1
|
Zhang G, Yao Q, Long C, Yi P, Song J, Wu L, Wan W, Rao X, Lin Y, Wei G, Ying J, Hua F. Infiltration by monocytes of the central nervous system and its role in multiple sclerosis: reflections on therapeutic strategies. Neural Regen Res 2025; 20:779-793. [PMID: 38886942 PMCID: PMC11433895 DOI: 10.4103/nrr.nrr-d-23-01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood-brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangyong Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Qing Yao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Chubing Long
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Pengcheng Yi
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Hou Y, Ye W, Tang Z, Li F. Anesthetics in pathological cerebrovascular conditions. J Cereb Blood Flow Metab 2025; 45:32-47. [PMID: 39450477 PMCID: PMC11563546 DOI: 10.1177/0271678x241295857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
The increasing prevalence of pathological cerebrovascular conditions, including stroke, hypertensive encephalopathy, and chronic disorders, underscores the importance of anesthetic considerations for affected patients. Preserving cerebral oxygenation and blood flow during anesthesia is paramount to prevent neurological deterioration. Furthermore, protecting vulnerable neurons from damage is crucial for optimal outcomes. Recent research suggests that anesthetic agents may provide a potentially therapeutic approach for managing pathological cerebrovascular conditions. Anesthetics target neural mechanisms underlying cerebrovascular dysfunction, thereby modulating neuroinflammation, protecting neurons against ischemic injury, and improving cerebral hemodynamics. However, optimal strategies regarding mechanisms, dosage, and indications remain uncertain. This review aims to clarify the physiological effects, mechanisms of action, and reported neuroprotective benefits of anesthetics in patients with various pathological cerebrovascular conditions. Investigating anesthetic effects in cerebrovascular disease holds promise for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuhui Hou
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wei Ye
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ziyuan Tang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Zhao H, Fan M, Zhang J, Gao Y, Chen L, Huang L. Amyloid beta-induced mitochondrial dysfunction and endothelial permeability in cerebral microvascular endothelial cells: The protective role of dexmedetomidine. Brain Res Bull 2025; 220:111137. [PMID: 39577505 DOI: 10.1016/j.brainresbull.2024.111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication in patients who undergo anesthesia in different types of surgeries. Emerging evidence implicates elevated beta-amyloid (Aβ) in the pathogenesis of POCD. Meanwhile, Dexmedetomidine (DEX) has recently shown promise in reducing POCD incidence. This study aimed to elucidate the role of Aβ in inducing endothelial permeability in cerebral microvascular endothelial cells and the underlying mechanisms and testing the effects of DEX. We demonstrated that Aβ1-42, the prevalent Aβ form related to POCD, is cytotoxic to HBMECs, increasing transendothelial permeability and inducing mitochondrial dysfunction, as evidenced by elevated mitochondrial reactive oxygen species (ROS) and decreased ATP production and mitochondrial membrane potential. Furthermore, Aβ1-42 was shown to inhibit Sirt3, exacerbating mitochondrial dysfunction. Conversely, DEX was found to prevent Aβ1-42-induced mitochondrial dysfunction and permeability increases and preserved tight junction proteins in HBMECs.These findings suggest that DEX, as a Sirt3 activator, may offer a pharmacological strategy to mitigate Aβ1-42-related cerebral microvascular endothelial cell dysfunction and preserve cognitive function post-surgery.
Collapse
Affiliation(s)
- Haifeng Zhao
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050061, PR China; Department of Anesthesiology, Shijiazhuang Obstetrics and Gynecology Hospital, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, PR China
| | - Mingyue Fan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Jin Zhang
- Department of Anesthesiology, Shijiazhuang Obstetrics and Gynecology Hospital, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, PR China
| | - Yi Gao
- Department of Anesthesiology, Shijiazhuang Obstetrics and Gynecology Hospital, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, PR China
| | - Liang Chen
- Department of Anesthesiology, Shijiazhuang Obstetrics and Gynecology Hospital, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, PR China
| | - Lining Huang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050061, PR China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, PR China; Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, PR China.
| |
Collapse
|
4
|
Devraj K, Kulkarni O, Liebner S. Regulation of the blood-brain barrier function by peripheral cues in health and disease. Metab Brain Dis 2024; 40:61. [PMID: 39671124 PMCID: PMC11645320 DOI: 10.1007/s11011-024-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/12/2024] [Indexed: 12/14/2024]
Abstract
The blood-brain barrier (BBB) is formed by microvascular endothelial cells which are ensembled with pericytes, astrocytes, microglia and neurons in the neurovascular unit (NVU) that is crucial for neuronal function. Given that the NVU and the BBB are highly dynamic and regulated structures, their integrity is continuously challenged by intrinsic and extrinsic factors. Herein, factors from peripheral organs such as gonadal and adrenal hormones may influence vascular function also in CNS endothelial cells in a sex- and age-dependent manner. The communication between the periphery and the CNS likely takes place in specific areas of the brain among which the circumventricular organs have a central position due to their neurosensory or neurosecretory function, owing to physiologically leaky blood vessels. In acute and chronic pathological conditions like liver, kidney, pulmonary disease, toxins and metabolites are generated that reach the brain via the circulation and may directly or indirectly affect BBB functionality via the activation of the immunes system. For example, chronic kidney disease (CKD) currently affects more than 840 million people worldwide and is likely to increase along with western world comorbidities of the cardio-vascular system in continuously ageing societies. Toxins leading to the uremic syndrome, may further lead to neurological complications such as cognitive impairment and uremic encephalopathy. Here we summarize the effects of hormones, toxins and inflammatory reactions on the brain vasculature, highlighting the urgent demand for mechanistically exploring the communication between the periphery and the CNS, focusing on the BBB as a last line of defense for brain protection.
Collapse
Affiliation(s)
- Kavi Devraj
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad, 500078, Telangana, India.
| | - Onkar Kulkarni
- Metabolic Disorders and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad, 500078, Telangana, India
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
5
|
Xu SF, Cui JH, Liu X, Pang ZQ, Bai CY, Jiang C, Luan C, Li YP, Zhao Y, You YM, Guo C. Astrocytic lactoferrin deficiency augments MPTP-induced dopaminergic neuron loss by disturbing glutamate/calcium and ER-mitochondria signaling. Free Radic Biol Med 2024; 225:374-387. [PMID: 39406276 DOI: 10.1016/j.freeradbiomed.2024.10.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 10/20/2024]
Abstract
Increased levels of lactoferrin (Lf) are present in the aged brain and in the lesions of various neurodegenerative diseases, including Parkinson's disease (PD), and may contribute to the cascade of events involved in neurodevelopment and neuroprotection. However, whether Lf originates from astrocytes and functions within either the normal or pathological brain are unknown. Here, we employed mice with specific knockout of the astrocyte lactoferrin gene (named Lf-cKO) to explore its specific roles in the pathological process of PD. We observed a decrease in tyrosine hydroxylase-positive cells, mitochondrial dysfunction of residual dopaminergic neurons, and motor deficits in Lf-cKO mice, which were significantly aggravated after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. To further explore how astrocytic lactoferrin deficiency exacerbated PD-like manifestation in MPTP-treated mice, the critical molecules involved in endoplasmic reticulum (ER)-mitochondria contacts and signaling pathways were investigated. In vitro and in vivo models, we found an aberrant level of effects implicated in glutamate and calcium homeostasis, mitochondrial morphology and functions, mitochondrial dynamics, and mitochondria-associated ER membranes, accompanied by signs of oxidative stress and ER stress, which increase the fragility of dopaminergic neurons. These findings confirm the existence of astrocytic Lf and its influence on the fate of dopaminergic neurons by regulating glutamate/calcium metabolism and ER-mitochondria signaling. Our findings may be a promising target for the treatment of PD.
Collapse
Affiliation(s)
- Shuang-Feng Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Jun-He Cui
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Xin Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Zhong-Qiu Pang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chen-Yang Bai
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chao Jiang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chuang Luan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yun-Peng Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yan Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yi-Ming You
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chuang Guo
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
| |
Collapse
|
6
|
Han Q, Yang F, Chen M, Zhang M, Wang L, Wang H, Liu J, Cao Z. Coating Dormant Collagenase-Producing Bacteria with Metal-Anesthetic Networks for Precision Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407402. [PMID: 39291426 PMCID: PMC11558152 DOI: 10.1002/advs.202407402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Tumor malignancy highly depends on the stiffness of tumor matrix, which mainly consists of collagen. Despite the destruction of tumor matrix is conducive to tumor therapy, it causes the risk of tumor metastasis. Here, metal-anesthetic network-coated dormant collagenase-producing Clostridium is constructed to simultaneously destruct tumor matrix and inhibit tumor metastasis. By metal-phenolic complexation and π-π stacking interactions, a Fe3+-propofol network is formed on bacterial surface. Coated dormant Clostridium can selectively germinate and rapidly proliferate in tumor sites due to the ability of carried Fe3+ ions to promote bacterial multiplication. Intratumoral colonization of Clostridium produces sufficient collagenases to degrade tumor collagen mesh and the loaded propofol restrains tumor metastasis by inhibiting tumor cell migration and invasion. Meanwhile, the delivered Fe3+ ions are reduced to the Fe2+ form by intracellular glutathione, thereby inducing potent Fenton reaction to trigger lipid peroxidation and ultimate ferroptosis of tumor cells. In addition to a satisfactory safety, a single intratumoral injection of coated dormant Clostridium not only effectively retards the growth of established large primary tumors, but also significantly suppresses distal lung metastasis in two different orthotopic tumor models. This work proposes a strategy to develop advanced therapeutics for malignant tumor treatment and metastasis prevention.
Collapse
Affiliation(s)
- Qiuju Han
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Fengmin Yang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Mian Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hongxia Wang
- Department of Medical OncologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
7
|
Zheng H, Xiao X, Han Y, Wang P, Zang L, Wang L, Zhao Y, Shi P, Yang P, Guo C, Xue J, Zhao X. Research progress of propofol in alleviating cerebral ischemia/reperfusion injury. Pharmacol Rep 2024; 76:962-980. [PMID: 38954373 DOI: 10.1007/s43440-024-00620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Ischemic stroke is a leading cause of adult disability and death worldwide. The primary treatment for cerebral ischemia patients is to restore blood supply to the ischemic region as quickly as possible. However, in most cases, more severe tissue damage occurs, which is known as cerebral ischemia/reperfusion (I/R) injury. The pathological mechanisms of brain I/R injury include mitochondrial dysfunction, oxidative stress, excitotoxicity, calcium overload, neuroinflammation, programmed cell death and others. Propofol (2,6-diisopropylphenol), a short-acting intravenous anesthetic, possesses not only sedative and hypnotic effects but also immunomodulatory and neuroprotective effects. Numerous studies have reported the protective properties of propofol during brain I/R injury. In this review, we summarize the potential protective mechanisms of propofol to provide insights for its better clinical application in alleviating cerebral I/R injury.
Collapse
Affiliation(s)
- Haijing Zheng
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
- Zhengzhou Central Hospital, Zhengzhou, China
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Xian Xiao
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Yiming Han
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengwei Wang
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, Henan, 453100, China
| | - Lili Zang
- Department of Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Lilin Wang
- Department of Pediatric Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Yinuo Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Peijie Shi
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengfei Yang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Chao Guo
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Jintao Xue
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Xinghua Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| |
Collapse
|
8
|
Lu W, Wen J. Crosstalk Among Glial Cells in the Blood-Brain Barrier Injury After Ischemic Stroke. Mol Neurobiol 2024; 61:6161-6174. [PMID: 38279077 DOI: 10.1007/s12035-024-03939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Blood-brain barrier (BBB) is comprised of brain microvascular endothelial cells (ECs), astrocytes, perivascular microglia, pericytes, neuronal processes, and the basal lamina. As a complex and dynamic interface between the blood and the central nervous system (CNS), BBB is responsible for transporting nutrients essential for the normal metabolism of brain cells and hinders many toxic compounds entering into the CNS. The loss of BBB integrity following stroke induces tissue damage, inflammation, edema, and neural dysfunction. Thus, BBB disruption is an important pathophysiological process of acute ischemic stroke. Understanding the mechanism underlying BBB disruption can uncover more promising biological targets for developing treatments for ischemic stroke. Ischemic stroke-induced activation of microglia and astrocytes leads to increased production of inflammatory mediators, containing chemokines, cytokines, matrix metalloproteinases (MMPs), etc., which are important factors in the pathological process of BBB breakdown. In this review, we discussed the current knowledges about the vital and dual roles of astrocytes and microglia on the BBB breakdown during ischemic stroke. Specifically, we provided an updated overview of phenotypic transformation of microglia and astrocytes, as well as uncovered the crosstalk among astrocyte, microglia, and oligodendrocyte in the BBB disruption following ischemic stroke.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
9
|
Zhao Y, Tang X, Lei T, Fu D, Zhang H. Lipocalin-2 promotes breast cancer brain metastasis by enhancing tumor invasion and modulating brain microenvironment. Front Oncol 2024; 14:1448089. [PMID: 39188682 PMCID: PMC11345181 DOI: 10.3389/fonc.2024.1448089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Breast cancer is the leading cancer diagnosed in women globally, with brain metastasis emerging as a major cause of death, particularly in human epidermal growth factor receptor 2 positive and triple-negative breast cancer subtypes. Comprehensive understanding of the molecular foundations of central nervous system metastases is imperative for the evolution of efficacious treatment strategies. Lipocalin-2 (LCN2), a secreted iron transport protein with multiple functions, has been linked to the progression of breast cancer brain metastasis (BCBM). In primary tumors, LCN2 promotes the proliferation and angiogenesis of breast cancer cells, triggers the epithelial-mesenchymal transition, interacts with matrix metalloproteinase-9, thereby facilitating the reorganization of the extracellular matrix and enhancing cancer cell invasion and migration. In brain microenvironment, LCN2 undermines the blood-brain barrier and facilitates tumor seeding in the brain by modulating the behavior of key cellular components. In summary, this review meticulously examines the fuel role of LCN2 in BCBM cascade, and investigates the potential mechanisms involved. It highlights the potential of LCN2 as both a therapeutic target and biomarker, indicating that interventions targeting LCN2 may offer improved outcomes for patients afflicted with BCBM.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiaogen Tang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Tingting Lei
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Dongwei Fu
- Department of Oncology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Hongyi Zhang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Sun W, Zhao P, Hu S, Zhao Z, Liu B, Yang X, Yang J, Fu Z, Li S, Yu W. NUFIP1-engineered exosomes derived from hUMSCs regulate apoptosis and neurological injury induced by propofol in newborn rats. Neurotoxicology 2024; 102:81-95. [PMID: 38599287 DOI: 10.1016/j.neuro.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Propofol can increase neurotoxicity in infants but the precise mechanism is still unknown. Our previous study revealed that nuclear FMR1 interacting protein 1 (NUFIP1), a specific ribophagy receptor, can alleviate T cell apoptosis in sepsis. Yet, the effect of NUFIP1-engineered exosomes elicited from human umbilical cord blood mesenchymal stem cells (hUMSCs) on nerve injury induced by propofol remains unclear. This study intended to investigate the effect of NUFIP1-engineered exosomes on propofol-induced nerve damage in neonatal rats. METHODS Firstly, NUFIP1-engineered exosomes were extracted from hUMSCs serum and their identification was conducted using transmission electron microscopy (TEM), Flow NanoAnalyzer, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot (WB). Subsequently, the optimal exposure duration and concentration of propofol induced apoptosis were determined in SH-SY5Y cell line using WB. Following this, we co-cultured the NUFIP1-engineered exosomes in the knockdown group (NUFIP1-KD) and overexpression group (NUFIP1-OE) with SH-SY5Y cells and assessed their effects on the apoptosis of SH-SY5Y cells using terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay, Hoechst 33258 staining, WB, and flow cytometry, respectively. Finally, NUFIP1-engineered exosomes were intraperitoneally injected into neonatal rats, and their effects on the learning and memory ability of neonatal rats were observed through the righting reflex and Morris water maze (MWM) test. Hippocampi were extracted from different groups for hematoxylin-eosin (HE) staining, immunohistochemistry, immunofluorescence, and WB to observe their effects on apoptosis in neonatal rats. RESULTS TEM, Flow NanoAnalyzer, qRT-PCR, and WB analyses confirmed that the exosomes extracted from hUMSCs serum exhibited the expected morphology, diameter, surface markers, and expression of target genes. This confirmed the successful construction of NUFIP1-KD and NUFIP1-OE-engineered exosomes. Optimal exposure duration and concentration of propofol were determined to be 24 hours and 100 µg/ml, respectively. Co-culture of NUFIP1 engineered exosomes and SH-SY5Y cells resulted in significant up-regulation of pro-apoptotic proteins Bax and c-Caspase-3 in the KD group, while anti-apoptotic protein Bcl-2 was significantly decreased. The OE group showed the opposite trend. TUNEL apoptosis assay, Hoechst 33258 staining, and flow cytometry yielded consistent results. Animal experiments demonstrated that intraperitoneal injection of NUFIP1-KD engineered exosomes prolonged the righting reflex recovery time of newborn rats, and MWM tests revealed a significant diminution in the time and number of newborn rats entering the platform. HE staining, immunohistochemistry, immunofluorescence, and WB results also indicated a significant enhancement in apoptosis in this group. Conversely, the experimental results of neonatal rats in the OE group revealed a certain degree of anti-apoptotic effect. CONCLUSIONS NUFIP1-engineered exosomes from hUMSCs have the potential to regulate nerve cell apoptosis and mitigate neurological injury induced by propofol in neonatal rats. Targeting NUFIP1 may hold great significance in ameliorating propofol-induced nerve injury.
Collapse
Affiliation(s)
- Wen Sun
- The First Central Clinical School, Tianjin Medical University, Tianjin, China; Department of Anesthesiology, the Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengyue Zhao
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Shidong Hu
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Zhenting Zhao
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Boyan Liu
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Xingpeng Yang
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Jiaqi Yang
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ze Fu
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Songyan Li
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China.
| | - Wenli Yu
- The First Central Clinical School, Tianjin Medical University, Tianjin, China; Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
11
|
Li X, Yao Z, Qian J, Li H, Li H. Lactate Protects Intestinal Epithelial Barrier Function from Dextran Sulfate Sodium-Induced Damage by GPR81 Signaling. Nutrients 2024; 16:582. [PMID: 38474712 DOI: 10.3390/nu16050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
The dysregulation of the intestinal epithelial barrier significantly contributes to the inflammatory progression of ulcerative colitis. Recent studies have indicated that lactate, produced by gut bacteria or derived from fermented foods, plays a key role in modulating inflammation via G-protein-coupled receptor 81 (GPR81). In this study, we aimed to investigate the potential role of GPR81 in the progression of colitis and to assess the impact of lactate/GPR81 signaling on intestinal epithelial barrier function. Our findings demonstrated a downregulation of GPR81 protein expression in patients with colitis. Functional verification experiments showed that Gpr81-deficient mice exhibited more severe damage to the intestinal epithelial barrier and increased susceptibility to DSS-induced colitis, characterized by exacerbated oxidative stress, elevated inflammatory cytokine secretion, and impaired expression of tight-junction proteins. Mechanistically, we found that lactate could suppress TNF-α-induced MMP-9 expression and prevent the disruption of tight-junction proteins by inhibiting NF-κB activation through GPR81 in vitro. Furthermore, our study showed that dietary lactate could preserve intestinal epithelial barrier function against DSS-induced damage in a GPR81-dependent manner in vivo. Collectively, these results underscore the crucial involvement of the lactate/GPR81 signaling pathway in maintaining intestinal epithelial barrier function, providing a potential therapeutic strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Xiaojing Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhijie Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongling Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Yao SQ, Ye Y, Li Q, Wang XY, Yan L, Huo XM, Pan CS, Fu Y, Liu J, Han JY. YangXueQingNaoWan attenuated blood brain barrier disruption after thrombolysis with tissue plasminogen activator in ischemia stroke. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117024. [PMID: 37572928 DOI: 10.1016/j.jep.2023.117024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANT YangXueQingNaoWan (YXQNW), a compound Chinese medicine, has been widely used for dizziness, irritability, insomnia, and dreaminess caused by blood deficiency and liver hyperactivity in China. However, whether YXQNW can inhibit cerebral microvascular exudation and cerebral hemorrhage (CH) caused by blood brain barrier (BBB) damage after tissue plasminogen activator (tPA) still unknown. AIM OF THE RESEARCH To observe the effect of YXQNW on cerebral microvascular exudation and CH after tPA and investigate its mechanism in protecting BBB. MATERIALS AND METHODS Male C57BL/6 N mice suffered from ischemia stroke by mechanical detachment of carotid artery thrombi with the stimulation of ferric chloride. Then mice were treated with tPA (10 mg/kg) and/or YXQNW (0.72 g/kg) at 4.5 h. Cerebral blood flow (CBF), infarct size, survival rate, neurological scores, gait analysis, Evans blue extravasation, cerebral water content, fluorescein isothiocyanate-labeled albumin leakage, hemorrhage, junction and basement membrane proteins expression, leukocyte adhesion and matrix metalloproteinases (MMPs) expression were evaluated 24 h after tPA. Proteomics was used to identify target proteins. RESULTS YXQNW inhibited cerebral infarction, neurobehavioral deficits, decreased survival, Evans blue leakage, albumin leakage, cerebral water content and CH after tPA thrombolysis; improved CBF, low-expression and degradation of junction proteins, basement membrane proteins, Arhgap21 and its downstream α-catenin and β-catenin proteins expression; and suppressed the increase of adherent leukocytes and the release of MMP-9 derived from macrophage. CONCLUSION YXQNW relieved BBB damage and attenuated cerebral microvascular exudation and CH after tPA thrombolysis. The effect of YXQNW on cerebral microvascular exudation was associated with the inhibition of the low-expression of junction proteins, especially AJs mediated by Rho GTPase-activating protein 21 (Arhgap21), while the effect on CH was associated with the inhibition of leukocyte adhesion, the release of MMP-9 derived from macrophage, and low-expression and degradation of collagen IV and laminin in the vascular basement membrane.
Collapse
Affiliation(s)
- Shu-Qi Yao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Xin-Mei Huo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - Jian Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China; The Key Discipline for Basic Integration of Chinese and Western Medicine (microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing 100191, China.
| |
Collapse
|
13
|
Lee TH, Chen JL, Tsai MM, Wu YH, Tseng HC, Cheng LC, Shanmugam V, Hsieh HL. Protective Effects of Sophoraflavanone G by Inhibiting TNF-α-Induced MMP-9-Mediated Events in Brain Microvascular Endothelial Cells. Int J Mol Sci 2023; 25:283. [PMID: 38203454 PMCID: PMC10779338 DOI: 10.3390/ijms25010283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The regulation of matrix metalloproteinases (MMPs), especially MMP-9, has a critical role in both physiological and pathological events in the central nervous system (CNS). MMP-9 is an indicator of inflammation that triggers several CNS disorders, including neurodegeneration. Tumor necrosis factor-α (TNF-α) has the ability to stimulate the production of different inflammatory factors, including MMP-9, in several conditions. Numerous phytochemicals are hypothesized to mitigate inflammation, including the CNS. Among them, a flavonoid compound, sophoraflavanone G (SG), found in Sophora flavescens has been found to possess several medicinal properties, including anti-bacterial and anti-inflammatory effects. In this study, mouse brain microvascular endothelial cells (bMECs) were used to explore TNF-α-induced MMP-9 signaling. The effects of SG on TNF-α-induced MMP-9 expression and its mechanisms were further evaluated. Our study revealed that the expression of MMP-9 in bMECs was stimulated by TNF-α through the activation of ERK1/2, p38 MAPK, and JNK1/2 via the TNF receptor (TNFR) with a connection to the NF-κB signaling pathway. Moreover, we found that SG can interact with the TNFR. The upregulation of MMP-9 by TNF-α may lead to the disruption of zonula occludens-1 (ZO-1), which can be mitigated by SG administration. These findings provide evidence that SG may possess neuroprotective properties by inhibiting the signaling pathways associated with TNFR-mediated MMP-9 expression and the subsequent disruption of tight junctions in brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Stroke Center and Stroke Section, Department of Neurology, Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Jiun-Liang Chen
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Ming Tsai
- Division of Basic Medical Sciences, Department of Nursing, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (M.-M.T.); (Y.-H.W.); (H.-C.T.); (L.-C.C.)
- Department of General Surgery, New Taipei Municipal Tucheng Hospital, New Taipei 236, Taiwan
| | - Yi-Hsuan Wu
- Division of Basic Medical Sciences, Department of Nursing, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (M.-M.T.); (Y.-H.W.); (H.-C.T.); (L.-C.C.)
| | - Hui-Ching Tseng
- Division of Basic Medical Sciences, Department of Nursing, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (M.-M.T.); (Y.-H.W.); (H.-C.T.); (L.-C.C.)
| | - Li-Ching Cheng
- Division of Basic Medical Sciences, Department of Nursing, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (M.-M.T.); (Y.-H.W.); (H.-C.T.); (L.-C.C.)
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | | | - Hsi-Lung Hsieh
- Division of Basic Medical Sciences, Department of Nursing, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (M.-M.T.); (Y.-H.W.); (H.-C.T.); (L.-C.C.)
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
14
|
Nan W, He Y, Shen S, Wu M, Wang S, Zhang Y. BMP4 inhibits corneal neovascularization by interfering with tip cells in angiogenesis. Exp Eye Res 2023; 237:109680. [PMID: 37858608 DOI: 10.1016/j.exer.2023.109680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Corneal neovascularization (CNV) can lead to impaired corneal transparency, resulting in vision loss or blindness. The primary pathological mechanism underlying CNV is an imbalance between pro-angiogenic and anti-angiogenic factors, with inflammation playing a crucial role. Notably, a vascular endothelial growth factor(VEGF)-A gradient triggers the selection of single endothelial cells(ECs) into primary tip cells that guide sprouting, while a dynamic balance between tip and stalk cells maintains a specific ratio to promote CNV. Despite the central importance of tip-stalk cell selection and shuffling, the underlying mechanisms remain poorly understood. In this study, we examined the effects of bone morphogenetic protein 4 (BMP4) on VEGF-A-induced lumen formation in human umbilical vein endothelial cells (HUVECs) and CD34-stained tip cell formation. In vivo, BMP4 inhibited CNV caused by corneal sutures. This process was achieved by BMP4 decreasing the protein expression of VEGF-A and VEGFR2 in corneal tissue after corneal suture injury. By observing the ultrastructure of the cornea, BMP4 inhibited the sprouting of tip cells and brought forward the appearance of intussusception. Meanwhile, BMP4 attenuated the inflammatory response by inhibiting neutrophil extracellular traps (NETs)formation through the NADPH oxidase-2(NOX-2)pathway. Our results indicate that BMP4 inhibits the formation of tip cells by reducing the generation of NETs, disrupting the dynamic balance of tip and stalk cells and thereby inhibiting CNV, suggesting that BMP4 may be a potential therapeutic target for CNV.
Collapse
Affiliation(s)
- Weijin Nan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Yuxi He
- Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Sitong Shen
- Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Meiliang Wu
- Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Shurong Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Yan Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
15
|
Wang Y, Liu W, Geng P, Du W, Guo C, Wang Q, Zheng GQ, Jin X. Role of Crosstalk between Glial Cells and Immune Cells in Blood-Brain Barrier Damage and Protection after Acute Ischemic Stroke. Aging Dis 2023; 15:2507-2525. [PMID: 37962453 PMCID: PMC11567273 DOI: 10.14336/ad.2023.1010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.
Collapse
Affiliation(s)
- Yihui Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Wencao Liu
- Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Guo-qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
16
|
Bolden CT, Skibber MA, Olson SD, Zamorano Rojas M, Milewicz S, Gill BS, Cox CS. Validation and characterization of a novel blood-brain barrier platform for investigating traumatic brain injury. Sci Rep 2023; 13:16150. [PMID: 37752338 PMCID: PMC10522590 DOI: 10.1038/s41598-023-43214-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
The Blood-Brain Barrier (BBB) is a highly-selective physiologic barrier responsible for maintaining cerebral homeostasis. Innovative in vitro models of the BBB are needed to provide useful insights into BBB function with CNS disorders like traumatic brain injury (TBI). TBI is a multidimensional and highly complex pathophysiological condition that requires intrinsic models to elucidate its mechanisms. Current models either lack fluidic shear stress, or neglect hemodynamic parameters important in recapitulating the human in vivo BBB phenotype. To address these limitations in the field, we developed a fluid dynamic novel platform which closely mimics these parameters. To validate our platform, Matrigel-coated Transwells were seeded with brain microvascular endothelial cells, both with and without co-cultured primary human astrocytes and bone-marrow mesenchymal stem cells. In this article we characterized BBB functional properties such as TEER and paracellular permeability. Our platform demonstrated physiologic relevant decreases in TEER in response to an ischemic environment, while directly measuring barrier fluid fluctuation. These recordings were followed with recovery, implying stability of the model. We also demonstrate that our dynamic platform is responsive to inflammatory and metabolic cues with resultant permeability coefficients. These results indicate that this novel dynamic platform will be a valuable tool for evaluating the recapitulating BBB function in vitro, screening potential novel therapeutics, and establishing a relevant paradigm to evaluate the pathophysiology of TBI.
Collapse
Affiliation(s)
- Christopher T Bolden
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Center for Translational Injury Research, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| | - Max A Skibber
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Miriam Zamorano Rojas
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samantha Milewicz
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Brijesh S Gill
- Department of Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Charles S Cox
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Center for Translational Injury Research, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
17
|
Liu H, Yang R, Zhao S, Zhou F, Liu Y, Zhou Z, Chen L, Xie J. Collagen scaffolds derived from bovine skin loaded with MSC optimized M1 macrophages remodeling and chronic diabetic wounds healing. Bioeng Transl Med 2023; 8:e10467. [PMID: 37206210 PMCID: PMC10189465 DOI: 10.1002/btm2.10467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Owing to the persistent inflammatory microenvironment and unsubstantial dermal tissues, chronic diabetic wounds do not heal easily and their recurrence rate is high. Therefore, a dermal substitute that can induce rapid tissue regeneration and inhibit scar formation is urgently required to address this concern. In this study, we established biologically active dermal substitutes (BADS) by combining novel animal tissue-derived collagen dermal-replacement scaffolds (CDRS) and bone marrow mesenchymal stem cells (BMSCs) for the healing and recurrence treatments of chronic diabetic wounds. The collagen scaffolds derived from bovine skin (CBS) displayed good physicochemical properties and superior biocompatibility. CBS loaded with BMSCs (CBS-MCSs) could inhibit M1 macrophage polarization in vitro. Decreased MMP-9 and increased Col3 at the protein level were detected in CBS-MSCs-treated M1 macrophages, which may be attributed to the suppression of the TNF-α/NF-κB signaling pathway (downregulating phospho-IKKα/β/total IKKα/β, phospho-IκB/total IκB, and phospho-NFκB/total NFκB) in M1 macrophages. Moreover, CBS-MSCs could benefit the transformation of M1 (downregulating iNOS) to M2 (upregulating CD206) macrophages. Wound-healing evaluations demonstrated that CBS-MSCs regulated the polarization of macrophages and the balance of inflammatory factors (pro-inflammatory: IL-1β, TNF-α, and MMP-9; anti-inflammatory: IL-10 and TGF-β3) in db/db mice. Furthermore, CBS-MSCs facilitated the noncontractile and re-epithelialized processes, granulation tissue regeneration, and neovascularization of chronic diabetic wounds. Thus, CBS-MSCs have a potential value for clinical application in promoting the healing of chronic diabetic wounds and preventing the recurrence of ulcers.
Collapse
Affiliation(s)
- Hengdeng Liu
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ronghua Yang
- Department of Burn and Plastic SurgeryGuangzhou First People's Hospital, South China University of TechnologyGuangzhouGuangdongChina
| | - Shixin Zhao
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Fei Zhou
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Yiling Liu
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ziheng Zhou
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Lei Chen
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Julin Xie
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
18
|
Sudershan A, Younis M, Sudershan S, Kumar P. Migraine as an inflammatory disorder with microglial activation as a prime candidate. Neurol Res 2023; 45:200-215. [PMID: 36197286 DOI: 10.1080/01616412.2022.2129774] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
BACKGROUND The lower threshold of neuronal hyperexcitability has been correlated with migraines for decades but as technology has progressed, it has now become conceivable to learn more about the migraine disease. Apart from the "cortical spreading depression" and "activation of the trigeminovascular system", inflammation has been increasingly recognized as a possible pathogenic process that may have the possibility to regulate the disease severity. Microglial cells, the prime candidate of the innate immune cells of central nervous tissue, has been associated with numerous diseases; including cancer, neurodegenerative disorders, and inflammatory disorders. AIM In this review, we have attempted to link the dot of various microglial activation signaling pathways to enlighten the correlation between microglial involvement and the progression of migraine conditions. METHOD A structured survey of research articles and review of the literature was done in the electronic databases of Google Scholar, PubMed, Springer, and Elsevier until 31 December 2021. RESULT & CONCLUSION Of 1136 articles found initially and screening of 1047 records, 47 studies were included for the final review. This review concluded that inflammation and microglial overexpression as the prime candidate, plays an important role in the modulation of migraine and are responsible for the progression toward chronification. Therefore, this increases the possibility of preventing migraine development and chronification by blocking microglia overexpression.
Collapse
Affiliation(s)
- Amrit Sudershan
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, India
| | - Mohd Younis
- Department of Human Genetics and Molecular Biology, Bharathair University, Coimbatore, 641046, India
| | - Srishty Sudershan
- Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, India.,Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
| |
Collapse
|
19
|
Liu S, Deng S, Ding Y, Flores JJ, Zhang X, Jia X, Hu X, Peng J, Zuo G, Zhang JH, Gong Y, Tang J. Secukinumab attenuates neuroinflammation and neurobehavior defect via PKCβ/ERK/NF-κB pathway in a rat model of GMH. Exp Neurol 2023; 360:114276. [PMID: 36402169 DOI: 10.1016/j.expneurol.2022.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
AIMS Germinal matrix hemorrhage (GMH) is a disastrous clinical event for newborns. Neuroinflammation plays an important role in the development of neurological deficits after GMH. The purpose of this study is to investigate the anti-inflammatory role of secukinumab after GMH and its underlying mechanisms involving PKCβ/ERK/NF-κB signaling pathway. METHODS A total of 154 Sprague-Dawley P7 rat pups were used. GMH was induced by intraparenchymal injection of bacterial collagenase. Secukinumab was administered intranasally post-GMH. PKCβ activator PMA and p-ERK activator Ceramide C6 were administered intracerebroventricularly at 24 h prior to GMH induction, respectively. Neurobehavioral tests, western blot and immunohistochemistry were used to evaluate the efficacy of Secukinumab in both short-term and long-term studies. RESULTS Endogenous IL-17A, IL-17RA, PKCβ and p-ERK were increased after GMH. Secukinumab treatment improved short- and long-term neurological outcomes, reduced the synthesis of MPO and Iba-1 in the perihematoma area, and inhibited the synthesis of proinflammatory factors, such as NF-κB, IL-1β, TNF-α and IL-6. Additionally, PMA and ceramide C6 abolished the beneficial effects of Secukinumab. CONCLUSION Secukinumab treatment suppressed neuroinflammation and attenuated neurological deficits after GMH, which was mediated through the downregulation of the PKCβ/ERK/NF-κB pathway. Secukinumab treatment may provide a promising therapeutic strategy for GMH patients.
Collapse
Affiliation(s)
- Shengpeng Liu
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, China; Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Guangdong, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, Shanghai 200040, China; Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Xiaoli Zhang
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, China; Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Guangdong, China
| | - Xiaojing Jia
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, China; Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Guangdong, China
| | - Xiao Hu
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jun Peng
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Ye Gong
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, Shanghai 200040, China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
20
|
Li J, Yao Z, Liu X, Duan R, Yi X, Ayoub A, Sanders JO, Mesfin A, Xing L, Boyce BF. TGFβ1 +CCR5 + neutrophil subset increases in bone marrow and causes age-related osteoporosis in male mice. Nat Commun 2023; 14:159. [PMID: 36631487 PMCID: PMC9834218 DOI: 10.1038/s41467-023-35801-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
TGFβ1 induces age-related bone loss by promoting degradation of TNF receptor-associated factor 3 (TRAF3), levels of which decrease in murine and human bone during aging. We report that a subset of neutrophils (TGFβ1+CCR5+) is the major source of TGFβ1 in murine bone. Their numbers are increased in bone marrow (BM) of aged wild-type mice and adult mice with TRAF3 conditionally deleted in mesenchymal progenitor cells (MPCs), associated with increased expression in BM of the chemokine, CCL5, suggesting that TRAF3 in MPCs limits TGFβ1+CCR5+ neutrophil numbers in BM of young mice. During aging, TGFβ1-induced TRAF3 degradation in MPCs promotes NF-κB-mediated expression of CCL5 by MPCs, associated with higher TGFβ1+CCR5+ neutrophil numbers in BM where they induce bone loss. TGFβ1+CCR5+ neutrophils decreased bone mass in male mice. The FDA-approved CCR5 antagonist, maraviroc, reduced TGFβ1+CCR5+ neutrophil numbers in BM and increased bone mass in aged mice. 15-mon-old mice with TGFβRII specifically deleted in MPCs had lower numbers of TGFβ1+CCR5+ neutrophils in BM and higher bone volume than wild-type littermates. We propose that pharmacologic reduction of TGFβ1+CCR5+ neutrophil numbers in BM could treat or prevent age-related osteoporosis.
Collapse
Affiliation(s)
- Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Institute of Health and Medical Research, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Xin Liu
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Rong Duan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Xiangjiao Yi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Akram Ayoub
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Leica Biosystems, Deer Park, IL, 60010, USA
| | - James O Sanders
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Addisu Mesfin
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
21
|
Tanabe H, Suzuki T, Ohishi T, Isemura M, Nakamura Y, Unno K. Effects of Epigallocatechin-3-Gallate on Matrix Metalloproteinases in Terms of Its Anticancer Activity. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020525. [PMID: 36677584 PMCID: PMC9862901 DOI: 10.3390/molecules28020525] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Epidemiological studies have shown that the consumption of green tea has beneficial effects against cancer. Basic studies have provided evidence that epigallocatechin gallate (EGCG) is a major contributor to these effects. Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases with the ability to degrade the extracellular matrix proteins and are involved in various diseases including cancer in which MMPs have a critical role in invasion and metastasis. In this review, we discuss the effects of EGCG on several types of MMPs in the context of its anticancer activity. In the promoter region, MMPs have binding sites for at least one transcription factor of AP-1, Sp1, and NF-κB, and EGCG can downregulate these transcription factors through signaling pathways mediated by reactive oxygen species. EGCG can also decrease nuclear ERK, p38, heat shock protein-27 (Hsp27), and β-catenin levels, leading to suppression of MMPs' expression. Other mechanisms by which EGCG inhibits MMPs include direct binding to MMPs to prevent their activation and downregulation of NF-κB to suppress the production of inflammatory cytokines such as TNFα and IL-1β. Findings from studies on EGCG presented here may be useful in the development of more effective anti-MMP agents, which would give beneficial effects on cancer and other diseases.
Collapse
Affiliation(s)
- Hiroki Tanabe
- Faculty of Health and Welfare Science, Nayoro City University, Nayoro 096-8641, Hokkaido, Japan
- Correspondence: (H.T.); (T.O.)
| | - Takuji Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women’s College of Liberal Arts, Kyoto 602-0893, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu 410-0301, Shizuoka, Japan
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa, Tokyo 141-0021, Japan
- Correspondence: (H.T.); (T.O.)
| | - Mamoru Isemura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiko Unno
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
22
|
6-Gingerol, a major ingredient of ginger, attenuated cisplatin-induced pica in rats via regulating 5-HT3R/Ca2+/CaMKII/ERK1/2 signaling pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
23
|
Influence of Perioperative Anesthesia on Cancer Recurrence: from Basic Science to Clinical Practice. Curr Oncol Rep 2023; 25:63-81. [PMID: 36512273 PMCID: PMC9745294 DOI: 10.1007/s11912-022-01342-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 12/15/2022]
Abstract
PURPOSEOF REVIEW In this review, we will summarize the effects of these perioperative anesthetics and anesthetic interventions on the immune system and tumorigenesis as well as address the related clinical evidence on cancer-related mortality and recurrence. RECENT FINDINGS Cancer remains a leading cause of morbidity and mortality worldwide. For many solid tumors, surgery is one of the major therapies. Unfortunately, surgery promotes angiogenesis, shedding of circulating cancer cells, and suppresses immunity. Hence, the perioperative period has a close relationship with cancer metastases or recurrence. In the perioperative period, patients require multiple anesthetic management including anesthetics, anesthetic techniques, and body temperature control. Preclinical and retrospective studies have found that these anesthetic agents and interventions have complex effects on cancer outcomes. Therefore, well-planned, prospective, randomized controlled trials are required to explore the effects of different anesthetics and techniques on long-term outcomes after cancer surgery. Due to the conflicting effects of anesthetic management on cancer recurrence, further preclinical and clinical trials are required and beneficial to the development of systemic cancer therapies.
Collapse
|
24
|
Zhao C, Jiang Y, Yin H, Jin Z, Yuan J, Shang H, Song H. Hericium caput-medusae (Bull.: Fr.) Pers. Fermentation concentrate polysaccharide ameliorate diarrhea in DSS-induced early colitis by modulating ion channel. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
25
|
Mortazavi CM, Hoyt JM, Patel A, Chignalia AZ. The glycocalyx and calcium dynamics in endothelial cells. CURRENT TOPICS IN MEMBRANES 2023; 91:21-41. [PMID: 37080679 DOI: 10.1016/bs.ctm.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The endothelial glycocalyx is a dynamic surface layer composed of proteoglycans, glycoproteins, and glycosaminoglycans with a key role in maintaining endothelial cell homeostasis. Its functions include the regulation of endothelial barrier permeability and stability, the transduction of mechanical forces from the vascular lumen to the vessel walls, serving as a binding site to multiple growth factors and vasoactive agents, and mediating the binding of platelets and the migration of leukocytes during an inflammatory response. Many of these processes are associated with changes in intracellular calcium levels that may occur through mechanisms that alter calcium entry in the endothelium or the release of calcium from the endoplasmic reticulum. Whether the endothelial glycocalyx can regulate calcium dynamics in endothelial cells is unresolved. Interestingly, during cardiovascular disease progression, changes in calcium dynamics are observed in association with the degradation of the glycocalyx and with changes in barrier permeability and vascular reactivity. Herein, we aim to provide a summarized overview of what is known regarding the role of the glycocalyx as a regulator of endothelial barrier and vascular reactivity during homeostatic and pathological conditions and to provide a perspective on how such processes may relate to calcium dynamics in endothelial cells, exploring a possible connection between components of the glycocalyx and calcium-sensitive pathways in the endothelium.
Collapse
Affiliation(s)
- Cameron M Mortazavi
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Jillian M Hoyt
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Aamir Patel
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Andreia Z Chignalia
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States; Department of Physiology, University of Arizona, College of Medicine, Tucson, AZ, United States; Department of Pharmacology & Toxicology, University of Arizona, College of Pharmacy, Tucson, AZ, United States.
| |
Collapse
|
26
|
β-carotene alleviates LPS-induced inflammation through regulating STIM1/ORAI1 expression in bovine mammary epithelial cells. Int Immunopharmacol 2022; 113:109377. [DOI: 10.1016/j.intimp.2022.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
27
|
Yang J, Ran M, Li H, Lin Y, Ma K, Yang Y, Fu X, Yang S. New insight into neurological degeneration: Inflammatory cytokines and blood–brain barrier. Front Mol Neurosci 2022; 15:1013933. [PMID: 36353359 PMCID: PMC9637688 DOI: 10.3389/fnmol.2022.1013933] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Neurological degeneration after neuroinflammation, such as that resulting from Alzheimer’s disease (AD), stroke, multiple sclerosis (MS), and post-traumatic brain injury (TBI), is typically associated with high mortality and morbidity and with permanent cognitive dysfunction, which places a heavy economic burden on families and society. Diagnosing and curing these diseases in their early stages remains a challenge for clinical investigation and treatment. Recent insight into the onset and progression of these diseases highlights the permeability of the blood–brain barrier (BBB). The primary factor that influences BBB structure and function is inflammation, especially the main cytokines including IL-1β, TNFα, and IL-6, the mechanism on the disruption of which are critical component of the aforementioned diseases. Surprisingly, the main cytokines from systematic inflammation can also induce as much worse as from neurological diseases or injuries do. In this review, we will therefore discuss the physiological structure of BBB, the main cytokines including IL-1β, TNFα, IL-6, and their mechanism on the disruption of BBB and recent research about the main cytokines from systematic inflammation inducing the disruption of BBB and cognitive impairment, and we will eventually discuss the need to prevent the disruption of BBB.
Collapse
Affiliation(s)
- Jie Yang
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Mingzi Ran
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Anaesthesiology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Hongyu Li
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Ye Lin
- Department of Neurology, The First Medical Centre, PLA General Hospital, Beijing, China
| | - Kui Ma
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
| | - Yuguang Yang
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Xiaobing Fu,
| | - Siming Yang
- Research Centre for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, Beijing, China
- Department of Dermatology, 4th Medical Centre, PLA General Hospital, Beijing, China
- *Correspondence: Siming Yang,
| |
Collapse
|
28
|
Nitro Capsaicin Suppressed Microglial Activation and TNF-α-Induced Brain Microvascular Endothelial Cell Damage. Biomedicines 2022; 10:biomedicines10112680. [DOI: 10.3390/biomedicines10112680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Chronically activated microglia and brain vascular damage are major causes of neuroinflammation. The aim of this study was to determine the anti-inflammatory effects of nitro capsaicin, a newly modified capsaicin with less irritating characteristics, against microglial activation and brain microvascular endothelial cell damage. Using the SIMA9 microglia cell line, we found that nitro capsaicin reduced nitric oxide (NO) production in LPS-activated microglia better than its parent compound, capsaicin. Nitro capsaicin also decreased the expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and enhanced the levels of anti-inflammatory factors, IL-4 and IL-10, both at the mRNA and protein levels. In the TNF-α-induced vascular damage model, nitro capsaicin decreased expression and secretion of the proinflammatory cytokines IL-1β and IL-6. Phosphorylated NF-κB p65, a key transcription factor that stimulates the signaling of inflammatory pathways, was also reduced in the presence of nitro capsaicin, suggesting that the anti-inflammatory effects of nitro capsaicin were created through reducing NF-κB activation. Together, we concluded that nitro capsaicin has the potential to be further developed as an anti-neuroinflammatory agent.
Collapse
|
29
|
The Multiple Roles of CD147 in the Development and Progression of Oral Squamous Cell Carcinoma: An Overview. Int J Mol Sci 2022; 23:ijms23158336. [PMID: 35955471 PMCID: PMC9369056 DOI: 10.3390/ijms23158336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cluster of differentiation (CD)147, also termed extracellular matrix metalloprotease inducer or basigin, is a glycoprotein ubiquitously expressed throughout the human body, the oral cavity included. CD147 actively participates in physiological tissue development or growth and has important roles in reactive processes such as inflammation, immunity, and tissue repair. It is worth noting that deregulated expression and/or activity of CD147 is observed in chronic inflammatory or degenerative diseases, as well as in neoplasms. Among the latter, oral squamous cell carcinoma (OSCC) is characterized by an upregulation of CD147 in both the neoplastic and normal cells constituting the tumor mass. Most interestingly, the expression and/or activity of CD147 gradually increase as healthy oral mucosa becomes inflamed; hyperplastic/dysplastic lesions are then set on, and, eventually, OSCC develops. Based on these findings, here we summarize published studies which evaluate whether CD147 could be employed as a marker to monitor OSCC development and progression. Moreover, we describe CD147-promoted cellular and molecular events which are relevant to oral carcinogenesis, with the aim to provide useful information for assessing whether CD147 may be the target of novel therapeutic approaches directed against OSCC.
Collapse
|
30
|
Peng M, Sun R, Hong Y, Wang J, Xie Y, Zhang X, Li J, Guo H, Xu P, Li Y, Wang X, Wan T, Zhao Y, Huang F, Wang Y, Ye R, Liu Q, Liu G, Liu X, Xu G. Extracellular vesicles carrying proinflammatory factors may spread atherosclerosis to remote locations. Cell Mol Life Sci 2022; 79:430. [PMID: 35851433 PMCID: PMC11071964 DOI: 10.1007/s00018-022-04464-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
Most cells involved in atherosclerosis release extracellular vesicles (EVs), which can carry bioactive substances to downstream tissues via circulation. We hypothesized that EVs derived from atherosclerotic plaques could promote atherogenesis in remote locations, a mechanism that mimics the blood metastasis of cancer. Ldlr gene knockout (Ldlr KO) rats were fed on a high cholesterol diet and underwent partial carotid ligation to induce local atherosclerosis. EVs were separated from carotid artery tissues and downstream blood of carotid ligation by centrifugation. MiRNA sequencing and qPCR were then performed to detect miRNA differences in EVs from rats with and without induced carotid atherosclerosis. Biochemical analyses demonstrated that EVs derived from atherosclerosis could increase the expression of ICAM-1, VCAM-1, and E-selectin in endothelial cells in vitro. EVs derived from atherosclerosis contained a higher level of miR-23a-3p than those derived from controls. MiR-23a-3p could promote endothelial inflammation by targeting Dusp5 and maintaining ERK1/2 phosphorylation in vitro. Inhibiting EV release could attenuate atherogenesis and reduce macrophage infiltration in vivo. Intravenously administrating atherosclerotic plaque-derived EVs could induce intimal inflammation, arterial wall thickening and lumen narrowing in the carotids of Ldlr KO rats, while simultaneous injection of miR-23a-3p antagomir could reverse this reaction. The results suggested that EVs may transfer atherosclerosis to remote locations by carrying proinflammatory factors, particularly miR-23a-3p.
Collapse
Affiliation(s)
- Mengna Peng
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Rui Sun
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Jia Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xiaohao Zhang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Juanji Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Hongquan Guo
- Department of Neurology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, Jiangsu, China
| | - Pengfei Xu
- Division of Life Sciences and Medicine, Stroke Center & Department of Neurology, Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Yunzi Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xiaoke Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Ting Wan
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Ying Zhao
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Feihong Huang
- Department of Neurology, Guilin People's Hospital, Guilin, 541002, Guangxi, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191, China
- Institute of Cardiovascular Sciences, School of Basic Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Ruidong Ye
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Qian Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191, China
- Institute of Cardiovascular Sciences, School of Basic Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xinfeng Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
- Department of Neurology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, Jiangsu, China.
- Division of Life Sciences and Medicine, Stroke Center & Department of Neurology, Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230036, Anhui, China.
| | - Gelin Xu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
- Department of Neurology, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
31
|
Simöes Da Gama C, Morin-Brureau M. Study of BBB Dysregulation in Neuropathogenicity Using Integrative Human Model of Blood-Brain Barrier. Front Cell Neurosci 2022; 16:863836. [PMID: 35755780 PMCID: PMC9226644 DOI: 10.3389/fncel.2022.863836] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022] Open
Abstract
The blood-brain barrier (BBB) is a cellular and physical barrier with a crucial role in homeostasis of the brain extracellular environment. It controls the imports of nutrients to the brain and exports toxins and pathogens. Dysregulation of the blood-brain barrier increases permeability and contributes to pathologies, including Alzheimer's disease, epilepsy, and ischemia. It remains unclear how a dysregulated BBB contributes to these different syndromes. Initial studies on the role of the BBB in neurological disorders and also techniques to permit the entry of therapeutic molecules were made in animals. This review examines progress in the use of human models of the BBB, more relevant to human neurological disorders. In recent years, the functionality and complexity of in vitro BBB models have increased. Initial efforts consisted of static transwell cultures of brain endothelial cells. Human cell models based on microfluidics or organoids derived from human-derived induced pluripotent stem cells have become more realistic and perform better. We consider the architecture of different model generations as well as the cell types used in their fabrication. Finally, we discuss optimal models to study neurodegenerative diseases, brain glioma, epilepsies, transmigration of peripheral immune cells, and brain entry of neurotrophic viruses and metastatic cancer cells.
Collapse
Affiliation(s)
- Coraly Simöes Da Gama
- Inserm, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Mélanie Morin-Brureau
- Inserm, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
32
|
Chen K, Man Q, Miao J, Xu W, Zheng Y, Zhou X, Gao Z. Kir2.1 channel regulates macrophage polarization via Ca2+/CaMK II/ERK/NF-κB signaling pathway. J Cell Sci 2022; 135:275689. [PMID: 35694964 DOI: 10.1242/jcs.259544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophage polarization plays a key role in inflammatory response. Various ion channels expressed in macrophages has been documented, but very little is known about their roles in macrophage polarization. We find that knockdown or blockade of Kir2.1 channel significantly inhibits M1 polarization, but promotes M2 polarization. LPS induced M1 polarization is also remarkably suppressed in high extracellular K+ solutions (70 mM K+), and this inhibition is partially abolished by adding Ca2+ in the culture medium. Calcium imaging shows that Ca2+ influx is dependent on the hyperpolarized membrane potential generated by Kir2.1 channel. The upregulation of p-CaMK II, p-ERK1/2, and p-NF-κB proteins in RAW264.7 macrophages stimulated with LPS are significantly reversed by blocking Kir2.1 channel or culturing the cells with 70 mM K+ medium. Furthermore, in vivo study shows that mice treated with Kir2.1 channel blocker are protected from LPS-induced peritonitis. In summary, our data reveal the essential role of Kir2.1 channel in regulating macrophage polarization via Ca2+ / CaMK II / ERK1/2 / NF-κB pathway.
Collapse
Affiliation(s)
- Kuihao Chen
- Department of Cardiology, The Affiliated Hospital of Medical School of Ningbo University, 247 Renmin Rd, Ningbo, China.,Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Rd, Ningbo, China
| | - Qiaoyan Man
- Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Rd, Ningbo, China
| | - Jiaen Miao
- Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Rd, Ningbo, China
| | - Wenjing Xu
- Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Rd, Ningbo, China
| | - Yangchen Zheng
- Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Rd, Ningbo, China
| | - Xiuli Zhou
- Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Rd, Ningbo, China
| | - Zhe Gao
- Department of Cardiology, The Affiliated Hospital of Medical School of Ningbo University, 247 Renmin Rd, Ningbo, China.,Ningbo Institute of Medical Sciences, 42 Yangshan Rd, Ningbo, China
| |
Collapse
|
33
|
Liu P, Zhao S, Qiao H, Li T, Mi W, Xu Z, Xue X. Does propofol definitely improve postoperative cognitive dysfunction?-a review of propofol-related cognitive impairment. Acta Biochim Biophys Sin (Shanghai) 2022; 54:875-881. [PMID: 35713318 PMCID: PMC9828335 DOI: 10.3724/abbs.2022067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common brain function-related complication after surgery. In addition to old age being an independent risk factor, anesthetics are also important predisposing factors. Among them, propofol is the most commonly used intravenous anesthetic in clinical practice. It has a rapid onset, short half-life, and high recovery quality. Many studies report that propofol can attenuate surgery-induced cognitive impairment, however, some other studies reveal that propofol also induces cognitive dysfunction. Therefore, this review summarizes the effects of propofol on the cognition, and discusses possible related mechanisms, which aims to provide some evidence for the follow-up studies.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China,Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China
| | - Sheng Zhao
- Department of CardiologyFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100037China
| | - Hui Qiao
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China
| | - Tianzuo Li
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China
| | - Weidong Mi
- Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| | - Zhipeng Xu
- Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| | - Xinying Xue
- Department of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| |
Collapse
|
34
|
Lu Y, Yang ML, Shen AL, Lin S, Peng MZ, Wang TY, Lu ZQ, Wang YL, Peng J, Chu JF. Pharmacodynamic Mechanism of Kuanxiong Aerosol for Vasodilation and Improvement of Myocardial Ischemia. Chin J Integr Med 2022; 28:319-329. [PMID: 34897591 DOI: 10.1007/s11655-021-2882-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To explore the effect of Kuanxiong Aerosol (KXA) on isoproterenol (ISO)-induced myocardial injury in rat models. METHODS Totally 24 rats were radomly divided into control, ISO, KXA low-dose and high-dose groups according to the randomized block design method, and were administered by intragastric administration for 10 consecutive days, and on the 9th and 10th days, rats were injected with ISO for 2 consecutive days to construct an acute myocardial ischemia model to evaluate the improvement of myocardial ischemia by KXA. In addition, the diastolic effect of KXA on rat thoracic aorta and its regulation of ion channels were tested by in vitro vascular tension test. The influence of KXA on the expression of calcium-CaM-dependent protein kinase II (CaMK II)/extracellular regulated protein kinases (ERK) signaling pathway has also been tested. RESULTS KXA significantly reduced the ISO-induced increase in ST-segment, interventricular septal thickness, cardiac mass index and cardiac tissue pathological changes in rats. Moreover, the relaxation of isolated thoracic arterial rings that had been precontracted using norepinephrine (NE) or potassium chloride (KCl) was increased after KXA treatment in an endothelium-independent manner, and was attenuated by preincubation with verapamil, but not with tetraethylammonium chloride, 4-aminopyridine, glibenclamide, or barium chloride. KXA pretreatment attenuated vasoconstriction induced by CaCl2 in Ca2+-free solutions containing K+ or NE. In addition, KXA pretreatment inhibited accumulation of Ca2+ in A7r5 cells mediated by KCl and NE and significantly decreased p-CaMK II and p-ERK levels. CONCLUSION KXA may inhibit influx and release of calcium and activate the CaMK II/ERK signaling pathway to produce vasodilatory effects, thereby improving myocardial injury.
Collapse
Affiliation(s)
- Yan Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Mei-Ling Yang
- Department of Acupuncture and Moxibustion, Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - A-Ling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Mei-Zhong Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Tian-Yi Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Zhu-Qing Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yi-Lian Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jian-Feng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
35
|
Guo P, Liu L, Yang X, Li M, Zhao Q, Wu H. Irisin improves BBB dysfunction in SAP rats by inhibiting MMP-9 via the ERK/NF-κB signaling pathway. Cell Signal 2022; 93:110300. [DOI: 10.1016/j.cellsig.2022.110300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
|
36
|
蒋 文, 吴 俊, 曽 佳, 景 光, 汤 礼, 孙 红. [Role of CaMK II in pancreatic injury in mice with severe acute pancreatitis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:286-292. [PMID: 35365455 PMCID: PMC8983368 DOI: 10.12122/j.issn.1673-4254.2022.02.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the expression of Ca2+/calmodulin-dependent protein kinase II (CaMK Ⅱ) in pancreatic tissues of mice with severe acute pancreatitis (SAP) and explore the protective effect of KN93, a CaMK Ⅱ inhibitor, against pancreatic injury in SAP and the possible mechanism. METHODS Thirty-six healthy male C57 mice were randomly divided into sham operation group, SAP group, KN93 group and SAP + KN93 group (n=9). Serum and pancreatic tissue samples were collected 24 h after modeling. The pathological changes in the pancreatic tissues were observed using HE staining. Serum lipase and amylase activities and the levels of inflammatory factors were detected using ELISA. Western blotting was used to detect the expressions of CaMK Ⅱ, p-CaMK Ⅱ, p-NF-κB, MAPK and p-MAPK in mouse pancreas. RESULTS Compared with those in sham operation group, the expressions of p-CaMK Ⅱ, p-NF-κB and p-MAPK were significantly increased in SAP group (P < 0.05). KN93 treatment obviously alleviated pathological injuries of the pancreas in SAP mice, and significantly lowered serum levels of lipase, amylase and inflammatory factors (TNF-α and IL-6) and phosphorylation levels of NF-κB, ERK and MAPK proteins (P < 0.05). CONCLUSION The activity of CaMK Ⅱ is significantly increased in the pancreatic tissue of SAP mice. KN93 can alleviate pancreatic injury and inflammation in SAP mice possibly through the ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
- 文 蒋
- 西南交通大学医学院,四川 成都 610063College of Medicine Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点实验室,四川 成都 610083PLA Center of General Surgery, Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 俊 吴
- 西南交通大学医学院,四川 成都 610063College of Medicine Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点实验室,四川 成都 610083PLA Center of General Surgery, Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 佳容 曽
- 西南交通大学医学院,四川 成都 610063College of Medicine Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点实验室,四川 成都 610083PLA Center of General Surgery, Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 光旭 景
- 西南交通大学医学院,四川 成都 610063College of Medicine Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点实验室,四川 成都 610083PLA Center of General Surgery, Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 礼军 汤
- 西南交通大学医学院,四川 成都 610063College of Medicine Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点实验室,四川 成都 610083PLA Center of General Surgery, Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 红玉 孙
- 西南交通大学医学院,四川 成都 610063College of Medicine Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点实验室,四川 成都 610083PLA Center of General Surgery, Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu 610083, China
- 西部战区总医院基础医学实验室,四川 成都 610083Basic Medical Laboratory, General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
37
|
Erekat NS, Al-Jarrah MD. Endurance exercise training suppresses myostatin upregulation and nuclear factor-kappa B activation in a mouse model of Parkinson's disease. Vet World 2022; 15:383-389. [PMID: 35400955 PMCID: PMC8980372 DOI: 10.14202/vetworld.2022.383-389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Muscle atrophy is common in Parkinson’s disease (PD). Although myostatin has been implicated in muscle atrophy, its expression in PD skeletal muscle has not been investigated. Therefore, this study aimed to elucidate the influence of PD induction and exercise training on myostatin expression in the gastrocnemius skeletal muscle. Materials and Methods: Thirty albino mice were randomly selected and separated into three groups of 10 mice each: Sedentary control, sedentary PD (SPD), and exercised PD (EPD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid were used to induce chronic parkinsonism in the PD groups. Immunohistochemistry was used to investigate the expression of myostatin and nuclear factor kappa B (NF-kB) in gastrocnemius muscles of all three groups. Results: Myostatin expression and NF-kB nuclear localization, indicative of its activation, were significantly (p<0.01) higher in gastrocnemius skeletal muscle in the SPD group than in the control and EPD groups. Concomitantly, the average cross-sectional area of gastrocnemius muscle fibers in the SPD albino mice was significantly smaller (p<0.01) than in the control and EPD groups, indicating muscle atrophy. Conclusion: The present data are the first to indicate a correlation between PD induction and myostatin overexpression and NF-kB activation in the gastrocnemius muscle, potentially promoting the muscle atrophy commonly seen in PD. Additionally, the current data are the first to indicate the beneficial effects of exercise training on PD-associated myostatin overexpression, NF-κB activation, and muscle atrophy. Thus, our data are the first to suggest that myostatin and NF-κB might be regarded as potential therapeutic targets in an attempt to ameliorate skeletal muscle abnormalities commonly observed in PD.
Collapse
Affiliation(s)
- Nour S. Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Muhammed D. Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Irbid 22110, Jordan
| |
Collapse
|
38
|
Tao W, Zhang X, Ding J, Yu S, Ge P, Han J, Luo X, Cui W, Chen J. The effect of propofol on hypoxia- and TNF-α-mediated BDNF/TrkB pathway dysregulation in primary rat hippocampal neurons. CNS Neurosci Ther 2022; 28:761-774. [PMID: 35112804 PMCID: PMC8981449 DOI: 10.1111/cns.13809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
AIMS Hypoxia and inflammation may lead to BDNF/TrkB dysregulation and neurological disorders. Propofol is an anesthetic with neuroprotective properties. We wondered whether and how propofol affected BDNF/TrkB pathway in hippocampal neurons and astrocytes. METHODS Primary rat hippocampal neurons and astrocytes were cultured and exposed to propofol followed by hypoxia or TNF-α treatment. The expression of BDNF and the expression/truncation/phosphorylation of TrkB were measured. The underlying mechanisms were investigated. RESULTS Hypoxia and TNF-α reduced the expression of BDNF, which was reversed by pretreatment of 25 μM propofol in hippocampal neurons. Furthermore, hypoxia and TNF-α increased the phosphorylation of ERK and phosphorylation of CREB at Ser142, while reduced the phosphorylation of CREB at Ser133, which were all reversed by 25 μM propofol and 10 μM ERK inhibitor. In addition, hypoxia or TNF-α did not affect TrkB expression, truncation, or phosphorylation in hippocampal neurons and astrocytes. However, in hippocampal neurons, 50 μM propofol induced TrkB phosphorylation, which may be mediated by p35 expression and Cdk5 activation, as suggested by the data showing that blockade of p35 or Cdk5 expression mitigated propofol-induced TrkB phosphorylation. CONCLUSIONS Propofol modulated BDNF/TrkB pathway in hippocampal neurons via ERK/CREB and p35/Cdk5 under the condition of hypoxia or TNF-α exposure.
Collapse
Affiliation(s)
- Weiping Tao
- Department of Anesthesiology, Jing'an District Central Hospital of Shanghai, Shanghai, China
| | - Xuesong Zhang
- Department of Anesthesiology, Shanghai Public Health Clinical Center, Shanghai, China
| | - Juan Ding
- Department of Anesthesiology, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shijian Yu
- Department of Anesthesiology, Jing'an District Central Hospital of Shanghai, Shanghai, China
| | - Peiqing Ge
- Department of Anesthesiology, Jing'an District Central Hospital of Shanghai, Shanghai, China
| | - Jingfeng Han
- Department of Anesthesiology, Jing'an District Central Hospital of Shanghai, Shanghai, China
| | - Xing Luo
- Department of Anesthesiology, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Cui
- Department of Anesthesiology, Jing'an District Central Hospital of Shanghai, Shanghai, China
| | - Jiawei Chen
- Department of Anesthesiology, Jing'an District Central Hospital of Shanghai, Shanghai, China
| |
Collapse
|
39
|
Ye Y, Li Q, Pan CS, Yan L, Sun K, Wang XY, Yao SQ, Fan JY, Han JY. QiShenYiQi Inhibits Tissue Plasminogen Activator-Induced Brain Edema and Hemorrhage after Ischemic Stroke in Mice. Front Pharmacol 2022; 12:759027. [PMID: 35095486 PMCID: PMC8790519 DOI: 10.3389/fphar.2021.759027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Thrombolysis with tissue plasminogen activator (tPA) remains the only approved drug therapy for acute ischemic stroke. However, delayed tPA treatment is associated with an increased risk of brain hemorrhage. In this study, we assessed whether QiShenYiQi (QSYQ), a compound Chinese medicine, can attenuate tPA-induced brain edema and hemorrhage in an experimental stroke model. Methods: Male mice were subjected to ferric chloride-induced carotid artery thrombosis followed by mechanical detachment of thrombi. Then mice were treated with QSYQ at 2.5 h followed by administration of tPA (10 mg/kg) at 4.5 h. Hemorrhage, infarct size, neurological score, cerebral blood flow, Evans blue extravasation, FITC-labeled albumin leakage, tight and adherens junction proteins expression, basement membrane proteins expression, matrix metalloproteinases (MMPs) expression, leukocyte adhesion, and leukocyte infiltration were assessed 24 h after tPA administration. Results: Compared with tPA alone treatments, the combination therapy of QSYQ and tPA significantly reduced hemorrhage, infarction, brain edema, Evans blue extravasation, albumin leakage, leukocyte adhesion, MMP-9 expression, and leukocyte infiltration at 28.5 h after stroke. The combination also significantly improved the survival rate, cerebral blood flow, tight and adherens junction proteins (occludin, claudin-5, junctional adhesion molecule-1, zonula occludens-1, VE-cadherin, α-catenin, β-catenin) expression, and basement membrane proteins (collagen IV, laminin) expression. Addition of QSYQ protected the downregulated ATP 5D and upregulated p-Src and Caveolin-1 after tPA treatment. Conclusion: Our results show that QSYQ inhibits tPA-induced brain edema and hemorrhage by protecting the blood-brain barrier integrity, which was partly attributable to restoration of energy metabolism, protection of inflammation and Src/Caveolin signaling activation. The present study supports QSYQ as an effective adjunctive therapy to increase the safety of delayed tPA thrombolysis for ischemic stroke.
Collapse
Affiliation(s)
- Yang Ye
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Shu-Qi Yao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| |
Collapse
|
40
|
Tian F, Ma L, Zhao R, Ji L, Wang X, Sun W, Jiang Y. Correlation Between Matrix Metalloproteinases With Coronary Artery Lesion Caused by Kawasaki Disease. Front Pediatr 2022; 10:802217. [PMID: 35223694 PMCID: PMC8874123 DOI: 10.3389/fped.2022.802217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
This study was designed to clarify the role of matrix metalloproteinases (MMPs) in coronary artery lesions (CAL). Serum samples were acquired from healthy, febrile, and Kawasaki disease (KD) children with or without CAL. Standard blood parameters were examined and enzyme-linked immunosorbent assay (ELISA) was used to assess the levels of MMP-2 and MMP-9. Intravenous immunoglobulin (IVIG) therapy was conducted on the KD patients and the changes of MMPs before and after treatment were compared. The correlations between MMP levels and clinical parameters were also evaluated. Compared to febrile and healthy controls, KD patients demonstrated clinical signs characteristic of abnormal immunoregulation. However, the clinical parameters of KD patients with or without CAL were not significantly different. MMP-2 and MMP-9 levels, however, were significantly higher in KD patients with CAL than those without CAL. IVIG treatment effectively downregulated the levels of MMPs in KD patients, which was more prominent in those with CAL. Significant correlations were found between MMP levels and some clinical parameters of KD, such as fever time, white blood cell count, etc. The upregulation of MMPs significantly correlates with coronary artery aneurysms (CAAs) in KD patients, making it important biomarkers of CAL in KD patients.
Collapse
Affiliation(s)
- Fang Tian
- Heart Center of Women and Children Hospital of Qingdao University, Qingdao, China.,Department of Pediatric, Maternal and Child Health Hospital, Zibo, China
| | - Linxi Ma
- Nanchang University Queen Mary School, Nanchang, China
| | - Renbing Zhao
- Department of Pediatric, Maternal and Child Health Hospital, Zibo, China
| | - Lijuan Ji
- Department of Pediatric, Maternal and Child Health Hospital, Zibo, China
| | - Xiufen Wang
- Department of Pediatric, Maternal and Child Health Hospital, Zibo, China
| | - Wenli Sun
- Department of Pediatric, Maternal and Child Health Hospital, Zibo, China
| | - Yu Jiang
- Department of Pediatric, Maternal and Child Health Hospital, Zibo, China
| |
Collapse
|
41
|
Udrea AM, Gradisteanu Pircalabioru G, Boboc AA, Mares C, Dinache A, Mernea M, Avram S. Advanced Bioinformatics Tools in the Pharmacokinetic Profiles of Natural and Synthetic Compounds with Anti-Diabetic Activity. Biomolecules 2021; 11:1692. [PMID: 34827690 PMCID: PMC8615418 DOI: 10.3390/biom11111692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes represents a major health problem, involving a severe imbalance of blood sugar levels, which can disturb the nerves, eyes, kidneys, and other organs. Diabes management involves several synthetic drugs focused on improving insulin sensitivity, increasing insulin production, and decreasing blood glucose levels, but with unclear molecular mechanisms and severe side effects. Natural chemicals extracted from several plants such as Gymnema sylvestre, Momordica charantia or Ophiopogon planiscapus Niger have aroused great interest for their anti-diabetes activity, but also their hypolipidemic and anti-obesity activity. Here, we focused on the anti-diabetic activity of a few natural and synthetic compounds, in correlation with their pharmacokinetic/pharmacodynamic profiles, especially with their blood-brain barrier (BBB) permeability. We reviewed studies that used bioinformatics methods such as predicted BBB, molecular docking, molecular dynamics and quantitative structure-activity relationship (QSAR) to elucidate the proper action mechanisms of antidiabetic compounds. Currently, it is evident that BBB damage plays a significant role in diabetes disorders, but the molecular mechanisms are not clear. Here, we presented the efficacy of natural (gymnemic acids, quercetin, resveratrol) and synthetic (TAK-242, propofol, or APX3330) compounds in reducing diabetes symptoms and improving BBB dysfunctions. Bioinformatics tools can be helpful in the quest for chemical compounds with effective anti-diabetic activity that can enhance the druggability of molecular targets and provide a deeper understanding of diabetes mechanisms.
Collapse
Affiliation(s)
- Ana Maria Udrea
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Maurele, Romania; (A.M.U.); (A.D.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 1 B. P. Hașdeu St., 50567 Bucharest, Romania;
| | - Gratiela Gradisteanu Pircalabioru
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 1 B. P. Hașdeu St., 50567 Bucharest, Romania;
| | - Anca Andreea Boboc
- “Maria Sklodowska Curie” Emergency Children’s Hospital, 20, Constantin Brancoveanu Bd., 077120 Bucharest, Romania;
- Department of Pediatrics 8, “Carol Davila” University of Medicine and Pharmacy, Eroii Sanitari Bd., 020021 Bucharest, Romania
| | - Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Andra Dinache
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Maurele, Romania; (A.M.U.); (A.D.)
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| |
Collapse
|
42
|
CRH/CRHR1 modulates cerebrovascular endothelial cell permeability in association with S1PR2 and S1PR3 under oxidative stress. Vascul Pharmacol 2021; 142:106941. [PMID: 34781017 DOI: 10.1016/j.vph.2021.106941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022]
Abstract
Corticotrophin-releasing hormone (CRH) has been demonstrated to participate in vascular inflammation and permeability. Our previous studies have shown that blockade of S1PR2 or CRHR1 inhibited H2O2-induced brain endothelial hyperpermeability via inhibiting cPLA2 phosphorylation. However, little is known about the linkage between S1PRs and CRHR1 in oxidative stress-induced cerebrovascular endothelial hyperpermeability. Here we observed the opposite effects of S1PR2 to those of S1PR3 on the monolayer permeability of bEnd3 cells in response to H2O2. Interestingly, activation of CRHR1 was found to reverse the effects resulting from blockade/silencing of both S1PR2 and S1PR3. In bEnd3 monolayer, blockade/knockdown of S1PR2 reduced the endothelial hyperpermeability and suppressed the tight junction protein ZO-1 redistribution caused by H2O2, along with the inhibition of p38, ERK and cPLA2 phosphorylation. On the contrary, suppression/silencing of S1PR3 further promoted H2O2-induced endothelial hyperpermeability and ZO-1 redistribution, accompanied by the increased phosphorylation of p38, ERK and cPLA2. In the presence of CRH, the effects resulting from the suppression of both S1PR2 and S1PR3 were abolished. Our results elucidate a possible linkage between CRHR1 and S1PR2/S1PR3 involving in the regulation of endothelial monolayer permeability under oxidative stress condition.
Collapse
|
43
|
Yang L, Chen Z, Li J, Ding P, Wang Y. Effects of Escitalopram on Endoplasmic Reticulum Stress and Oxidative Stress Induced by Tunicamycin. Front Neurosci 2021; 15:737509. [PMID: 34759791 PMCID: PMC8573126 DOI: 10.3389/fnins.2021.737509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Major depressive disorder (MDD) was reported to be associated with endoplasmic reticulum stress (ERS) combined with oxidative stress (OS) (ERS/OS). Here, we aimed to investigate the effects of escitalopram (ESC) on blood-brain barrier (BBB) permeability and ERS/OS-related pathways in brain microvascular endothelial cells (bEnd.3 cells) induced by tunicamycin (TM). Methods: bEnd.3 cells were divided into four groups: control, TM, ESC, and ESC + TM groups. CCK-8 and flow cytometry were used to detect cell survival and apoptosis, respectively. The expression levels of proteins involved in cell permeability and ERS/OS-related pathways were assessed by western blot and immunofluorescence. Malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity were determined by commercial kits. Results: We revealed that TM-induced bEnd.3 cells exhibited remarkably decreased viability and increased apoptosis rate, while ESC treatment reversed these changes. Additionally, TM treatment resulted in markedly increased PERK, GRP78, ATF6, XBP1, and CHOP protein expression levels. On the contrary, the expression of PERK, GRP78, XBP1, and CHOP was obviously reduced in TM-induced bEnd.3 cells after ESC treatment. Moreover, TM significantly reduced the expression of p-eNOS and P-gp and increased the expression of CaMKII and MMP9 compared with the control group. However, ESC reversed these changes in TM-induced bEnd.3 cells. Furthermore, the expression of SOD was significantly decreased, while MDA was significantly increased by TM treatment. In contrast, the expression of SOD was dramatically increased, while MDA was remarkably decreased by ESC treatment. Conclusion: Our results demonstrated that ESC can inhibit ERS/OS and BBB permeability of TM-induced bEnd.3 cells. ESC may alleviate cognitive impairment and prevent comorbidities in MDD patients through ERS/OS.
Collapse
Affiliation(s)
- Lixia Yang
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - ZhengHong Chen
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Li
- Department of Psychiatry and Mental Health, Guizhou Medical University, Guiyang, China
| | - PengJin Ding
- Department of Psychiatry and Mental Health, Guizhou Medical University, Guiyang, China
| | - Yiming Wang
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
44
|
Bai W, Liu M, Xiao Q. The diverse roles of TMEM16A Ca 2+-activated Cl - channels in inflammation. J Adv Res 2021; 33:53-68. [PMID: 34603778 PMCID: PMC8463915 DOI: 10.1016/j.jare.2021.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Transmembrane protein 16A (TMEM16A) Ca2+-activated Cl- channels have diverse physiological functions, such as epithelial secretion of Cl- and fluid and sensation of pain. Recent studies have demonstrated that TMEM16A contributes to the pathogenesis of infectious and non-infectious inflammatory diseases. However, the role of TMEM16A in inflammation has not been clearly elucidated. Aim of review In this review, we aimed to provide comprehensive information regarding the roles of TMEM16A in inflammation by summarizing the mechanisms underlying TMEM16A expression and activation under inflammatory conditions, in addition to exploring the diverse inflammatory signaling pathways activated by TMEM16A. This review attempts to develop the idea that TMEM16A plays a diverse role in inflammatory processes and contributes to inflammatory diseases in a cellular environment-dependent manner. Key scientific concepts of review Multiple inflammatory mediators, including cytokines (e.g., interleukin (IL)-4, IL-13, IL-6), histamine, bradykinin, and ATP/UTP, as well as bacterial and viral infections, promote TMEM16A expression and/or activity under inflammatory conditions. In addition, TMEM16A activates diverse inflammatory signaling pathways, including the IP3R-mediated Ca2+ signaling pathway, the NF-κB signaling pathway, and the ERK signaling pathway, and contributes to the pathogenesis of many inflammatory diseases. These diseases include airway inflammatory diseases, lipopolysaccharide-induced intestinal epithelial barrier dysfunction, acute pancreatitis, and steatohepatitis. TMEM16A also plays multiple roles in inflammatory processes by increasing vascular permeability and leukocyte adhesion, promoting inflammatory cytokine release, and sensing inflammation-induced pain. Furthermore, TMEM16A plays its diverse pathological roles in different inflammatory diseases depending on the disease severity, proliferating status of the cells, and its interacting partners. We herein propose cellular environment-dependent mechanisms that explain the diverse roles of TMEM16A in inflammation.
Collapse
Affiliation(s)
- Weiliang Bai
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
45
|
Hu H, Wang S, He Y, Shen S, Yao B, Xu D, Liu X, Zhang Y. The role of bone morphogenetic protein 4 in corneal injury repair. Exp Eye Res 2021; 212:108769. [PMID: 34537186 DOI: 10.1016/j.exer.2021.108769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Corneal injury may cause neovascularization and lymphangiogenesis in cornea which have a detrimental effect to vision and even lead to blindness. Bone morphogenetic protein 4 (BMP4) regulates a variety of biological processes, which is closely relevant to the regulation of corneal epithelium and angiogenesis. Herein, we aimed to evaluate the effect of BMP4 on corneal neovascularization (CNV), corneal lymphangiogenesis (CL), corneal epithelial repair, and the role of BMP4/Smad pathway in these processes. METHODS We used MTT assay to determine the optimal concentration of BMP4. The suture method was performed to induce rat CNV and CL. We used ink perfusion and HE staining to visualize the morphological change of CNV, and utilized RT-qPCR and ELISA to investigate the expression of angiogenic factors and lymphangiogenic factors. The effects of BMP4 and anti-VEGF antibody on migration, proliferation and adhesion of corneal epithelium were determined by scratch test, MTT assay and cell adhesion test. RESULTS BMP4 significantly inhibited CNV and possibly CL. Topical BMP4 resulted in increased expression of endogenous BMP4, and decreased expression of angiogenic factors and lymphangiogenic factors. Compared with anti-VEGF antibody, BMP4 enhanced corneal epithelium migration, proliferation and adhesion, which facilitated corneal epithelial injury repair. Simultaneously, these processes could be regulated by BMP4/Smad pathway. CONCLUSIONS Our results demonstrated unreported effects of BMP4 on CNV, CL, and corneal epithelial repair, suggesting that BMP4 may represent a potential therapeutic target in corneal injury repair.
Collapse
Affiliation(s)
- Huicong Hu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Shurong Wang
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Yuxi He
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Sitong Shen
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Boyuan Yao
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Duo Xu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Yan Zhang
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
46
|
Chen JJ, Zhang LN, Wang HN, Xie CC, Li WY, Gao P, Hu WZ, Zhao ZF, Ji K. FAK inhibitor PF-431396 suppresses IgE-mediated mast cell activation and allergic inflammation in mice. Biochem Pharmacol 2021; 192:114722. [PMID: 34384759 DOI: 10.1016/j.bcp.2021.114722] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
Mast cells (MCs) initiate and maintain allergic inflammation. Upon being stimulated with immunoglobulin (Ig)E and antigen (Ag), MCs exhibit FcεRI (high-affinity IgE) receptor-mediated degranulation, cytokine secretion, and increased focal adhesion kinase (FAK) activity. The aims of this study were to examine mechanisms of FAK regulation in IgE-mediated MC activation and the effects of FAK inhibition on MC-mediated allergic responses. FAK activity was manipulated with short hairpin RNA (shRNA) knockdown, FAK overexpression, and the FAK inhibitor PF-431396 (PF). Gene expression and kinase activation were analyzed with quantitative molecular biology assays. PF effects were tested in the passive cutaneous anaphylaxis (PCA), active systemic anaphylaxis (ASA), and allergic conjunctivitis (AC) mouse models. Our results showed that FAK overexpression increased IgE-mediated degranulation and reduced the dexamethasone inhibitory effect on MCs activation. The FAK inhibitor PF diminished MC release of β-hexosaminidase (β-hex), histamine, and inflammatory cytokines, via a mechanism that involves MAPK and NF-κB signaling pathways. CaMKII was identified as a robust FAK-associating protein. Inhibition of CaMKII activation by KN-93 suppressed FAK activity and its downstream pathway. PF attenuated inflammatory responses in our PCA and ASA models, and relieved signs of allergic disease in AC model mice. In conclusions, MC degranulation and production of inflammatory mediators in allergic disease may be consequent to FcεRI crosslinking inducing CaMKII-mediated activation of FAK activity. FAK inhibition may represent a new MC-suppressing treatment strategy for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Li-Na Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Hui-Na Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chu-Chu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wei-Yong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Pan Gao
- Shenzhen University General Hospital, Shenzhen 518060, China
| | - Wan-Zhen Hu
- Shenzhen University General Hospital, Shenzhen 518060, China
| | - Zhen-Fu Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
47
|
Ren S, Wu G, Huang Y, Wang L, Li Y, Zhang Y. MiR-18a Aggravates Intracranial Hemorrhage by Regulating RUNX1-Occludin/ZO-1 Axis to Increase BBB Permeability. J Stroke Cerebrovasc Dis 2021; 30:105878. [PMID: 34077824 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To study the molecular mechanisms of miR-18a aggravating intracranial hemorrhage (ICH) by increasing the blood-brain barrier (BBB) permeability. METHODS Brain microvascular endothelial cells (BMVECs) and astrocytes were isolated, identified, and co-cultured to establish in vitro BBB model. BMVECs co-cultured with astrocytes were stimulated with or without thrombase and then transfected with miR-18a mimic and/or si-RUNX1. The trans-endothelial electric resistance (TEER) and FlNa flux were measured, respectively. The potential interaction between RUNX1 and miR-18a was also detected. Additionally, SD rats were injected with fresh autologous non-anticoagulant blood into the brain basal ganglia to establish ICH model. After administration with miR-18a, sh-miR-18a, miR-18a+RUNX1, sh-miR-18a+sh-RUNX1, respectively, BBB permeability was assessed. RESULTS After overexpressing miR-18a, the expression levels of RUNX1, Occludin and ZO-1 were decreased, but the Evan's blue contents and brain water contents were significantly increased in ICH rats. Additionally, rat neurological function was impaired, accompanying with an increase of TEER and fluorescein sodium flux. MiR-18a was a direct target of RUNX1 and it could bind to the promoters of RUNX1 to inhibit the expression of Occuldin and ZO-1. Consistently, these phenomena could also be observed in the corresponding cell model. Conversely, miR-18a knockdown or RUNX1 overexpression just presented an improvement effect on ICH. CONCLUSIONS MiR-18a plays a critical role during ICH because it targets to RUNX1 to inhibit the expression of tight junction proteins (Occludin and ZO-1) and then disrupt BBB permeability. MiR-18a might be a probable therapeutic target for ICH diseases.
Collapse
Affiliation(s)
- Siying Ren
- Guizhou Medical University, Guiyang 550025, China; Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guofeng Wu
- Guizhou Medical University, Guiyang 550025, China; Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Yuanxin Huang
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Likun Wang
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yinghui Li
- Guizhou Medical University, Guiyang 550025, China
| | - Yan Zhang
- Guizhou Medical University, Guiyang 550025, China; Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
48
|
Shang Z, Wang Y, Chai L, Yang G. Pumilio RNA Binding Family Member 2 Promotes the Proliferation and Metastasis of Lung Cancer Cells by Regulating Ca 2+ Signaling Pathway via Targeting C-X-C Chemokine Receptor Type 4. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to investigate the mechanism by which pumilio RNA binding family member 2 (PUM2), an RNA-binding protein (RBP) of C-X-C chemokine receptor type 4 (CXCR4), exerts its effects on the development of lung cancer. RT-qPCR and western blot analysis were utilized
to measure the expression of PUM2 in several lung cancer cell lines. Cell Counting Kit-8 (CCK-8), colony formation assay, transwell- and wound healing assays were employed to determine the proliferation, invasion and migration of NCI-H520 cells, respectively. Next, the expression of CXCR4
was measured using western blot analysis, and the combination between PUM2 and CXCR4 was verified by RNA immunoprecipitation (RIP) assay and RNA pull down assay. Finally, whether the expression of PUM2 can affect the Ca2+ signaling pathway was confirmed by western blot assay. Results
revealed that the expression level of PUM2 was notably upregulated in lung cancer cells, and knockdown of PUM2 significantly inhibited the proliferation, invasion and migration of NCI-H520 cells. PUM2 was confirmed to be the RBP of CXCR4, and PUM2 knockdown decreased the expression of CXCR4.
In addition, PUM2 silencing inhibited the phosphorylation of CaMKII, ERK, and MEK. Taken together, these findings demonstrated that PUM2 could promote the proliferation and metastasis of lung cancer cells by regulating Ca2+ signaling pathway via targeting CXCR4, which may provide
a novel insight for the future treatment of lung cancer.
Collapse
Affiliation(s)
- Zhijie Shang
- Department of Thoracic Surgery, Shanxi Bethune Hospital, Taiyuan, Shanxi, 030032, China
| | - Yuxuan Wang
- Department of Thoracic Surgery, Shanxi Bethune Hospital, Taiyuan, Shanxi, 030032, China
| | - Lixun Chai
- Department of Thoracic Surgery, Shanxi Bethune Hospital, Taiyuan, Shanxi, 030032, China
| | - Gengpu Yang
- Department of Thoracic Surgery, Shanxi Bethune Hospital, Taiyuan, Shanxi, 030032, China
| |
Collapse
|
49
|
Zhou H, Jiang F, Leng Y. Propofol Ameliorates ox-LDL-Induced Endothelial Damage Through Enhancing Autophagy via PI3K/Akt/m-TOR Pathway: A Novel Therapeutic Strategy in Atherosclerosis. Front Mol Biosci 2021; 8:695336. [PMID: 34250023 PMCID: PMC8267008 DOI: 10.3389/fmolb.2021.695336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
Objective: Atherosclerosis (AS) represents a common age-associated disease, which may be accelerated by oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell injury. This study aimed to investigate the effects of Propofol on ox-LDL-induced endothelial damage and the underlying molecular mechanisms. Methods: Human umbilical vein endothelial cells (HUVECs) were exposed to ox-LDL to induce endothelial damage. HUVECs were pretreated with 0, 5, 25 and 100°μM Propofol, followed by exposure to 100°μg/ml ox-LDL for 24°h. Cell viability was assessed by cell counting kit-8 (CCK-8) assay. The expression of autophagy- and apoptosis-related proteins was detected via western blot. Autophagosome was investigated under a transmission electron microscope. After co-treatment with autophagy inhibitor Bafilomycin A1 or si-Beclin-1, cell apoptosis was detected by flow cytometry. Furthermore, under cotreatment with PI3K activator 740Y-P, PI3K/Akt/m-TOR pathway- and autophagy-related proteins were examined by western blot. Results: With a concentration-dependent manner, Propofol promoted the viability of HUVECs exposed to ox-LDL, and increased LC3-II/I ratio and Beclin-1 expression, and decreased P62 expression. The formation of autophagosome was enhanced by Propofol. Furthermore, Propofol treatment elevated Bcl-2/Bax ratio and lowered Caspase-3 expression. Bafilomycin A1 or si-Beclin-1 distinctly ameliorated the inhibitory effects of Propofol on apoptosis in ox-LDL-exposed HUVECs. Moreover, Propofol lowered the activation of PI3K/Akt/m-TOR pathway in HUVECs under exposure to ox-LDL. However, its inhibitory effects were weakened by 740Y-P. Conclusion: Collectively, this study revealed that Propofol could ameliorate ox-LDL-induced endothelial damage through enhancing autophagy via PI3K/Akt/m-TOR pathway, which might offer a novel therapeutic strategy in AS.
Collapse
Affiliation(s)
- Hongyi Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Anesthesiology, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing, China
| | - Fan Jiang
- Department of General Medicine, Beijing Luhe Hospital, Capital Medical University, Beijin, China
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
50
|
Qiu YM, Zhang CL, Chen AQ, Wang HL, Zhou YF, Li YN, Hu B. Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy? Front Immunol 2021; 12:678744. [PMID: 34248961 PMCID: PMC8260997 DOI: 10.3389/fimmu.2021.678744] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Blood-Brain Barrier (BBB) disruption is an important pathophysiological process of acute ischemic stroke (AIS), resulting in devastating malignant brain edema and hemorrhagic transformation. The rapid activation of immune cells plays a critical role in BBB disruption after ischemic stroke. Infiltrating blood-borne immune cells (neutrophils, monocytes, and T lymphocytes) increase BBB permeability, as they cause microvascular disorder and secrete inflammation-associated molecules. In contrast, they promote BBB repair and angiogenesis in the latter phase of ischemic stroke. The profound immunological effects of cerebral immune cells (microglia, astrocytes, and pericytes) on BBB disruption have been underestimated in ischemic stroke. Post-stroke microglia and astrocytes can adopt both an M1/A1 or M2/A2 phenotype, which influence BBB integrity differently. However, whether pericytes acquire microglia phenotype and exert immunological effects on the BBB remains controversial. Thus, better understanding the inflammatory mechanism underlying BBB disruption can lead to the identification of more promising biological targets to develop treatments that minimize the onset of life-threatening complications and to improve existing treatments in patients. However, early attempts to inhibit the infiltration of circulating immune cells into the brain by blocking adhesion molecules, that were successful in experimental stroke failed in clinical trials. Therefore, new immunoregulatory therapeutic strategies for acute ischemic stroke are desperately warranted. Herein, we highlight the role of circulating and cerebral immune cells in BBB disruption and the crosstalk between them following acute ischemic stroke. Using a robust theoretical background, we discuss potential and effective immunotherapeutic targets to regulate BBB permeability after acute ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|