheung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1 University Road, Tainan, Taiwan. .,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yung-Chieh Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1 University Road, Tainan, Taiwan
| | - Tzu-Yu Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1 University Road, Tainan, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes (NHRI), Tainan, Taiwan
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|