1
|
Iqbal H, Ilyas K, Akash MSH, Rehman K, Hussain A, Iqbal J. Real-time fluorescent monitoring of phase I xenobiotic-metabolizing enzymes. RSC Adv 2024; 14:8837-8870. [PMID: 38495994 PMCID: PMC10941266 DOI: 10.1039/d4ra00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
This article explores the intricate landscape of advanced fluorescent probes crafted for the detection and real-time monitoring of phase I xenobiotic-metabolizing enzymes. Employing state-of-the-art technologies, such as fluorescence resonance energy transfer, intramolecular charge transfer, and solid-state luminescence enhancement, this article unfolds a multifaceted approach to unraveling the dynamics of enzymatic processes within living systems. This encompassing study involves the development and application of a diverse range of fluorescent probes, each intricately designed with tailored mechanisms to heighten sensitivity, providing dynamic insights into phase I xenobiotic-metabolizing enzymes. Understanding the role of phase I xenobiotic-metabolizing enzymes in these pathophysiological processes, is essential for both medical research and clinical practice. This knowledge can guide the development of approaches to prevent, diagnose, and treat a broad spectrum of diseases and conditions. This adaptability underscores their potential clinical applications in cancer diagnosis and personalized medicine. Noteworthy are the trifunctional fluorogenic probes, uniquely designed not only for fluorescence-based cellular imaging but also for the isolation of cellular glycosidases. This innovative feature opens novel avenues for comprehensive studies in enzyme biology, paving the way for potential therapeutic interventions. The research accentuates the selectivity and specificity of the probes, showcasing their proficiency in distinguishing various enzymes and their isoforms. The sophisticated design and successful deployment of these fluorescent probes mark significant advancements in enzymology, providing powerful tools for both researchers and clinicians. Beyond their immediate applications, these probes offer illuminating insights into disease mechanisms, facilitating early detection, and catalyzing the development of targeted therapeutic interventions. This work represents a substantial leap forward in the field, promising transformative implications for understanding and addressing complex biological processes. In essence, this research heralds a new era in the development of fluorescent probes, presenting a comprehensive and innovative approach that not only expands the understanding of cellular enzyme activities but also holds great promise for practical applications in clinical settings and therapeutic endeavors.
Collapse
Affiliation(s)
- Hajra Iqbal
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | - Kainat Ilyas
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara Okara Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad 22044 Pakistan
| |
Collapse
|
2
|
He L, Zhang MY, Cox M, Zhang Q, Donnell AF, Zhang Y, Tarby C, Gill P, Subbaiah MAM, Ramar T, Reddy M, Puttapaka V, Li YX, Sivaprakasam P, Critton D, Mulligan D, Xie C, Ramakrishnan R, Nagar J, Dudhgaonkar S, Murtaza A, Oderinde MS, Schieven GL, Mathur A, Gavai AV, Vite G, Gangwar S, Poudel YB. Identification and Optimization of Small Molecule Pyrazolopyrimidine TLR7 Agonists for Applications in Immuno-oncology. ACS Med Chem Lett 2024; 15:189-196. [PMID: 38352849 PMCID: PMC10860188 DOI: 10.1021/acsmedchemlett.3c00456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
Small molecule toll-like receptor (TLR) 7 agonists have gathered considerable interest as promising therapeutic agents for applications in cancer immunotherapy. Herein, we describe the development and optimization of a series of novel TLR7 agonists through systematic structure-activity relationship studies focusing on modification of the phenylpiperidine side chain. Additional refinement of ADME properties culminated in the discovery of compound 14, which displayed nanomolar reporter assay activity and favorable drug-like properties. Compound 14 demonstrated excellent in vivo pharmacokinetic/pharmacodynamic profiles and synergistic antitumor activity when administered in combination with aPD1 antibody, suggesting opportunities of employing 14 in immuno-oncology therapies with immune checkpoint blockade agents.
Collapse
Affiliation(s)
- Liqi He
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Meng Yao Zhang
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Matthew Cox
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Qian Zhang
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Andrew F. Donnell
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Yong Zhang
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Christine Tarby
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Patrice Gill
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | | | | | - Maheswara Reddy
- Biocon
Bristol Myers Squibb R&D Centre, Bangalore 560099, India
| | | | - Yi-Xin Li
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Prasanna Sivaprakasam
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - David Critton
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Dawn Mulligan
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Chunshan Xie
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Radha Ramakrishnan
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Jignesh Nagar
- Biocon
Bristol Myers Squibb R&D Centre, Bangalore 560099, India
| | | | - Anwar Murtaza
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Martins S. Oderinde
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Gary L. Schieven
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Ashvinikumar V. Gavai
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Gregory Vite
- Research
and Development, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Sanjeev Gangwar
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Yam B. Poudel
- Research
and Development, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| |
Collapse
|
3
|
Kim Y, Li H, Choi J, Boo J, Jo H, Hyun JY, Shin I. Glycosidase-targeting small molecules for biological and therapeutic applications. Chem Soc Rev 2023; 52:7036-7070. [PMID: 37671645 DOI: 10.1039/d3cs00032j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Glycosidases are ubiquitous enzymes that catalyze the hydrolysis of glycosidic linkages in oligosaccharides and glycoconjugates. These enzymes play a vital role in a wide variety of biological events, such as digestion of nutritional carbohydrates, lysosomal catabolism of glycoconjugates, and posttranslational modifications of glycoproteins. Abnormal glycosidase activities are associated with a variety of diseases, particularly cancer and lysosomal storage disorders. Owing to the physiological and pathological significance of glycosidases, the development of small molecules that target these enzymes is an active area in glycoscience and medicinal chemistry. Research efforts carried out thus far have led to the discovery of numerous glycosidase-targeting small molecules that have been utilized to elucidate biological processes as well as to develop effective chemotherapeutic agents. In this review, we describe the results of research studies reported since 2018, giving particular emphasis to the use of fluorescent probes for detection and imaging of glycosidases, activity-based probes for covalent labelling of these enzymes, glycosidase inhibitors, and glycosidase-activatable prodrugs.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Joohee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Jihyeon Boo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hyemi Jo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
4
|
Son J, Wu Z, Dou J, Fujita H, Cao PLD, Liu Q, Lindsey JS. Tethered Indoxyl-Glucuronides for Enzymatically Triggered Cross-Linking. Molecules 2023; 28:molecules28104143. [PMID: 37241884 DOI: 10.3390/molecules28104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Indoxyl-glucuronides, upon treatment with β-glucuronidase under physiological conditions, are well known to afford the corresponding indigoid dye via oxidative dimerization. Here, seven indoxyl-glucuronide target compounds have been prepared along with 22 intermediates. Of the target compounds, four contain a conjugatable handle (azido-PEG, hydroxy-PEG, or BCN) attached to the indoxyl moiety, while three are isomers that include a PEG-ethynyl group at the 5-, 6-, or 7-position. All seven target compounds have been examined in indigoid-forming reactions upon treatment with β-glucuronidase from two different sources and rat liver tritosomes. Taken together, the results suggest the utility of tethered indoxyl-glucuronides for use in bioconjugation chemistry with a chromogenic readout under physiological conditions.
Collapse
Affiliation(s)
- Juno Son
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Zhiyuan Wu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Jinghuai Dou
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hikaru Fujita
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Phuong-Lien Doan Cao
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Qihui Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Li JH, Huang LJ, Zhou HL, Shan YM, Chen FM, Lehto VP, Xu WJ, Luo LQ, Yu HJ. Engineered nanomedicines block the PD-1/PD-L1 axis for potentiated cancer immunotherapy. Acta Pharmacol Sin 2022; 43:2749-2758. [PMID: 35484402 PMCID: PMC9622913 DOI: 10.1038/s41401-022-00910-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy, in particular immune checkpoint blockade (ICB) therapy targeting the programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis, has remarkably revolutionized cancer treatment in the clinic. Anti-PD-1/PD-L1 therapy is designed to restore the antitumor response of cytotoxic T cells (CTLs) by blocking the interaction between PD-L1 on tumour cells and PD-1 on CTLs. Nevertheless, current anti-PD-1/PD-L1 therapy suffers from poor therapeutic outcomes in a large variety of solid tumours due to insufficient tumour specificity, severe cytotoxic effects, and the occurrence of immune resistance. In recent years, nanosized drug delivery systems (NDDSs), endowed with highly efficient tumour targeting and versatility for combination therapy, have paved a new avenue for cancer immunotherapy. In this review article, we summarized the recent advances in NDDSs for anti-PD-1/PD-L1 therapy. We then discussed the challenges and further provided perspectives to promote the clinical application of NDDS-based anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Jun-Hao Li
- College of Sciences, Shanghai University, Shanghai, 200444, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lu-Jia Huang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hui-Ling Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi-Ming Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Min Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, 70211, Kuopio, Finland
| | - Wu-Jun Xu
- Department of Applied Physics, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Li-Qiang Luo
- College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Hai-Jun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Martin H, Lázaro LR, Gunnlaugsson T, Scanlan EM. Glycosidase activated prodrugs for targeted cancer therapy. Chem Soc Rev 2022; 51:9694-9716. [DOI: 10.1039/d2cs00379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this review glycosidase activated prodrugs that target cancer cells are discussed.
Collapse
Affiliation(s)
- Harlei Martin
- School of Chemistry and Trinity Bioscience Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland
| | - Laura Ramírez Lázaro
- School of Chemistry and Trinity Bioscience Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland
- SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Bioscience Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland
- SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Ireland
| | - Eoin M. Scanlan
- School of Chemistry and Trinity Bioscience Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland
- SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Ireland
| |
Collapse
|
7
|
Pulukuri AJ, Burt AJ, Opp LK, McDowell CM, Davaritouchaee M, Nielsen AE, Mancini RJ. Acquired Drug Resistance Enhances Imidazoquinoline Efflux by P-Glycoprotein. Pharmaceuticals (Basel) 2021; 14:ph14121292. [PMID: 34959691 PMCID: PMC8705394 DOI: 10.3390/ph14121292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Multidrug-Resistant (MDR) cancers attenuate chemotherapeutic efficacy through drug efflux, a process that transports drugs from within a cell to the extracellular space via ABC (ATP-Binding Cassette) transporters, including P-glycoprotein 1 (P-gp or ABCB1/MDR1). Conversely, Toll-Like Receptor (TLR) agonist immunotherapies modulate activity of tumor-infiltrating immune cells in local proximity to cancer cells and could, therefore, benefit from the enhanced drug efflux in MDR cancers. However, the effect of acquired drug resistance on TLR agonist efflux is largely unknown. We begin to address this by investigating P-gp mediated efflux of TLR 7/8 agonists. First, we used functionalized liposomes to determine that imidazoquinoline TLR agonists Imiquimod, Resiquimod, and Gardiquimod are substrates for P-gp. Interestingly, the least potent imidazoquinoline (Imiquimod) was the best P-gp substrate. Next, we compared imidazoquinoline efflux in MDR cancer cell lines with enhanced P-gp expression relative to parent cancer cell lines. Using P-gp competitive substrates and inhibitors, we observed that imidazoquinoline efflux occurs through P-gp and, for Imiquimod, is enhanced as a consequence of acquired drug resistance. This suggests that enhancing efflux susceptibility could be an important consideration in the rational design of next generation immunotherapies that modulate activity of tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Anunay J. Pulukuri
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
| | - Anthony J. Burt
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
- Department of Chemistry & Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Larissa K. Opp
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
| | - Colin M. McDowell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
| | - Maryam Davaritouchaee
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Amy E. Nielsen
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
| | - Rock J. Mancini
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (A.J.P.); (A.J.B.); (L.K.O.); (M.D.); (A.E.N.)
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
- Correspondence:
| |
Collapse
|
8
|
Bhagchandani S, Johnson JA, Irvine DJ. Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: From antiviral formulations to vaccine adjuvants. Adv Drug Deliv Rev 2021; 175:113803. [PMID: 34058283 PMCID: PMC9003539 DOI: 10.1016/j.addr.2021.05.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Imidazoquinoline derivatives (IMDs) and related compounds function as synthetic agonists of Toll-like receptors 7 and 8 (TLR7/8) and one is FDA approved for topical antiviral and skin cancer treatments. Nevertheless, these innate immune system-activating drugs have potentially much broader therapeutic utility; they have been pursued as antitumor immunomodulatory agents and more recently as candidate vaccine adjuvants for cancer and infectious disease. The broad expression profiles of TLR7/8, poor pharmacokinetic properties of IMDs, and toxicities associated with systemic administration, however, are formidable barriers to successful clinical translation. Herein, we review IMD formulations that have advanced to the clinic and discuss issues related to biodistribution and toxicity that have hampered the further development of these compounds. Recent strategies aimed at enhancing safety and efficacy, particularly through the use of bioconjugates and nanoparticle formulations that alter pharmacokinetics, biodistribution, and cellular targeting, are described. Finally, key aspects of the biology of TLR7 signaling, such as TLR7 tolerance, that may need to be considered in the development of new IMD therapeutics are discussed.
Collapse
Affiliation(s)
- Sachin Bhagchandani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Doraghi F, Kianmehr E, Foroumadi A. Metal-free regioselective C5-cyanoalkylation of the 8-aminoquinolineamides/sulfonamides via oxidative cross-dehydrogenative coupling with alkylnitriles. Org Chem Front 2021. [DOI: 10.1039/d1qo00570g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A practical, versatile and Metal-free regioselective C5-cyanoalkylation of the 8-aminoquinolineamides/sulfonamides with acetonitrile has been described.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Ebrahim Kianmehr
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Frega G, Wu Q, Le Naour J, Vacchelli E, Galluzzi L, Kroemer G, Kepp O. Trial Watch: experimental TLR7/TLR8 agonists for oncological indications. Oncoimmunology 2020; 9:1796002. [PMID: 32934889 PMCID: PMC7466852 DOI: 10.1080/2162402x.2020.1796002] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Resiquimod (R848) and motolimod (VTX-2337) are second-generation experimental derivatives of imiquimod, an imidazoquinoline with immunostimulatory properties originally approved by the US Food and Drug Administration for the topical treatment of actinic keratosis and genital warts more than 20 years ago. Both resiquimod and motolimod operate as agonists of Toll-like receptor 7 (TLR7) and/or TLR8, in thus far delivering adjuvant-like signals to antigen-presenting cells (APCs). In line with such an activity, these compounds are currently investigated as immunostimulatory agents for the treatment of various malignancies, especially in combination with peptide-based, dendritic cell-based, cancer cell lysate-based, or DNA-based vaccines. Here, we summarize preclinical and clinical evidence recently collected to support the development of resiquimod and motolimod and other TLR7/TLR8 agonists as anticancer agents.
Collapse
Affiliation(s)
- Giorgio Frega
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Qi Wu
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Julie Le Naour
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Oliver Kepp
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| |
Collapse
|
11
|
Nanomedicine and cancer immunotherapy. Acta Pharmacol Sin 2020; 41:879-880. [PMID: 32467567 PMCID: PMC7471393 DOI: 10.1038/s41401-020-0426-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023] Open
|