1
|
Han D, Jiang C, Xu H, Chu R, Zhang R, Fang R, Ge H, Lu M, Wang M, Tai Y, Yan S, Wei W, Wang Q. Inhibition of GRK2 ameliorates the pristane-induced mouse SLE model by suppressing plasma cells differentiation. Int Immunopharmacol 2024; 138:112557. [PMID: 38936060 DOI: 10.1016/j.intimp.2024.112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disorder characterized by diverse clinical manifestations and organ damage. Despite its elusive etiology, dysregulated subsets and functions of B cells are pivotal in SLE pathogenesis. Peoniflorin-6'-O-benzene sulfonate (CP-25), an esterification modification of Paeoniflorin, exhibits potent anti-inflammatory and immunomodulatory properties in autoimmune diseases (AID). However, the involvement of CP-25 and its target, GRK2, in SLE development has not been explored. In this study, we demonstrate that both genetic deficiency and pharmacological inhibition of GRK2 attenuate autoantibodies production, reduce systemic inflammation, and mitigate histopathological alterations in the spleen and kidney in the pristane-induced mouse SLE model. Importantly, our findings highlight that both genetic deficiency and pharmacological inhibition of GRK2 suppress plasma cells generation and restore dysregulated B-cell subsets by modulating two crucial transcription factors, Blimp1 and IRF4. Collectively, targeting GRK2 with CP-25 emerges as a promising therapeutic approach for SLE.
Collapse
Affiliation(s)
- Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Chunru Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Huihui Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Rui Chu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Renhao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Ruhong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Hui Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Meiyue Lu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Mingzhu Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
2
|
Zhu M, Huang Z, Qin J, Jiang J, Fan M. Loss of β-arrestin2 aggravated condylar cartilage degeneration at the early stage of temporomandibular joint osteoarthritis. BMC Musculoskelet Disord 2024; 25:451. [PMID: 38844905 PMCID: PMC11154996 DOI: 10.1186/s12891-024-07558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
OBJECTIVE Temporomandibular joint osteoarthritis (TMJOA) is a chronic degenerative joint disorder characterized by extracellular matrix degeneration and inflammatory response of condylar cartilage. β-arrestin2 is an important regulator of inflammation response, while its role in TMJOA remains unknown. The objective of this study was to investigate the role of β-arrestin2 in the development of TMJOA at the early stage and the underlying mechanism. METHODS A unilateral anterior crossbite (UAC) model was established on eight-week-old wild-type (WT) and β-arrestin2 deficiency mice to simulate the progression of TMJOA. Hematoxylin-eosin (HE) staining and microcomputed tomography (micro-CT) analysis were used for histological and radiographic assessment. Immunohistochemistry was performed to detect the expression of inflammatory and degradative cytokines, as well as autophagy related factors. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay was carried out to assess chondrocyte apoptosis. RESULTS The loss of β-arrestin2 aggravated cartilage degeneration and subchondral bone destruction in the model of TMJOA at the early stage. Furthermore, in UAC groups, the expressions of degradative (Col-X) and inflammatory (TNF-α and IL-1β) factors in condylar cartilage were increased in β-arrestin2 null mice compared with WT mice. Moreover, the loss of β-arrestin2 promoted apoptosis and autophagic process of chondrocytes at the early stage of TMJOA. CONCLUSION In conclusion, we demonstrated for the first time that β-arrestin2 plays a protective role in the development of TMJOA at the early stage, probably by inhibiting apoptosis and autophagic process of chondrocytes. Therefore, β-arrestin2 might be a potential therapeutic target for TMJOA, providing a new insight for the treatment of TMJOA at the early stage.
Collapse
Affiliation(s)
- Mengjiao Zhu
- Department of Orthodontics, Shanghai Xuhui District Dental Center, 500 Fenglin Road, Shanghai, China
| | - Ziwei Huang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Central Road, Nanjing, China
| | - Jing Qin
- Department of Orthodontics, Shanghai Xuhui District Dental Center, 500 Fenglin Road, Shanghai, China
| | - Jiafeng Jiang
- Department of Pediatric Dentistry, Shanghai Xuhui District Dental Center, 500 Fenglin Road, Shanghai, China.
| | - Mingyue Fan
- Department of Orthodontics, Shanghai Xuhui District Dental Center, 500 Fenglin Road, Shanghai, China.
| |
Collapse
|
3
|
Yang M, Mao L, Yang X, Xu X, Tang C, Wei W, Chen J. Ginsenoside compound K exerts anti-inflammatory effects through transcriptional activation and transcriptional inhibition of glucocorticoid receptor in rheumatoid arthritis fibroblast-like synoviocytes. Int Immunopharmacol 2023; 125:111080. [PMID: 37883815 DOI: 10.1016/j.intimp.2023.111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Ginsenoside compound K (GCK) has anti-inflammatory and immunoregulatory effects, and glucocorticoid receptor (GR) has been considered as its potential target. But the mechanism by which GCK exerts its anti-inflammatory effects after GR activation remains unclear. In this study, molecular docking, isothermal titration calorimetry, siRNA of GR and GRA458T mutation were used to confirm the anti-inflammatory mechanism of GCK targeting GR in fibroblast-like synoviocytes (FLS). The results showed that the key binding sites of GR and GCK were identified as ASN564, MET560 and ASN638, with binding levels at the μm level. In addition, the inhibitory effect of GCK on the proliferation of FLS and the secretion of inflammatory cytokines (IL-6, IL-8, and IL-1β) were mediated by transcriptional activation of GR, but on the migration, invasion, and TNF-α secretion of FLS were mediated by transcriptional inhibition of GR. These actions exert anti-inflammatory effects through indirect and direct inhibition of NF-κB transcriptional activity, respectively. In conclusion, this study elucidates that GCK can directly bind to and activate GR. Furthermore, after activation, GR mediates the anti-inflammatory effects of GCK through two mechanisms: transcriptional activation and transcriptional inhibition.
Collapse
Affiliation(s)
- Mei Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lijuan Mao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Xingyue Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Xiujin Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Caihong Tang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| |
Collapse
|
4
|
Ge M, Wu L, He F, Tai Y, Fang R, Han D, Guo P, Liu H, Hu Y, Xu S, Wei W, Wang Q. CP-25 inhibits the hyperactivation of rheumatic synoviocytes by suppressing the switch in G αs-G αi coupling to the β 2-adrenergic receptor. Cell Commun Signal 2023; 21:346. [PMID: 38037039 PMCID: PMC10688045 DOI: 10.1186/s12964-023-01358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
In essence, the β2 adrenergic receptor (β2AR) plays an antiproliferative role by increasing the intracellular cyclic 3',5'-adenosine monophosphate (cAMP) concentration through Gαs coupling, but interestingly, β2AR antagonists are able to effectively inhibit fibroblast-like synoviocytes (FLSs) proliferation, thus ameliorating experimental RA, indicating that the β2AR signalling pathway is impaired in RA FLSs via unknown mechanisms. The local epinephrine (Epi) level was found to be much higher in inflammatory joints than in normal joints, and high-level stimulation with Epi or isoproterenol (ISO) directly promoted FLSs proliferation and migration due to impaired β2AR signalling and cAMP production. By applying inhibitor of receptor internalization, and small interfering RNA (siRNA) of Gαs and Gαi, and by using fluorescence resonance energy transfer and coimmunoprecipitation assays, a switch in Gαs-Gαi coupling to β2AR was observed in inflammatory FLSs as well as in FLSs with chronic ISO stimulation. This Gαi coupling was then revealed to be initiated by G protein coupled receptor kinase 2 (GRK2) but not β-arrestin2 or protein kinase A-mediated phosphorylation of β2AR. Inhibiting the activity of GRK2 with the novel GRK2 inhibitor paeoniflorin-6'-O-benzene sulfonate (CP-25), a derivative of paeoniflorin, or the accepted GRK2 inhibitor paroxetine effectively reversed the switch in Gαs-Gαi coupling to β2AR during inflammation and restored the intracellular cAMP level in ISO-stimulated FLSs. As expected, CP-25 significantly inhibited the hyperplasia of FLSs in a collagen-induced arthritis (CIA) model (CIA FLSs) and normal FLSs stimulated with ISO and finally ameliorated CIA in rats. Together, our findings revealed the pathological changes in β2AR signalling in CIA FLSs, determined the underlying mechanisms and identified the pharmacological target of the GRK2 inhibitor CP-25 in treating CIA. Video Abstract.
Collapse
Affiliation(s)
- Mingli Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Li Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Feng He
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ruhong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Paipai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, China
| | - Yong Hu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Shenglin Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
5
|
Chen TT, Li XQ, Li N, Xu YP, Wang YH, Wang ZY, Zhang SN, Qi M, Zhang SH, Wei W, Wang H, Sun WY. β-arrestin2 deficiency ameliorates S-100-induced autoimmune hepatitis in mice by inhibiting infiltration of monocyte-derived macrophage and attenuating hepatocyte apoptosis. Acta Pharmacol Sin 2023; 44:2048-2064. [PMID: 37225848 PMCID: PMC10545685 DOI: 10.1038/s41401-023-01103-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a progressive hepatitis syndrome characterized by high transaminase levels, interface hepatitis, hypergammaglobulinemia, and the presence of autoantibodies. Misdiagnosis or delayed treatment of AIH can lead to cirrhosis or liver failure, which poses a major risk to human health. β-Arrestin2, a key scaffold protein for intracellular signaling pathways, has been found to be involved in many autoimmune diseases such as Sjogren's syndrome and rheumatoid arthritis. However, whether β-arrestin2 plays a role in AIH remains unknown. In the present study, S-100-induced AIH was established in both wild-type mice and β-arrestin2 knockout (Arrb2 KO) mice, and the experiments identified that liver β-arrestin2 expression was gradually increased, and positively correlated to serum ANA, ALT and AST levels during AIH progression. Furthermore, β-arrestin2 deficiency ameliorated hepatic pathological damage, decreased serum autoantibody and inflammatory cytokine levels. β-arrestin2 deficiency also inhibited hepatocyte apoptosis and prevented the infiltration of monocyte-derived macrophages into the damaged liver. In vitro experiments revealed that β-arrestin2 knockdown suppressed the migration and differentiation of THP-1 cells, whereas β-arrestin2 overexpression promoted the migration of THP-1 cells, which was regulated by the activation of the ERK and p38 MAPK pathways. In addition, β-arrestin2 deficiency attenuated TNF-α-induced primary hepatocyte apoptosis by activating the Akt/GSK-3β pathway. These results suggest that β-arrestin2 deficiency ameliorates AIH by inhibiting the migration and differentiation of monocytes, decreasing the infiltration of monocyte-derived macrophages into the liver, thereby reducing inflammatory cytokines-induced hepatocytes apoptosis. Therefore, β-arrestin2 may act as an effective therapeutic target for AIH.
Collapse
Affiliation(s)
- Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Xiu-Qin Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ya-Ping Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yu-Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Zi-Ying Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Sheng-Nan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Meng Qi
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
6
|
Zhu ZD, Zhang M, Wang Z, Jiang CR, Huang CJ, Cheng HJ, Guan QY, Su TT, Wang MM, Gao Y, Wu HF, Wei W, Han YS, Wang QT. Chronic β-adrenergic stress contributes to cardiomyopathy in rodents with collagen-induced arthritis. Acta Pharmacol Sin 2023; 44:1989-2003. [PMID: 37268711 PMCID: PMC10545746 DOI: 10.1038/s41401-023-01099-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/24/2023] [Indexed: 06/04/2023] Open
Abstract
Patients with rheumatoid arthritis (RA) have a much higher incidence of cardiac dysfunction, which contributes to the high mortality rate of RA despite anti-arthritic drug therapy. In this study, we investigated dynamic changes in cardiac function in classic animal models of RA and examined the potential effectors of RA-induced heart failure (HF). Collagen-induced arthritis (CIA) models were established in rats and mice. The cardiac function of CIA animals was dynamically monitored using echocardiography and haemodynamics. We showed that cardiac diastolic and systolic dysfunction occurred in CIA animals and persisted after joint inflammation and that serum proinflammatory cytokine (IL-1β, TNF-α) levels were decreased. We did not find evidence of atherosclerosis (AS) in arthritic animals even though cardiomyopathy was significant. We observed that an impaired cardiac β1AR-excitation contraction coupling signal was accompanied by sustained increases in blood epinephrine levels in CIA rats. Furthermore, serum epinephrine concentrations were positively correlated with the heart failure biomarker NT-proBNP in RA patients (r2 = +0.53, P < 0.0001). In CIA mice, treatment with the nonselective βAR blocker carvedilol (2.5 mg·kg-1·d-1, for 4 weeks) or the specific GRK2 inhibitor paroxetine (2.5 mg·kg-1·d-1, for 4 weeks) effectively rescued heart function. We conclude that chronic and persistent β-adrenergic stress in CIA animals is a significant contributor to cardiomyopathy, which may be a potential target for protecting RA patients against HF.
Collapse
Affiliation(s)
- Zhen-Duo Zhu
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Mei Zhang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhen Wang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Chun-Ru Jiang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Chong-Jian Huang
- Department of Emergency Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hui-Juan Cheng
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Qiu-Yun Guan
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Tian-Tian Su
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Man-Man Wang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yi Gao
- Department of Pathology, Anhui Medical University, Hefei, 230032, China
| | - Hong-Fei Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, 230038, China
| | - Wei Wei
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yong-Sheng Han
- Department of Emergency Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China.
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Qing-Tong Wang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
7
|
A novel GRK2 inhibitor alleviates experimental arthritis through restraining Th17 cell differentiation. Biomed Pharmacother 2023; 157:113997. [PMID: 36399825 DOI: 10.1016/j.biopha.2022.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/29/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
T helper type 17 (Th17) cell which is induced by interleukine-6 (IL-6)-signal transducers and activators of transcription 3 (STAT3) signaling is a central pro-inflammatory T cell subtype in rheumatoid arthritis (RA) and could be significantly reduced by paeoniflorin-6'-O-benzene sulfonate (CP-25) treatment with unclear mechanisms. This study was aimed to found out the mechanism of CP-25 in hampering Th17 cells differentiation in arthritic animals thus explore more therapeutic targets for RA. In mice with collagen-induced arthritis (CIA), both circulating and splenic Th17 subsets were expanded with increased STAT3 phosphorylation and decreased Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1)-β-arrestin2 (arrb2)-STAT3 interaction in CD4+ helper T (Th) cells. Either CP-25 or paroxetine (PAR), an established G protein coupled receptor kinase 2 (GRK2) inhibitor treatment effectively relieved the joints inflammation of CIA mice with substantially reduced Th17 cell population through inhibiting STAT3 and restoring the SHP1-arrb2-STAT3 complex. Knockout of arrb2 exacerbated the clinical manifestations of collagen antibody-induced arthritis with upregulated Th17 cells. In vitro studies revealed that depletion of arrb2 or inhibition of SHP1 promoted Th17 cell differentiation. Moreover, stimulation of adenosine A3 receptor (A3AR) simultaneously promoted Th17 cell differentiation via accelerating abbr2-A3AR binding, which could be prevented through inhibiting GRK2 phosphorylation by CP-25 or PAR, or genetically reducing GRK2. This work has demonstrated that CP-25 or PAR treatment recovers the SHP1-arrb2-STAT3 complex which prevents STAT3 activation in Th cells through reducing arrb2 recruitment to A3AR by inhibiting GRK2 phosphorylation, leading to the reduction in Th17 cell differentiation and arthritis attenuation.
Collapse
|
8
|
Wang M, Su T, Sun H, Cheng H, Jiang C, Guo P, Zhu Z, Fang R, He F, Ge M, Guan Q, Wei W, Wang Q. Regulating Th17/Treg Balance Contributes to the Therapeutic Effect of Ziyuglycoside I on Collagen-Induced Arthritis. Int J Mol Sci 2022; 23:16105. [PMID: 36555745 PMCID: PMC9786935 DOI: 10.3390/ijms232416105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
To investigate the therapeutic effect and primary pharmacological mechanism of Ziyuglycoside I (Ziyu I) on collagen-induced arthritis (CIA) mice. CIA mice were treated with 5, 10, or 20 mg/kg of Ziyu I or 2 mg/kg of methotrexate (MTX), and clinical manifestations, as well as pathological changes, were observed. T cell viability and subset type were determined, and serum levels of transforming growth factor-beta (TGF-β) and interleukin-17 (IL-17) were detected. The mRNA expression of retinoid-related orphan receptor-γt (RORγt) and transcription factor forkhead box protein 3 (Foxp3) in mouse spleen lymphocytes was ascertained by the real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). Molecular docking was used to detect whether there was a molecular interaction between Ziyu I and protein kinase B (Akt). The activation of mechanistic target of rapamycin (mTOR) in T cells was verified by Western blotting or immunofluorescence. Ziyu I treatment effectively alleviated arthritis symptoms of CIA mice, including body weight, global score, arthritis index, and a number of swollen joints. Similarly, pathological changes of joints and spleens in arthritic mice were improved. The thymic index, T cell activity, and RORγt production of Ziyu I-treated mice were significantly reduced. Notably, through molecular docking, western blotting, and immunofluorescence data analysis, it was found that Ziyu I could interact directly with Akt to reduce downstream mTOR activation and inhibit helper T cell 17 (Th17) differentiation, thereby regulating Th17/regulatory T cell (Treg) balance and improving arthritis symptoms. Ziyu I effectively improves arthritic symptoms in CIA mice by inhibiting mTOR activation, thereby affecting Th17 differentiation and regulating Th17/Treg balance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China
| |
Collapse
|
9
|
The Role of Dynamic DNA Methylation in Liver Transplant Rejection in Children. Transplant Direct 2022; 8:e1394. [PMID: 36259078 PMCID: PMC9575761 DOI: 10.1097/txd.0000000000001394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022] Open
Abstract
Transcriptional regulation of liver transplant (LT) rejection may reveal novel predictive and therapeutic targets. The purpose of this article is to test the role of differential DNA methylation in children with biopsy-proven acute cellular rejection after LT.
Collapse
|
10
|
Sun H, Wang M, Su T, Guo P, Tai Y, Cheng H, Zhu Z, Jiang C, Yan S, Wei W, Zhang L, Wang Q. Ziyuglycoside I attenuates collagen-induced arthritis through inhibiting plasma cell expansion. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115348. [PMID: 35533910 DOI: 10.1016/j.jep.2022.115348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/16/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOBOTANICAL RELEVANCE With most of the anti-rheumatic drugs having severe adverse drug reactions and poor tolerance, the active components from natural herbs provides a repository for novel, safe, and effective drug development. Sanguisorba officinalis L. exhibits definite anti-inflammatory capacity, however, whether it has anti-rheumatic effects has not been revealed. AIM OF THE STUDY In the present study, the effect of Ziyuglycoside I (Ziyu I), one of the most important active components in Sanguisorba officinalis L., was investigated in treating collagen-induced arthritis (CIA), illuminating its potential pharmacological mechanisms. MATERIAL AND METHODS CIA mice were treated with 5, 10, or 20 mg/kg of Ziyu I or 2 mg/kg of MTX, and clinical manifestations as well as pathological changes were observed. T and B cell viability was determined using cell counting kit-8, plasma autoantibodies and cytokines were tested with ELISA, T and B cell subsets were identified by flow cytometry, Blimp1 expression was detected by RT-qPCR and in situ immunofluorescence. The expression of activation-induced cytidine deaminase (AID) was detected by immunohistochemistry. ERK activation in B cells was verified through western blotting and immunofluorescence. Meanwhile, bioinformatics retrieval and molecular docking/molecular dynamics were used to predict the relationship between Blimp1, ERK and Ziyu I with the pharmacokinetics and toxicity of Ziyu I being evaluated in the ADMETlab Web platform. RESULTS Ziyu I treatment effectively alleviated the joint inflammatory manifestation including arthritis index, global scores, swollen joint count and body weight of CIA mice. It improved the pathological changes of joint and spleen of arthritic mice, especially in germinal center formation. Ziyu I displayed a moderate regulatory effect on T cell activation, the percentage of total T and helper T cells, and tumor necrosis factor-α, but transforming growth factor-β was not restored. Increased spleen index, B cell viability and plasma auto-antibody production in CIA mice were significantly reduced by Ziyu I therapy. Of note, we found that Ziyu I administration substantially inhibited the excessive expansion of plasma cells in spleen through preventing the expression of B lymphocyte induced maturation protein 1 (Blimp1) and AID in B cells. Ziyu I was predicted in silico to directly interact with ERK2, and reduce ERK2 activation, contributing to the depressed expression of Blimp1. Moreover, Ziyu I was predicted to have a favorable pharmacokinetic profile and low toxicity. CONCLUSION Ziyu I effectively ameliorates CIA in mice by inhibiting plasma cell generation through prevention of ERK2-mediated Blimp1 expression in B cells. Therefore, Ziyu I is a promising candidate for anti-arthritic drug development.
Collapse
Affiliation(s)
- Hanfei Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Manman Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Tiantian Su
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Paipai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Huijuan Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Zhenduo Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Chunru Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui Province, 230032, China.
| |
Collapse
|
11
|
Cheng H, Guo P, Su T, Jiang C, Zhu Z, Wei W, Zhang L, Wang Q. G protein-coupled receptor kinase type 2 and β-arrestin2: Key players in immune cell functions and inflammation. Cell Signal 2022; 95:110337. [DOI: 10.1016/j.cellsig.2022.110337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
12
|
Cao F, Huang C, Cheng J, He Z. β-arrestin-2 alleviates rheumatoid arthritis injury by suppressing NLRP3 inflammasome activation and NF- κB pathway in macrophages. Bioengineered 2021; 13:38-47. [PMID: 34787064 PMCID: PMC8805973 DOI: 10.1080/21655979.2021.2003678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disorder that inflicts damage to the joints of the hands and wrist. The aim of this study was to investigate the protective effect of β-Arrestin-2 (βArr2) on RA in vivo and in vitro. The βArr2 adenovirus (βArr2-Ad) or the control (Con-Ad) was injected into the ankle joint cavity of collagen-induced arthritis (CIA) mice. According to the results, an improvement was shown in the symptoms and pathological injury of RA after an upregulation of βArr2. Correspondingly, the inflammatory response was attenuated, as evidenced by the decreased serum pro-inflammatory cytokines levels and NF-κB pathway-related proteins. Nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3) inflammasome activation was inhibited in CIA mice treated with βArr2-Ad injection, as reflected by the diminished IL-18 level and declined protein levels of inflammasome components in the ankle joint. Likewise, the anti-inflammatory effect of macrophages was also validated by in vitro experiments. In summary, βArr2 effectively ameliorates ankle inflammation in CIA mice via NF-κB/NLRP3 inflammasome, providing theoretical and clinical basis for RA therapy.
Collapse
Affiliation(s)
- Feng Cao
- Department of Orthopedics, No. 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| | - Cheng Huang
- Department of Orthopedics, No. 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| | - Jiwei Cheng
- Department of Orthopedics, No. 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| | - Zhaochun He
- Department of Rheumatoid Immunity, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Fang S, Xu X, Zhong L, Wang AQ, Gao WL, Lu M, Yin ZS. Bioinformatics-based study to identify immune infiltration and inflammatory-related hub genes as biomarkers for the treatment of rheumatoid arthritis. Immunogenetics 2021; 73:435-448. [PMID: 34477936 DOI: 10.1007/s00251-021-01224-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease whose principal pathological change is aggressive chronic synovial inflammation; however, the specific etiology and pathogenesis have not been fully elucidated. We downloaded the synovial tissue gene expression profiles of four human knees from the Gene Expression Omnibus database, analyzed the differentially expressed genes in the normal and RA groups, and assessed their enrichment in functions and pathways using bioinformatics methods and the STRING online database to establish protein-protein interaction networks. Cytoscape software was used to obtain 10 hub genes; receiver operating characteristic (ROC) curves were calculated for each hub gene and differential expression analysis of the two groups of hub genes. The CIBERSORT algorithm was used to impute immune infiltration. We identified the signaling pathways that play important roles in RA and 10 hub genes: Ccr1, Ccr2, Ccr5, Ccr7, Cxcl5, Cxcl6, Cxcl13, Ccl13, Adcy2, and Pnoc. The diagnostic value of these 10 hub genes for RA was confirmed using ROC curves and expression analysis. Adcy2, Cxcl13, and Ccr5 are strongly associated with RA development. The study also revealed that the differential infiltration profile of different inflammatory immune cells in the synovial tissue of RA is an extremely critical factor in RA progression. This study may contribute to the understanding of signaling pathways and biological processes associated with RA and the role of inflammatory immune infiltration in the pathogenesis of RA. In addition, this study shows that Adcy2, Cxcl13, and Ccr5 have the potential to be biomarkers for RA treatment.
Collapse
Affiliation(s)
- Sheng Fang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China
| | - Xin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China
| | - Lin Zhong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, 390 Huaihe Road, Hefei, Anhui Province, 230061, People's Republic of China
| | - An-Quan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China
| | - Wei-Lu Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China
| | - Ming Lu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China.
| |
Collapse
|