1
|
Mortaheb S, Pezeshki PS, Rezaei N. Bispecific therapeutics: a state-of-the-art review on the combination of immune checkpoint inhibition with costimulatory and non-checkpoint targeted therapy. Expert Opin Biol Ther 2024; 24:1335-1351. [PMID: 39503381 DOI: 10.1080/14712598.2024.2426636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have revolutionized the field of cancer immunotherapy and have enhanced the survival of patients with malignant tumors. However, the overall efficacy of ICIs remains unsatisfactory and is faced with two major concerns of resistance development and occurrence of immune-related adverse events (irAEs). Bispecific antibodies (bsAbs) have emerged as promising strategies with unique mechanisms of action to achieve a better efficacy and safety than monoclonal antibodies (mAbs) or even their combination. BsAbs along with other bispecific platforms such as bispecific fusion proteins, nanobodies, and CAR-T cells may help to avoid development of resistance and reduce irAEs caused by on-target/off-tumor binding effects of mAbs. AREAS COVERED A literature search was performed using PubMed for English-language articles to provide a comprehensive overview of preclinical and clinical studies on bsAbs specified for both immune checkpoints and non-checkpoint molecules as a well-enhanced class of therapeutics. EXPERT OPINION Identifying suitable targets and selecting effective engineering platforms enhance the potential of bsAbs to address the challenges associated with conventional therapies such as ICIs, positioning them as a promising class of therapeutics in the landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Samin Mortaheb
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parmida Sadat Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zhang R, Su C, Jia Y, Xing M, Jin S, Zong H. Molecular mechanisms of HER2-targeted therapy and strategies to overcome the drug resistance in colorectal cancer. Biomed Pharmacother 2024; 179:117363. [PMID: 39236476 DOI: 10.1016/j.biopha.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
HER2 amplification is one of the mechanisms that induce drug resistance to anti-EGFR therapy in colorectal cancer. In recent years, data from several randomized clinical trials show that anti-HER2 therapies improved the prognosis of patients with HER2-positive colorectal cancer. These results indicate that HER2 is a promising therapeutic target in advanced colorectal cancer. Despite the anti-HER2 therapies including monoclonal antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates improving the outcomes, less than 30 % of the patients achieve objective response and eventually have drug resistance. It is necessary to explore the primary and secondary mechanisms for the resistance to anti-HER2 therapies, which will pave the way to overcome the drug resistance. Several studies have reported the potential mechanisms for the resistance to anti-HER2 therapies. In this review, we present a comprehensive overview of the recent advances in clinical research, mechanisms of treatment resistance, and strategies for reversing resistance in HER2-positive colorectal cancer patients.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Chang Su
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Yongliang Jia
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Menglu Xing
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Shuiling Jin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Hong Zong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
3
|
Liu Y, Wang C, Chen G, Chen J, Chen W, Lei K, Li J, Pan Y, Li Y, Tang D, Li B, Zhao J, Zeng L. Patient derived cancer organoids model the response to HER2-CD3 bispecific antibody (BsAbHER2) generated from hydroxyapatite gene delivery system. Cancer Lett 2024; 597:217043. [PMID: 38876386 DOI: 10.1016/j.canlet.2024.217043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
HER2-positive cancer is a prevalent subtype of malignancy with poor prognosis, yet current targeted therapies, like Trastuzumab and pyrotinib, have resulted in remission in patients with HER2-positive cancer. This study provides a novel approach for immunotherapy based on a hydroxyapatite (HA) gene delivery system producing a bispecific antibody for HER2-positive cancer treatment. An HA nanocarrier has been synthesized by the classical hydrothermal method. Particularly, the HA-nanoneedle system was able to mediate stable gene expression of minicircle DNA (MC) encoding a humanized anti-CD3/anti-HER2 bispecific antibody (BsAbHER2) in vivo. The produced BsAbs exhibited a potent killing effect not only in HER2-positive cancer cells but also in patient-derived organoids in vitro. This HA-nanoneedle gene delivery system features simple large-scale preparation and clinical applicability. Hence, the HA-nanoneedle gene delivery system combined with minicircle DNA vector encoding BsAbHER2 reported here provides a potential immunotherapy strategy for HER2-positive tumors.
Collapse
Affiliation(s)
- Yuhong Liu
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China; The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Chen Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Guochuang Chen
- Syno Minicircle Biotechnology, Shenzhen, 518055, PR China
| | - Junzong Chen
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Wei Chen
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Kefeng Lei
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Jia Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Yihang Pan
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - You Li
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China
| | - Di Tang
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Binbin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Jing Zhao
- General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Leli Zeng
- The Biobank, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| |
Collapse
|
4
|
Pan Y, Xue Q, Yang Y, Shi T, Wang H, Song X, Luo Y, Liu W, Ren S, Cai Y, Nie Y, Song Z, Liu B, Li JP, Wei J. Glycoengineering-based anti-PD-1-iRGD peptide conjugate boosts antitumor efficacy through T cell engagement. Cell Rep Med 2024; 5:101590. [PMID: 38843844 PMCID: PMC11228665 DOI: 10.1016/j.xcrm.2024.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Despite the important breakthroughs of immune checkpoint inhibitors in recent years, the objective response rates remain limited. Here, we synthesize programmed cell death protein-1 (PD-1) antibody-iRGD cyclic peptide conjugate (αPD-1-(iRGD)2) through glycoengineering methods. In addition to enhancing tissue penetration, αPD-1-(iRGD)2 simultaneously engages tumor cells and PD-1+ T cells via dual targeting, thus mediating tumor-specific T cell activation and proliferation with mild effects on non-specific T cells. In multiple syngeneic mouse models, αPD-1-(iRGD)2 effectively reduces tumor growth with satisfactory biosafety. Moreover, results of flow cytometry and single-cell RNA-seq reveal that αPD-1-(iRGD)2 remodels the tumor microenvironment and expands a population of "better effector" CD8+ tumor infiltrating T cells expressing stem- and memory-associated genes, including Tcf7, Il7r, Lef1, and Bach2. Conclusively, αPD-1-(iRGD)2 is a promising antibody conjugate therapeutic beyond antibody-drug conjugate for cancer immunotherapy.
Collapse
Affiliation(s)
- Yunfeng Pan
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi Xue
- Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yi Yang
- Glyco-therapy Biotechnology Co. Ltd., Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha Street, Qiantang District, Hangzhou, China
| | - Tao Shi
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hanbing Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xueru Song
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuting Luo
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shiji Ren
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yiran Cai
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Nie
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhentao Song
- Glyco-therapy Biotechnology Co. Ltd., Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha Street, Qiantang District, Hangzhou, China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie P Li
- Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Jia Wei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Zhao S, Qiu Y, Yuan M, Wang Z. Progress of PD-1/PD-L1 inhibitor combination therapy in immune treatment for HER2-positive tumors. Eur J Clin Pharmacol 2024; 80:625-638. [PMID: 38342825 DOI: 10.1007/s00228-024-03644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Patients with HER2-positive cancers often face a poor prognosis, and treatment regimens containing anti-HER2 have become the first-line treatment options for breast and gastric cancers. However, these approaches are faced with significant challenges in terms of drug resistance. Hence, it is crucial to explore precise treatment strategies aimed at improving survival outcomes. ADVANCEMENTS IN TREATMENT Over the past few years, there has been rapid advancement in the realm of tumor therapy, particularly with the swift progress of immune checkpoint inhibitors, including PD-1/PD-L1 inhibitors. They exert anti-tumor effects by disrupting immune-suppressive factors within the tumor microenvironment. However, monotherapy with PD-1/PD-L1 inhibitors has several limitations. Consequently, numerous studies have explored combinatorial immunotherapeutic strategies and demonstrated highly promising avenues of development. OBJECTIVE This article aims to review the clinical trials investigating PD-1/PD-L1 inhibitor combination therapy for HER2-positive tumors. Additionally, it provides a summary of ongoing trials evaluating the efficacy and safety of these combined treatments, with the intention of furnishing valuable insights for the clinical management of HER2-positive cancer. CONCLUSION Combinatorial immunotherapeutic strategies involving PD-1/PD-L1 inhibitors hold considerable promise in the treatment of HER2-positive tumors. Continued research efforts and clinical trials are warranted to elucidate optimal treatment regimens that maximize therapeutic benefits while minimizing adverse effects.
Collapse
Affiliation(s)
- Sining Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yiwu Qiu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiqin Yuan
- Department of Colorectal Medicine, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zeng Wang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China, 310022.
| |
Collapse
|
6
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
7
|
Wang H, Huang M, Zhu M, Su C, Zhang Y, Chen H, Jiang Y, Wang H, Guo Q, Zhang S. Paclitaxel combined with Compound K inducing pyroptosis of non-small cell lung cancer cells by regulating Treg/Th17 balance. Chin Med 2024; 19:26. [PMID: 38360696 PMCID: PMC10870689 DOI: 10.1186/s13020-024-00904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors, which have attracted much attention in recent years, have achieved good efficacy, but their use is limited by the high incidence of acquired drug resistance. Therefore, there is an urgent need to develop new immunotherapy drugs. Compound taxus chinensis capsule (CTC) is an oral paclitaxel compound drug, clinical results showed it can change the number of regulatory T cells and T helper cell 17 in peripheral blood. Regulating the balance between regulatory T cells and T helper cell 17 is considered to be an effective anticancer strategy. Paclitaxel and ginsenoside metabolite compound K are the main immunomodulatory components, it is not clear that paclitaxel combined with compound K can inhibit tumor development by regulating the balance between regulatory T cell and T helper cell 17. METHODS MTT, EdU proliferation and plate colony formation assay were used to determine the concentration of paclitaxel and compound K. AnnexinV-FITC/PI staining, ELISA, Western Blot assay, Flow Cytometry and Immunofluorescence were used to investigate the effect of paclitaxel combined with compound K on Lewis cell cultured alone or co-cultured with splenic lymphocyte. Finally, transplanted tumor C57BL/6 mice model was constructed to investigate the anti-cancer effect in vivo. RESULTS According to the results of MTT, EdU proliferation and plate colony formation assay, paclitaxel (10 nM) and compound K (60 μM) was used to explore the mechanism. The results of Flow Cytometry demonstrated that paclitaxel combined with compound K increased the number of T helper cell 17 and decreased the number of regulatory T cells, which induced pyroptosis of cancer cells. The balance was mediated by the JAK-STAT pathway according to the results of Western Blot and Immunofluorescence. Finally, the in vivo results showed that paclitaxel combined with compound K significantly inhibit the progression of lung cancer. CONCLUSIONS In this study, we found that paclitaxel combined with compound K can activate CD8+ T cells and induce pyroptosis of tumor cells by regulating the balance between regulatory T cells and T helper cell 17. These results demonstrated that this is a feasible treatment strategy for lung cancer.
Collapse
Affiliation(s)
- Hongzheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Min Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Mengyuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Chi Su
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 21009, People's Republic of China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, People's Republic of China
| | - Yijian Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 21009, People's Republic of China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, People's Republic of China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Hongyu Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yuexin Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Haidi Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Shuai Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 21009, People's Republic of China.
| |
Collapse
|
8
|
Madsen AV, Pedersen LE, Kristensen P, Goletz S. Design and engineering of bispecific antibodies: insights and practical considerations. Front Bioeng Biotechnol 2024; 12:1352014. [PMID: 38333084 PMCID: PMC10850309 DOI: 10.3389/fbioe.2024.1352014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Bispecific antibodies (bsAbs) have attracted significant attention due to their dual binding activity, which permits simultaneous targeting of antigens and synergistic binding effects beyond what can be obtained even with combinations of conventional monospecific antibodies. Despite the tremendous therapeutic potential, the design and construction of bsAbs are often hampered by practical issues arising from the increased structural complexity as compared to conventional monospecific antibodies. The issues are diverse in nature, spanning from decreased biophysical stability from fusion of exogenous antigen-binding domains to antibody chain mispairing leading to formation of antibody-related impurities that are very difficult to remove. The added complexity requires judicious design considerations as well as extensive molecular engineering to ensure formation of high quality bsAbs with the intended mode of action and favorable drug-like qualities. In this review, we highlight and summarize some of the key considerations in design of bsAbs as well as state-of-the-art engineering principles that can be applied in efficient construction of bsAbs with diverse molecular formats.
Collapse
Affiliation(s)
- Andreas V. Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lasse E. Pedersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Tanaka T, Suzuki H, Ohishi T, Kaneko MK, Kato Y. Antitumor activities against breast cancers by an afucosylated anti-HER2 monoclonal antibody H 2 Mab-77-mG 2a -f. Cancer Sci 2024; 115:298-309. [PMID: 37942574 PMCID: PMC10823288 DOI: 10.1111/cas.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Breast cancer patients with high levels of human epidermal growth factor receptor 2 (HER2) expression have worse clinical outcomes. Anti-HER2 monoclonal antibody (mAb) is the most important therapeutic modality for HER2-positive breast cancer. We previously immunized mice with the ectodomain of HER2 to create the anti-HER2 mAb, H2 Mab-77 (mouse IgG1 , kappa). This was then altered to produce H2 Mab-77-mG2a -f, an afucosylated mouse IgG2a . In the present work, we examined the reactivity of H2 Mab-77-mG2a -f and antitumor effects against breast cancers in vitro and in vivo. BT-474, an endogenously HER2-expressing breast cancer cell line, was identified by H2 Mab-77-mG2a -f with a strong binding affinity (a dissociation constant [KD ]: 5.0 × 10-9 M). H2 Mab-77-mG2a -f could stain HER2 of breast cancer tissues in immunohistochemistry and detect HER2 protein in Western blot analysis. Furthermore, H2 Mab-77-mG2a -f demonstrated strong antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) for BT-474 cells. MDA-MB-468, a HER2-negative breast cancer cell line, was unaffected by H2 Mab-77-mG2a -f. Additionally, in the BT-474-bearing tumor xenograft model, H2 Mab-77-mG2a -f substantially suppressed tumor development when compared with the control mouse IgG2a mAb. In contrast, the HER2-negative MDA-MB-468-bearing tumor xenograft model showed no response to H2 Mab-77-mG2a -f. These findings point to the possibility of H2 Mab-77-mG2a -f as a treatment regimen by showing that it has antitumor effects on HER2-positive breast tumors.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Molecular PharmacologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Hiroyuki Suzuki
- Department of Molecular PharmacologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Department of Antibody Drug DevelopmentTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), NumazuMicrobial Chemistry Research FoundationShizuokaJapan
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of OncologyMicrobial Chemistry Research FoundationTokyoJapan
| | - Mika K. Kaneko
- Department of Molecular PharmacologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Department of Antibody Drug DevelopmentTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Yukinari Kato
- Department of Molecular PharmacologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Department of Antibody Drug DevelopmentTohoku University Graduate School of MedicineSendaiMiyagiJapan
| |
Collapse
|
10
|
Wang Z, Liu Y, Xu Y, Lu L, Zhu Z, Lv B, Fang X, Tang Y, Wang J, Cheng Y, Hu Y, Lou J, Wu P, Liu C, Liu Y, Zeng X, Xu Q. Anti-HER2 biparatopic antibody KJ015 has near-native structure, functional balanced high affinity, and synergistic efficacy with anti-PD-1 treatment in vivo. MAbs 2024; 16:2412881. [PMID: 39381966 PMCID: PMC11469434 DOI: 10.1080/19420862.2024.2412881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Currently approved human epidermal growth factor receptor 2 (HER2)-targeted antibody therapies are largely derived from trastuzumab, including trastuzumab-chemotherapy combinations, fixed-dose trastuzumab-pertuzumab combinations, and trastuzumab antibody-drug conjugates. To expand the options, bispecific antibodies, which may better utilize the benefits of combination therapy, are being developed. Among them, biparatopic antibodies (bpAbs) have shown improved efficacy compared to monoclonal antibody (mAb) combinations in HER2-positive patients. BpAbs bind two independent epitopes on the same antigen, which allows fine-tuning of mechanisms of action, including enhancement of on-target specificity and induction of strong antigen clustering due to the unique binding mode. To fully utilize the potential of bpAbs for anti-HER2 drug development, it is crucial to consider formats that offer stability and high-yield production, along with a functional balance between the two epitopes. In this study, we rationally designed a bpAb, KJ015, that shares a common light chain with two Fab arms and exhibits functionally balanced high affinity for two HER2 non-overlapping epitopes. KJ015 demonstrated high-expression titers over 7 g/L and stable physicochemical properties at elevated concentrations, facilitating subcutaneous administration with hyaluronidase. Moreover, KJ015 maintained comparable antibody-dependent cytotoxicity, phagocytosis, and complement-dependent cytotoxicity with trastuzumab plus pertuzumab. It exhibited enhanced synergy when administered subcutaneously with hyaluronidase and anti-PD-1 mAb in a mouse tumor model, suggesting promising clinical prospects for this combination.
Collapse
Affiliation(s)
- Zheng Wang
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yu Liu
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Shanghai, China
| | - Yunxia Xu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Lin Lu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Zhen Zhu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Baojie Lv
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Xin Fang
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Yao Tang
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Jinhua Wang
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Yu Cheng
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Ying Hu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Junwen Lou
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Peican Wu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Chendan Liu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Yanjun Liu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Xin Zeng
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Shanghai, China
| |
Collapse
|
11
|
Chen Y, Li W, Wang Z, Yu Y, Li J, Ding Y, Hu Z, Liu Q, Yang Z, Gao J. A Transformable Supramolecular Bispecific Cell Engager for Augmenting Natural Killer and T Cell-Based Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306736. [PMID: 37853568 DOI: 10.1002/adma.202306736] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Immune cells are pivotal in cancer immunotherapy, yet their therapeutic effectiveness is often hampered by limited tumor infiltration and inhibitory tumor microenvironments. An alkaline phosphatase (ALP)-responsive and transformable supramolecular bis-specific cell engager (Supra-BiCE) to harness natural killer (NK)/T cells for effective cancer immunotherapy is introduced here. The Supra-BiCE, consisting of both SA-P (a phosphorylated peptide targeting and blocking programmed cell death ligand 1 (PD-L1)) and SA-T (a phosphorylated peptide targeting and blocking T cell immunoglobulin and ITIM domain (TIGIT)) is constructed by a simple co-assembling strategy. Upon intravenous administration, Supra-BiCE self-assembles into nanoribbons and interacts with NK/T cells via TIGIT. Notably, these nanoribbons undergo transformation into long nanofibrils within ALP-overexpressing tumor regions, resulting in enhanced binding affinities of Supra-BiCE to both PD-L1 and TIGIT. Consequently, this leads to the accumulation and retention of NK/T cells within tumor regions. Furthermore, the combinatorial blockade of checkpoints by Supra-BiCE activates infiltrating NK/T cells. Moreover, the adjustable peptide ratio in Supra-BiCE enables customization for optimal therapeutic effects against distinct tumor types. Particularly, Supra-BiCE (T:P = 1:3) achieved 98.27% tumor suppression rate against colon carcinoma model. Overall, this study offers a promising tool for engaging NK and T cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Yumiao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Wei Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhongqiu Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yingying Yu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yinghao Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiwen Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
12
|
Mariottini D, Bracaglia S, Barbero L, Fuchs SW, Saal C, Moniot S, Knuehl C, Baranda L, Ranallo S, Ricci F. Bispecific Antibody Detection Using Antigen-Conjugated Synthetic Nucleic Acid Strands. ACS Sens 2023; 8:4014-4019. [PMID: 37856082 PMCID: PMC10683503 DOI: 10.1021/acssensors.3c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
We report here the development of two different sensing strategies based on the use of antigen-conjugated nucleic acid strands for the detection of a bispecific antibody against the tumor-related proteins Mucin1 and epidermal growth factor receptor. Both approaches work well in serum samples (nanomolar sensitivity), show high specificity against the two monospecific antibodies, and are rapid. The results presented here demonstrate the versatility of DNA-based platforms for the detection of bispecific antibodies and could represent a versatile alternative to other more reagent-intensive and time-consuming analytical approaches.
Collapse
Affiliation(s)
- Davide Mariottini
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sara Bracaglia
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luca Barbero
- RBM-Merck
(an affiliate of Merck KGaA), Via Ribes 1, 10010 Turin, Italy
| | | | - Christoph Saal
- Merck
KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | | | | | - Lorena Baranda
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Simona Ranallo
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Francesco Ricci
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
13
|
Lin W, Zhang Y, Yang Y, Lin B, Zhu M, Xu J, Chen Y, Wu W, Chen B, Chen X, Liu J, Wang H, Teng F, Yu X, Wang H, Lu J, Zhou Q, Teng L. Anti-PD-1/Her2 Bispecific Antibody IBI315 Enhances the Treatment Effect of Her2-Positive Gastric Cancer through Gasdermin B-Cleavage Induced Pyroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303908. [PMID: 37587833 PMCID: PMC10602533 DOI: 10.1002/advs.202303908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 08/18/2023]
Abstract
The majority of patients with human epidermal growth factor receptor 2 (Her2)-positive gastric cancer develop refractory to Her2-targeted therapy, where upregulation of immune checkpoints plays an essential role. Herein, a recombinant fully human IgG1 bispecific antibody IBI315 targeting both PD-1 and Her2 is developed and its antitumor efficacy as well as the underlying mechanism is investigated. IBI315 crosslinks the physical interaction between Her2-positive tumor cells and PD-1-positive T cells, resulting in significantly enhanced antitumor effects compared to each parent antibody or their combination, both in vitro and in vivo mouse tumor models reconstituted with human immune cells using patient-derived xenografts and organoids. Moreover, IBI315 treatment also induces the recruitment and activation of immune cells in tumors. Mechanistically, IBI315 triggers gasdermin B (GSDMB)-mediated pyroptosis in tumor cells, leading to the activation and recruiments of T cells. The activated T cells secret IFNγ, enhancing GSDMB expression and establishing a positive feedback loop of T cell activation and tumor cell killing. Notably, GSDMB is found to be elevated in Her2-positive gastric cancer cells, providing a rationale for IBI315's efficacy. IBI315 is supported here as a promising bispecific antibody-based immunotherapy approach for Her2-positive gastric cancer in preclinical studies, broadening the therapeutic landscape of this patient population.
Collapse
Affiliation(s)
- Wu Lin
- Department of Surgical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China)The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310009China
- Zhejiang Provincial Clinical Research Center for CANCERHangzhouZhejiang310009China
- Cancer Center of Zhejiang UniversityHangzhouZhejiang310009China
| | - Yingzi Zhang
- Department of Surgical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Yan Yang
- Department of Surgical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Ben Lin
- College of MedicineJiaxing UniversityJiaxingZhejiang314001China
| | - Mengjia Zhu
- Department of Drug DiscoveryInnovent Biologics (Suzhou) Co.SuzhouJiangsu215000China
| | - Jinling Xu
- Department of Drug DiscoveryInnovent Biologics (Suzhou) Co.SuzhouJiangsu215000China
| | - YiRan Chen
- Department of Surgical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Weiwei Wu
- Department of Drug DiscoveryInnovent Biologics (Suzhou) Co.SuzhouJiangsu215000China
| | - Bingliang Chen
- Department of Drug DiscoveryInnovent Biologics (Suzhou) Co.SuzhouJiangsu215000China
| | - Xiangliu Chen
- Department of Surgical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Jin Liu
- Department of Surgical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Haohao Wang
- Department of Surgical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Fei Teng
- Department of Surgical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Xiongfei Yu
- Department of Surgical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Haiyong Wang
- Department of Surgical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Jun Lu
- Department of Surgical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Quan Zhou
- Institute of Immunology, Department of Surgical Oncology of The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Lisong Teng
- Department of Surgical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
- Zhejiang Provincial Clinical Research Center for CANCERHangzhouZhejiang310009China
- Cancer Center of Zhejiang UniversityHangzhouZhejiang310009China
| |
Collapse
|
14
|
Graff SL, Yan F, Abdou Y. Newly Approved and Emerging Agents in HER2-Positive Metastatic Breast Cancer. Clin Breast Cancer 2023; 23:e380-e393. [PMID: 37407378 DOI: 10.1016/j.clbc.2023.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023]
Abstract
Human epidermal growth factor receptor 2-positive breast cancer (HER2+ BC) is an aggressive tumor type, accounting for 15% to 20% of the approximately 300,000 new BC cases in the United States each year. The goal of this review is to discuss the evolving landscape of therapies for HER2+ metastatic BC (mBC). Targeted therapies that have been the standard of care (SOC) for HER2+ mBC for almost a decade have greatly improved patient outcomes. The SOC for the first-line treatment of HER2+ mBC continues to be HER2-targeted monoclonal antibodies (mAbs) + a taxane, but recent updates in the second-line setting favor use of a newer HER2-targeted antibody-drug conjugate (ADC), trastuzumab deruxtecan, versus the prior SOC ADC, trastuzumab emtansine. Numerous options are now available in the third line and beyond, including tyrosine kinase inhibitor (TKI) regimens, newer mAbs, and other ADCs. The optimal course of treatment for individual patients can be guided by location of metastases, prior therapies, concomitant biomarkers, and monitoring and management of adverse events. Ongoing trials will further the evolution of the HER2+ mBC treatment landscape. Furthermore, next-generation ADCs, TKIs, and classes of drugs that have not been approved for the treatment of HER2+ mBC, including immune checkpoint inhibitors and cyclin-dependent kinase 4 and 6 inhibitors, are also being evaluated for their efficacy in the first and second line. Although the influx of new drugs may complicate treatment decisions for physicians, having a multitude of options will undoubtedly further improve patient outcomes and patient-centered care.
Collapse
Affiliation(s)
- Stephanie L Graff
- Ambulatory Patient Center, Lifespan Cancer Institute, Legorreta Cancer Center at Brown University, Rhode Island Hospital, Providence, RI.
| | - Fengting Yan
- Swedish Cancer Institute, First Hill-True Family Women's Cancer Center, Seattle, WA
| | - Yara Abdou
- UNC School of Medicine, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| |
Collapse
|
15
|
Zhang X, Chen J, Zhang M, Liu S, Wang T, Wu T, Li B, Zhao S, Wang H, Li L, Wang C, Huang L. Single-cell and bulk sequencing analyses reveal the immune suppressive role of PTPN6 in glioblastoma. Aging (Albany NY) 2023; 15:9822-9841. [PMID: 37737713 PMCID: PMC10564408 DOI: 10.18632/aging.205052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Glioblastoma (GBM) is a highly malignant brain cancer with a poor prognosis despite standard treatments. This investigation aimed to explore the feasibility of PTPN6 to combat GBM with immunotherapy. Our study employed a comprehensive analysis of publicly available datasets and functional experiments to assess PTPN6 gene expression, prognostic value, and related immune characteristics in glioma. We evaluated the influence of PTPN6 expression on CD8+ T cell exhaustion, immune suppression, and tumor growth in human GBM samples and mouse models. Our findings demonstrated that PTPN6 overexpression played an oncogenic role in GBM and was associated with advanced tumor grades and unfavorable clinical outcomes. In human GBM samples, PTPN6 upregulation showed a strong association with immunosuppressive formation and CD8+ T cell dysfunction, whereas, in mice, it hindered CD8+ T cell infiltration. Moreover, PTPN6 facilitated cell cycle progression, inhibited apoptosis, and promoted glioma cell proliferation, tumor growth, and colony formation in mice. The outcomes of our study indicate that PTPN6 is a promising immunotherapeutic target for the treatment of GBM. Inhibition of PTPN6 could enhance CD8+ T cell infiltration and improve antitumor immune response, thus leading to better clinical outcomes for GBM patients.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Jie Chen
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Ming Zhang
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Saisai Liu
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Tao Wang
- Research Laboratory Centre, Guizhou Provincial People’s Hospital, Guizhou University, Nanming, Guiyang 550025, Guizhou, P.R. China
| | - Tianyu Wu
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Baiqing Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Li Li
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| | - Chun Wang
- Department of General Practice, The Second Affiliated Hospital of Bengbu Medical College, Huaishang, Bengbu 233040, Anhui, P.R. China
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical College, Huaishang, Bengbu 233040, Anhui, P.R. China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical College, Longzihu, Bengbu 233030, Anhui, P.R. China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Longzihu, Bengbu 233030, Anhui, P.R. China
| |
Collapse
|
16
|
Pous A, Notario L, Hierro C, Layos L, Bugés C. HER2-Positive Gastric Cancer: The Role of Immunotherapy and Novel Therapeutic Strategies. Int J Mol Sci 2023; 24:11403. [PMID: 37511163 PMCID: PMC10380453 DOI: 10.3390/ijms241411403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Gastric cancer is an aggressive disease with increasing global incidence in recent years. Human epidermal growth receptor 2 (HER2) is overexpressed in approximately 10-20% of gastric cancers. The implementation of targeted therapy against HER2 as part of the standard of care treatment in metastatic disease has improved the prognosis of this subset of patients. However, gastric cancer still has high mortality rates and urgently requires new treatment strategies. The combination of immunotherapy with HER2-targeted therapies has shown synergistic effects in preclinical models, this being the rationale behind exploring this combination in clinical trials in locally advanced and metastatic settings. Additionally, the irruption of antibody-drug conjugates and other novel HER2-targeted agents has led to the development of numerous clinical trials showing promising results. This review presents the molecular mechanisms supporting the use of HER2-targeted drugs in combination with immunotherapy and provides an overview of the therapeutic scenario of HER2-positive disease. We focus on the role of immunotherapy but also summarize emerging therapies and combinations under clinical research that may change the standard treatment in HER-2 positive disease in the future.
Collapse
Affiliation(s)
- Anna Pous
- Department of Medical Oncology, Institut Català d'Oncologia (ICO) Badalona, 08916 Badalona, Spain
- Badalona Applied Research Group in Oncology (B-ARGO), 08916 Badalona, Spain
| | - Lucía Notario
- Department of Medical Oncology, Institut Català d'Oncologia (ICO) Badalona, 08916 Badalona, Spain
- Badalona Applied Research Group in Oncology (B-ARGO), 08916 Badalona, Spain
| | - Cinta Hierro
- Department of Medical Oncology, Institut Català d'Oncologia (ICO) Badalona, 08916 Badalona, Spain
- Badalona Applied Research Group in Oncology (B-ARGO), 08916 Badalona, Spain
| | - Laura Layos
- Department of Medical Oncology, Institut Català d'Oncologia (ICO) Badalona, 08916 Badalona, Spain
- Badalona Applied Research Group in Oncology (B-ARGO), 08916 Badalona, Spain
| | - Cristina Bugés
- Department of Medical Oncology, Institut Català d'Oncologia (ICO) Badalona, 08916 Badalona, Spain
- Badalona Applied Research Group in Oncology (B-ARGO), 08916 Badalona, Spain
| |
Collapse
|
17
|
Silva-Pilipich N, Covo-Vergara Á, Vanrell L, Smerdou C. Checkpoint blockade meets gene therapy: Opportunities to improve response and reduce toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:43-86. [PMID: 37541727 DOI: 10.1016/bs.ircmb.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) based on monoclonal antibodies represent a breakthrough for the treatment of cancer. However, their efficacy varies among tumor types and patients, and they can lead to adverse effects due to on-target/off-tumor activity, since they are administered systemically at high doses. An alternative and attractive approach for the delivery of ICIs is the use of gene therapy vectors able to express them in vivo. This review focuses on the most recent studies using viral vectors able to express ICIs locally or systemically in preclinical models of cancer. These vectors include non-replicating viruses, oncolytic viruses able to propagate specifically in tumor cells and destroy them, and self-amplifying RNA vectors, armed with different formats of antibodies against immune checkpoints. Non-replicating vectors usually lead to long-term ICI expression, potentially eliminating the need for repeated administration. Vectors with replication capacity, although they have a shorter window of expression, can induce inflammation which enhances the antitumor effect. Finally, these engineered vectors can be used in combination with other immunostimulatory molecules or with CAR-T cells, further boosting the antitumor immune responses.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain.
| | - Ángela Covo-Vergara
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain
| | - Lucía Vanrell
- Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo, Uruguay; Nanogrow Biotech, Montevideo, Uruguay
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), and CCUN, Pamplona, Spain.
| |
Collapse
|
18
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 193] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
19
|
Mortezaee K, Majidpoor J. Reinstating immunogenicity using bispecific anti-checkpoint/agent inhibitors. Biomed Pharmacother 2023; 162:114621. [PMID: 37004328 DOI: 10.1016/j.biopha.2023.114621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) resistance demands for acquisition of novel strategies in order to broaden the therapeutic repertoire of advanced cancers. Bispecific antibodies can be utilized as an emerging therapeutic paradigm and a step forward in cancer immunotherapy. Synchronous inhibition of programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1) or cytotoxic T lymphocyte associated antigen-4 (CTLA-4), or with other agents can expand antibody selectivity and improve therapeutic window through tightening cell-to-cell bridge (a process called immunological synapse) within tumor immune microenvironment (TIME). There is evidence of higher potency of this co-targeting approach over combined single-agent monoclonal antibodies in reinvigorating anti-tumor immune responses, retarding tumor growth, and improving patient survival. In fact, immunological synapses formed by interactions of such bispecific agents with TIME cells directly mediate cytotoxicity against tumor cells, and durable anti-tumor immune responses are predictable after application of such agents. Besides, lower adverse events are reported for bispecific antibodies compared with individual checkpoint inhibitors. These are all indicative of the importance of exploiting novel bispecific approach as a replacement for conventional combo checkpoint inhibitor therapy particularly for tumors with immunosuppressive or cold immunity. Study in this area is still continued, and in the future more will be known about the importance of this bispecific approach in cancer immunotherapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
20
|
Construction of a novel TROP2/CD3 bispecific antibody with potent antitumor activity and reduced induction of Th1 cytokines. Protein Expr Purif 2023; 205:106242. [PMID: 36746324 DOI: 10.1016/j.pep.2023.106242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 02/07/2023]
Abstract
Many cancers, including triple-negative breast cancer, overexpress TROP2 on the surface of tumor cells. TROP2 has become a promising tumor associated antigen for the development of novel antibody-based targeted therapy. Herein, we constructed a novel bispecific antibody with the ability to simultaneously target TROP2 on the tumor surface and bind to CD3 to activate T cells. Given that the excessive production of Th1 cytokines induced by CD3-mediated T-cell overactivation may lead to toxicity in the clinic, we devised a strategy to modify this CD3-induced T cell activation by a two-step reduction in the bispecific antibody binding affinity for CD3 to a level that retained the ability of the bispecific antibody to effectively inhibit tumor growth while greatly reducing the amount of Th1 cytokines secreted by T cells. Thus, we provide insight into the design of T cell engagers that exhibit a promising toxicity profile while retaining inhibitory effects on tumor growth.
Collapse
|
21
|
Cao Y, Li Y, Liu R, Zhou J, Wang K. Preclinical and Basic Research Strategies for Overcoming Resistance to Targeted Therapies in HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15092568. [PMID: 37174034 PMCID: PMC10177527 DOI: 10.3390/cancers15092568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The amplification of epidermal growth factor receptor 2 (HER2) is associated with a poor prognosis and HER2 gene is overexpressed in approximately 15-30% of breast cancers. In HER2-positive breast cancer patients, HER2-targeted therapies improved clinical outcomes and survival rates. However, drug resistance to anti-HER2 drugs is almost unavoidable, leaving some patients with an unmet need for better prognoses. Therefore, exploring strategies to delay or revert drug resistance is urgent. In recent years, new targets and regimens have emerged continuously. This review discusses the fundamental mechanisms of drug resistance in the targeted therapies of HER2-positive breast cancer and summarizes recent research progress in this field, including preclinical and basic research studies.
Collapse
Affiliation(s)
- Yi Cao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Yunjin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Ruijie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| |
Collapse
|
22
|
Mercogliano MF, Bruni S, Mauro FL, Schillaci R. Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15071987. [PMID: 37046648 PMCID: PMC10093019 DOI: 10.3390/cancers15071987] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and the leading cause of death. HER2 overexpression is found in approximately 20% of breast cancers and is associated with a poor prognosis and a shorter overall survival. Tratuzumab, a monoclonal antibody directed against the HER2 receptor, is the standard of care treatment. However, a third of the patients do not respond to therapy. Given the high rate of resistance, other HER2-targeted strategies have been developed, including monoclonal antibodies such as pertuzumab and margetuximab, trastuzumab-based antibody drug conjugates such as trastuzumab-emtansine (T-DM1) and trastuzumab-deruxtecan (T-DXd), and tyrosine kinase inhibitors like lapatinib and tucatinib, among others. Moreover, T-DXd has proven to be of use in the HER2-low subtype, which suggests that other HER2-targeted therapies could be successful in this recently defined new breast cancer subclassification. When patients progress to multiple strategies, there are several HER2-targeted therapies available; however, treatment options are limited, and the potential combination with other drugs, immune checkpoint inhibitors, CAR-T cells, CAR-NK, CAR-M, and vaccines is an interesting and appealing field that is still in development. In this review, we will discuss the highlights and pitfalls of the different HER2-targeted therapies and potential combinations to overcome metastatic disease and resistance to therapy.
Collapse
|
23
|
Zhang T, Lin Y, Gao Q. Bispecific antibodies targeting immunomodulatory checkpoints for cancer therapy. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0002. [PMID: 36971124 PMCID: PMC10038071 DOI: 10.20892/j.issn.2095-3941.2023.0002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Advances in antibody engineering have led to the generation of more innovative antibody drugs, such as bispecific antibodies (bsAbs). Following the success associated with blinatumomab, bsAbs have attracted enormous interest in the field of cancer immunotherapy. By specifically targeting two different antigens, bsAbs reduce the distance between tumor and immune cells, thereby enhancing tumor killing directly. There are several mechanisms of action upon which bsAbs have been exploited. Accumulating experience on checkpoint-based therapy has promoted the clinical transformation of bsAbs targeting immunomodulatory checkpoints. Cadonilimab (PD-1 × CTLA-4) is the first approved bsAb targeting dual inhibitory checkpoints, which confirms the feasibility of bsAbs in immunotherapy. In this review we analyzed the mechanisms by which bsAbs targeting immunomodulatory checkpoints and their emerging applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Tiancheng Zhang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
24
|
Wang W, Qiu T, Li F, Ren S. Current status and future perspectives of bispecific antibodies in the treatment of lung cancer. Chin Med J (Engl) 2023; 136:379-393. [PMID: 36848213 PMCID: PMC10106182 DOI: 10.1097/cm9.0000000000002460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Monoclonal antibodies have been successfully incorporated into the current therapeutical landscape of lung cancer in the last decades. Recently, with technological advances, bispecific antibodies (bsAbs) have also shown robust efficacy in the treatment of malignant cancers, including lung cancer. These antibodies target two independent epitopes or antigens and have been extensively explored in translational and clinical studies in lung cancer. Here, we outline the mechanisms of action of bsAbs, related clinical data, ongoing clinical trials, and potent novel compounds of various types of bsAbs in clinical studies, especially in lung cancer. We also propose future directions for the clinical development of bsAbs, which might bring a new era of treatment for patients with lung cancer.
Collapse
Affiliation(s)
- Wanying Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Institute of Thoracic Cancer, School of Medicine, Tongji University, Shanghai 200433, China
| | - Tianyu Qiu
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Institute of Thoracic Cancer, School of Medicine, Tongji University, Shanghai 200433, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Institute of Thoracic Cancer, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
25
|
Benito-Lopez JJ, Marroquin-Muciño M, Perez-Medina M, Chavez-Dominguez R, Aguilar-Cazares D, Galicia-Velasco M, Lopez-Gonzalez JS. Partners in crime: The feedback loop between metabolic reprogramming and immune checkpoints in the tumor microenvironment. Front Oncol 2023; 12:1101503. [PMID: 36713558 PMCID: PMC9879362 DOI: 10.3389/fonc.2022.1101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
The tumor microenvironment (TME) is a complex and constantly changing cellular system composed of heterogeneous populations of tumor cells and non-transformed stromal cells, such as stem cells, fibroblasts, endothelial cells, pericytes, adipocytes, and innate and adaptive immune cells. Tumor, stromal, and immune cells consume available nutrients to sustain their proliferation and effector functions and, as a result of their metabolism, produce a wide array of by-products that gradually alter the composition of the milieu. The resulting depletion of essential nutrients and enrichment of by-products work together with other features of the hostile TME to inhibit the antitumor functions of immune cells and skew their phenotype to promote tumor progression. This review briefly describes the participation of the innate and adaptive immune cells in recognizing and eliminating tumor cells and how the gradual metabolic changes in the TME alter their antitumor functions. In addition, we discuss the overexpression of the immune checkpoints and their ligands as a result of nutrient deprivation and by-products accumulation, as well as the amplification of the metabolic alterations induced by the immune checkpoints, which creates an immunosuppressive feedback loop in the TME. Finally, the combination of metabolic and immune checkpoint inhibitors as a potential strategy to treat cancer and enhance the outcome of patients is highlighted.
Collapse
Affiliation(s)
- Jesus J Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Marroquin-Muciño
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
26
|
Guo L, Overholser J, Darby H, Ede NJ, Kaumaya PT. A newly discovered PD-L1 B-cell epitope peptide vaccine (PDL1-Vaxx) exhibits potent immune responses and effective anti-tumor immunity in multiple syngeneic mice models and (synergizes) in combination with a dual HER-2 B-cell vaccine (B-Vaxx). Oncoimmunology 2022; 11:2127691. [PMID: 36211807 PMCID: PMC9542669 DOI: 10.1080/2162402x.2022.2127691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Blockade of checkpoint receptors with monoclonal antibodies against CTLA-4, PD-1 and PD-L1 has shown great clinical success in several cancer subtypes, yielding unprecedented responses albeit a significant number of patients develop resistance and remain refractory. Both PD-1/PD-L1 and HER-2 signaling pathway inhibitors have limited efficacy and exhibits significant toxicities that limit their use. Ongoing clinical studies support the need for rationale combination of immuno-oncology agents to make a significant impact in the lives of cancer patients. We introduce the development of a novel chimeric PD-L1 B-cell peptide epitope vaccine (amino acid 130–147) linked to a “promiscuous” T cell measles virus fusion (MVF) peptide (MVF-PD-L1(130); PDL1-Vaxx) or linked to tetanus toxoid (TT3) TT3-PD-L1 (130) via a linker (GPSL). These vaccine constructs are highly immunogenic and antigenic in several syngeneic animal models. The PD-L1 vaccines elicited high titers of polyclonal antibodies that inhibit tumor growth in multiple syngeneic cancer models, eliciting antibodies of different subtypes IgG1, IgG2a, IgG2b and IgG3, induced PD-1/PD-L1 blockade, decreased proliferation, induced apoptosis and caused ADCC of tumor cells. The PDL1-Vaxx induces similar inhibition of tumor growth versus the standard anti-mouse PD-L1 antibody in both syngeneic BALB/c and C57BL/6J mouse models. The combination of PDL1-Vaxx with HER-2 vaccine B-Vaxx demonstrated synergistic tumor inhibition in D2F2/E2 carcinoma cell line. The anti-PDL1-Vaxx block PD-1/PD-L1 interaction and significantly prolonged anti-tumor responses in multiple syngeneic tumor models. The combination of HER-2 vaccine (B-Vaxx) with either PDL1-Vaxx or PD1-Vaxx demonstrated synergistic tumor inhibition. PDL1-Vaxx is a promising novel safe checkpoint inhibitor vaccine.
Collapse
Affiliation(s)
- Linlin Guo
- Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, USA
| | - Jay Overholser
- Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, USA
| | - Heather Darby
- Licensing Technology, Luminex Corp, Austin Texas, USA
| | | | - Pravin T.P Kaumaya
- Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, USA
- The James Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
27
|
Bispecific Antibody Format and the Organization of Immunological Synapses in T Cell-Redirecting Strategies for Cancer Immunotherapy. Pharmaceutics 2022; 15:pharmaceutics15010132. [PMID: 36678761 PMCID: PMC9863865 DOI: 10.3390/pharmaceutics15010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
T cell-redirecting strategies have emerged as effective cancer immunotherapy approaches. Bispecific antibodies (bsAbs) are designed to specifically recruit T cells to the tumor microenvironment and induce the assembly of the immunological synapse (IS) between T cells and cancer cells or antigen-presenting cells. The way that the quality of the IS might predict the effectiveness of T cell-redirecting strategies, including those mediated by bsAbs or by chimeric antigen receptors (CAR)-T cells, is currently under discussion. Here we review the organization of the canonical IS assembled during natural antigenic stimulation through the T cell receptor (TCR) and to what extent different bsAbs induce T cell activation, canonical IS organization, and effector function. Then, we discuss how the biochemical parameters of different formats of bsAbs affect the effectivity of generating an antigen-induced canonical IS. Finally, the quality of the IS assembled by bsAbs and monoclonal antibodies or CAR-T cells are compared, and strategies to improve bsAb-mediated T cell-redirecting strategies are discussed.
Collapse
|
28
|
Nanobody-based CAR T cells targeting intracellular tumor antigens. Biomed Pharmacother 2022; 156:113919. [DOI: 10.1016/j.biopha.2022.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
|
29
|
Chow CY, Lie EF, Wu CH, Chow LW. Clinical implication of genetic composition and molecular mechanism on treatment strategies of HER2-positive breast cancers. Front Oncol 2022; 12:964824. [PMID: 36387174 PMCID: PMC9659858 DOI: 10.3389/fonc.2022.964824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
The current clinical management model of HER2-positive breast cancers is commonly based on guidelines, which in turn are based on the design and outcome of clinical trials. While this model is useful to most practicing clinicians, the treatment outcome of individual patient is not certain at the start of treatment. As the understanding of the translational research of carcinogenesis and the related changes in cancer genetics and tumor microenvironment during treatment is critical in the selection of right choice of treatment to maximize the successful clinical outcome for the patient, this review article intends to discuss the latest developments in the genetic and molecular mechanisms of cancer progression and treatment resistance, and how they influence the planning of the treatment strategies of HER2-positive breast cancers.
Collapse
Affiliation(s)
- Christopher Y.C. Chow
- UNIMED Medical Institute, Hong Kong, Hong Kong SAR, China
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | | | - Cheng-Hsun Wu
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Louis W.C. Chow
- UNIMED Medical Institute, Hong Kong, Hong Kong SAR, China
- Organisation for Oncology and Translational Research, Hong Kong, Hong Kong SAR, China
- *Correspondence: Louis W.C. Chow,
| |
Collapse
|
30
|
Highly efficient hybridoma generation and screening strategy for anti-PD-1 monoclonal antibody development. Sci Rep 2022; 12:17792. [PMID: 36273231 PMCID: PMC9588028 DOI: 10.1038/s41598-022-20560-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/14/2022] [Indexed: 01/19/2023] Open
Abstract
Programmed cell death protein 1 (PD-1) plays a significant role in suppressing antitumor immune responses. Cancer treatment with immune checkpoint inhibitors (ICIs) targeting PD-1 has been approved to treat numerous cancers and is the backbone of cancer immunotherapy. Anti-PD-1 molecule is necessary for next-generation cancer immunotherapy to further improve clinical efficacy and safety as well as integrate into novel treatment combinations or platforms. We developed a highly efficient hybridoma generation and screening strategy to generate high-potency chimeric anti-PD-1 molecules. Using this strategy, we successfully generated several mouse hybridoma and mouse/human chimeric clones that produced high-affinity antibodies against human PD-1 with high-quality in vitro PD-1/PD-L1 binding blockade and T cell activation activities. The lead chimeric prototypes exhibited overall in vitro performance comparable to commercially available anti-PD-1 antibodies and could be qualified as promising therapeutic candidates for further development toward immuno-oncology applications.
Collapse
|
31
|
The Features of Immune Checkpoint Gene Regulation by microRNA in Cancer. Int J Mol Sci 2022; 23:ijms23169324. [PMID: 36012588 PMCID: PMC9409052 DOI: 10.3390/ijms23169324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, the search for new promising tools of immunotherapy continues. In this regard, microRNAs (miRNAs) that influence immune checkpoint (IC) gene expression in tumor and T-cells and may be important regulators of immune cells are considered. MiRNAs regulate gene expression by blocking mRNA translation. An important feature of miRNA is its ability to affect the expression of several genes simultaneously, which corresponds to the trend toward the use of combination therapy. The article provides a list of miRNAs acting simultaneously on several ICs and miRNAs that, in addition to IC, can regulate the expression of targeted therapy genes. There is dependence of miRNA interactions with IC genes on the type of cancer. The analysis of the accumulated data demonstrates that only about 14% (95% CI: 9.8–20.1%) of the studied miRNAs regulate the expression of specific IC in more than one type of cancer. That is, there is tumor specificity in the miRNA action on ICs. A number of miRNAs demonstrated high efficiency in vitro and in vivo. This indicates the potential of miRNAs as promising agents for cancer immunotherapy. Additional studies of the miRNA–gene interaction features and the search for an optimal miRNA mimic structure are necessary.
Collapse
|
32
|
Chu W, Xu H, Wang Y, Xie Y, Chen Y, Tan X, Huang C, Wang G, Wang Q, Luo W, Xia N, Geng M, Xie Z, Wang C. HER2/PD1 bispecific antibody in IgG4 subclass with superior anti-tumour activities. Clin Transl Med 2022; 12:e791. [PMID: 35384333 PMCID: PMC8982313 DOI: 10.1002/ctm2.791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Wendi Chu
- Biotherapeutics Discovery Research CenterShanghai Institute of Materia Medica, Chinese Academy of SciencesBldg#1, 720 Cai Lun RoadShanghai200126PR China
- University of Chinese Academy of SciencesBeijingPR China
| | - Hui Xu
- State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi RoadShanghai200126PR China
- University of Chinese Academy of SciencesBeijingPR China
| | - Yanfei Wang
- Biotherapeutics Discovery Research CenterShanghai Institute of Materia Medica, Chinese Academy of SciencesBldg#1, 720 Cai Lun RoadShanghai200126PR China
- University of Chinese Academy of SciencesBeijingPR China
| | - Yongle Xie
- State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi RoadShanghai200126PR China
- University of Chinese Academy of SciencesBeijingPR China
| | - Yi‐Li Chen
- Shanghai Mabstone Biotechnology LtdShanghaiPR China
| | - Xiaorong Tan
- Biotherapeutics Discovery Research CenterShanghai Institute of Materia Medica, Chinese Academy of SciencesBldg#1, 720 Cai Lun RoadShanghai200126PR China
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsSchool of Public Health and School of Life ScienceXiamen UniversityXiamenPR China
| | - Guifeng Wang
- Biotherapeutics Discovery Research CenterShanghai Institute of Materia Medica, Chinese Academy of SciencesBldg#1, 720 Cai Lun RoadShanghai200126PR China
- University of Chinese Academy of SciencesBeijingPR China
| | - Qi Wang
- Biotherapeutics Discovery Research CenterShanghai Institute of Materia Medica, Chinese Academy of SciencesBldg#1, 720 Cai Lun RoadShanghai200126PR China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsSchool of Public Health and School of Life ScienceXiamen UniversityXiamenPR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsSchool of Public Health and School of Life ScienceXiamen UniversityXiamenPR China
| | - Meiyu Geng
- State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi RoadShanghai200126PR China
- University of Chinese Academy of SciencesBeijingPR China
| | - Zuoquan Xie
- State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi RoadShanghai200126PR China
- University of Chinese Academy of SciencesBeijingPR China
| | - Chunhe Wang
- Biotherapeutics Discovery Research CenterShanghai Institute of Materia Medica, Chinese Academy of SciencesBldg#1, 720 Cai Lun RoadShanghai200126PR China
- University of Chinese Academy of SciencesBeijingPR China
- Dartsbio Pharmaceuticals LtdZhongshanPR China
| |
Collapse
|
33
|
Identification of Potential Immune Checkpoint Inhibitor Targets in Gliomas via Bioinformatic Analyses. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1734847. [PMID: 35198632 PMCID: PMC8860561 DOI: 10.1155/2022/1734847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/23/2021] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
Background. Glioma is a common tumor originating from the glial cells of the brain. Immune checkpoint inhibitors can potentially be used to treat gliomas, although no drug is currently approved. Methods. The expression levels of the immune checkpoint genes in glioma and normal tissues, and their correlation with the IDH mutation status and complete 1p/19q codeletion, were analyzed using The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases. Survival analyses were conducted using the CGGA database. Protein-protein interaction and functional enrichment analyses were performed via the STRING database using GO, KEGG, and Reactome pathways. The correlation between the immune checkpoints and the immune cell infiltration was determined using the TISIDB and TIMER databases. Results. HAVCR2 was overexpressed in the gliomas compared to normal brain tissues, as well as in the high-grade glioma patients and significantly downregulated in IDH mutant or 1p/19q codeletion patients. Overexpression of HAVCR2 was associated with poor survival in tumor grades II, III, and IV and was the most correlated with immune infiltration of B and T cells. Conclusion. HAVCR2 can be a potential therapeutic target for cancer immunotherapy for glioma patients.
Collapse
|
34
|
Simmons C, Rayson D, Joy AA, Henning JW, Lemieux J, McArthur H, Card PB, Dent R, Brezden-Masley C. Current and future landscape of targeted therapy in HER2-positive advanced breast cancer: redrawing the lines. Ther Adv Med Oncol 2022; 14:17588359211066677. [PMID: 35035535 PMCID: PMC8753087 DOI: 10.1177/17588359211066677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Evidence to date supports continued human epidermal growth factor receptor 2 (HER2) suppression beyond progression on HER2-directed therapy for advanced HER2-positive breast cancer. Data from several phase II and III trials evaluating HER2-directed therapy following second-line T-DM1 have recently become available. METHODS We performed a systematic search of the published and presented literature to identify phase II and phase III trials assessing novel HER2-targeted agents as third-line therapy or beyond for HER2-positive advanced breast cancer using search terms 'breast cancer' AND 'HER2' AND 'advanced' AND ('phase II' OR 'phase III'). RESULTS Eight clinical trials reporting efficacy outcomes on third-line or greater HER2-directed therapy for HER2-positive advanced breast cancer were identified. In phase III trials, margetuximab and neratinib combinations demonstrated significant 1.3-month (hazard ratio, HR = 0.71, p < 0.001) and 0.1-month (HR = 0.76, p = 0.006) net improvements in median progression-free survival (PFS), respectively, with no significant improvements in overall survival (OS). Tucatinib added to trastuzumab and capecitabine demonstrated a significant 2.7-month improvement in median PFS (HR = 0.57, p < 0.00001) and a 5.5-month improvement in median OS (HR = 0.73, p = 0.004) in a randomized phase II trial, including significant clinical benefit for patients with brain metastases. Finally, trastuzumab-deruxtecan, zenocutuzumab, and poziotinib demonstrated benefit in phase II trials with the most robust overall response rate (62.0%) and median duration of response (18.2 months) observed for trastuzumab-deruxtecan among heavily pretreated patients. CONCLUSION Tucatinib plus trastuzumab and capecitabine significantly prolongs OS, and promising preliminary response outcomes for trastuzumab-deruxtecan suggest that sequencing of these regimens following second-line therapy is reasonable.
Collapse
Affiliation(s)
- Christine Simmons
- Medical Oncology, British Columbia Cancer
Agency – Vancouver Centre, University of British Columbia, 600 West 10th
Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Daniel Rayson
- Queen Elizabeth II Health Sciences Centre,
Dalhousie University, Halifax, NS, Canada
| | - Anil Abraham Joy
- Cross Cancer Institute, University of Alberta,
Edmonton, AB, Canada
| | | | - Julie Lemieux
- Centre hospitalier universitaire de Québec,
Université Laval, Quebec, QC, Canada
| | | | - Paul B. Card
- Kaleidoscope Strategic, Inc., Toronto, ON,
Canada
| | - Rebecca Dent
- National Cancer Centre Singapore, Duke-NUS
Medical School, Singapore
| | | |
Collapse
|
35
|
A bispecific antibody targeting HER2 and PD-L1 inhibits tumor growth with superior efficacy. J Biol Chem 2021; 297:101420. [PMID: 34798072 PMCID: PMC8671946 DOI: 10.1016/j.jbc.2021.101420] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022] Open
Abstract
Activation of the programmed cell death protein 1 and programmed cell death ligand 1 (PD-1/PD-L1) signaling axis plays important roles in intrinsic or acquired resistance to human epidermal growth factor receptor 2 (HER2)-directed therapies in the clinic. Therefore, therapies simultaneously targeting both HER2 and PD-1/PD-L1 signaling pathways are of great significance. Here, aiming to direct the anti-PD-L1 responses toward HER2-expressing tumor cells, we constructed a humanized bispecific IgG1 subclass antibody targeting both HER2 and PD-L1 (HER2/PD-L1; BsAb), which displayed satisfactory purity, thermostability, and serum stability. We found that BsAb showed enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro. In the late phase of peripheral blood mononuclear cell (PBMC)-humanized HER2+ tumor xenograft models, BsAb showed superior therapeutic efficacies as compared with monoclonal antibodies (mAbs) or combination treatment strategies. In cynomolgus monkeys, BsAb showed favorable pharmacokinetics and toxicity profiles when administered at a 10 mg/kg dosage. Thus, HER2/PD-L1 BsAb was demonstrated as a potentially effective option for managing HER2+ and trastuzumab-resistant tumors in the clinic. We propose that the enhanced antitumor activities of BsAb in vivo may be due to direct inhibition of HER2 signaling or activation of T cells.
Collapse
|
36
|
Li L, Chen M, Zheng S, Li H, Chi W, Xiu B, Zhang Q, Hou J, Wang J, Wu J. Clinical and Genetic Predictive Models for the Prediction of Pathological Complete Response to Optimize the Effectiveness for Trastuzumab Based Chemotherapy. Front Oncol 2021; 11:592393. [PMID: 34336634 PMCID: PMC8319743 DOI: 10.3389/fonc.2021.592393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/24/2021] [Indexed: 12/09/2022] Open
Abstract
Background Trastuzumab shows excellent benefits for HER2+ breast cancer patients, although 20% treated remain unresponsive. We conducted a retrospective cohort study to optimize neoadjuvant chemotherapy and trastuzumab treatment in HER2+ breast cancer patients. Methods Six hundred patients were analyzed to identify clinical characteristics of those not achieving a pathological complete response (pCR) to develop a clinical predictive model. Available RNA sequence data was also reviewed to develop a genetic model for pCR. Results The pCR rate was 39.8% and pCR was associated with superior disease free survival and overall survival. ER negativity and PR negativity, higher HER2 IHC scores, higher Ki-67, and trastuzumab use were associated with improved pCR. Weekly paclitaxel and carboplatin had the highest pCR rate (46.70%) and the anthracycline+taxanes regimen had the lowest rate (11.11%). Four published GEO datasets were analyzed and a 10-gene model and immune signature for pCR were developed. Non-pCR patients were ER+PR+ and had a lower immune signature and gene model score. Hormone receptor status and immune signatures were independent predictive factors of pCR. Conclusion Hormone receptor status and a 10-gene model could predict pCR independently and may be applied for patient selection and drug effectiveness optimization.
Collapse
Affiliation(s)
- Lun Li
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Chen
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuyue Zheng
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hanlu Li
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiru Chi
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bingqiu Xiu
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjing Hou
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Wang
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Shanghai, China
| |
Collapse
|