1
|
Xu YZ, Xu ZY, Fu HX, Yue M, Li JQ, Cui CP, Wu D, Li BY. Caution for Multidrug Therapy: Significant Baroreflex Afferent Neuroexcitation Coordinated by Multi-Channels/Pumps Under the Threshold Concentration of Yoda1 and Dobutamine Combination. Biomolecules 2024; 14:1311. [PMID: 39456244 PMCID: PMC11506362 DOI: 10.3390/biom14101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Multi-drug therapies are common in cardiovascular disease intervention; however, io channel/pump coordination has not been tested electrophysiologically. Apparently, inward currents were not elicited by Yoda1/10 nM or Dobutamine/100 nM alone in Ah-type baroreceptor neurons, but were by their combination. To verify this, electroneurography and the whole-cell patch-clamp technique were performed. The results showed that Ah- and C-volley were dramatically increased by the combination at 0.5 V and 5 V, in contrast to A-volley, as consistent with repetitive discharge elicited by step and ramp with markedly reduced current injection/stimulus intensity. Notably, a frequency-dependent action potential (AP) duration was increased with Iberiotoxin-sensitive K+ component. Furthermore, an increased peak in AP measured in phase plots suggested enhanced Na+ influx, cytoplasmic Ca2+ accumulation through reverse mode of Na+/Ca2+ exchanger, and, consequently, functional KCa1.1 up-regulation. Strikingly, the Yoda1- or Dbtm-mediated small/transient Na+/K+-pump currents were robustly increased by their combination, implying a quick ion equilibration that may also be synchronized by hyperpolarization-induced voltage-sag, enabling faster repetitive firing. These novel findings demonstrate multi-channel/pump collaboration together to integrate neurotransmission at the cellular level for baroreflex, providing an afferent explanation in sexual dimorphic blood pressure regulation, and raising the caution regarding the individual drug concentration in multi-drug therapies to optimize efficacy and minimize toxicity.
Collapse
Affiliation(s)
- Yin-zhi Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhao-yuan Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hui-xiao Fu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mao Yue
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jia-qun Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chang-peng Cui
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Di Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Bai-yan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
2
|
Feng Y, Li Y, Liu H. Adrenomedullin-mediated depressor response with visceral afferent-specific membrane depolarization in isolated nodose ganglion neurons from adult female rat. Neuropeptides 2024; 108:102476. [PMID: 39427564 DOI: 10.1016/j.npep.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Adrenomedullin (ADM) is an endogenous and vasoactive neuropeptide that possesses potent central/peripheral regulations on blood pressure (BP) and sex-related vasodilation under physiological conditions. However, the role of ADM on baroreflex afferent function is largely unknown. Here, BP was monitored in adult female rats while ADM was microinjected into the nodose ganglion (NG); Fluorescent intensity against ADM was analyzed in the tissue level and membrane responses elicited by ADM were tested in identified NG neurons isolated from adult female rats with gap-free protocol under current-clamp mode with or without ADM antagonist. The results showed that BP was reduced by ADM (30-300 nM) concentration-dependently; myelinated (HCN1-positive) neurons showed significantly higher fluorescent intensity against ADM antibody vs. unmyelinated (HCN1-negative) neurons. Interestingly, patch-clamp data indicated that membrane potential was not changed in 50 % (6/12) of identified A-types, only 4/12 was hyperpolarized by 30 nM ADM, while 100 nM ADM induced brief hyperpolarization followed by depolarization in 2/12 of recordings; Robustly, ADM depolarized 100 % tested myelinated Ah-type neurons with dramatic and concentration-dependent repetitive discharges; While, a majority (8/9) of unmyelinated C-types were depolarized and few with repetitive dischargers. By application of ADM (22-52), the depolarization elicited by ADM 100 nM was partially or completely abolished in Ah-types or C-types, respectively. These datasets demonstrated for the first time that baroreflex afferents especially female-distributed subpopulation of Ah-types would be a key player in ADM-mediated depressor response unveiling the dominate role of peripheral ADM in neurocontrol of hypotension via baroreflex afferent function and gender-dependent vasodilation promoted by female sex steroid.
Collapse
Affiliation(s)
- Yan Feng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ying Li
- Department of Pharmacy, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center For Cancer, Tianjin 300308, China
| | - Hua Liu
- General Department, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, 214151, China.
| |
Collapse
|
3
|
Cui CP, Xiong X, Zhao JX, Fu DH, Zhang Y, Ma PB, Wu D, Li BY. Piezo1 channel activation facilitates baroreflex afferent neurotransmission with subsequent blood pressure reduction in control and hypertension rats. Acta Pharmacol Sin 2024; 45:76-86. [PMID: 37670136 PMCID: PMC10770313 DOI: 10.1038/s41401-023-01154-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/12/2023] [Indexed: 09/07/2023] Open
Abstract
Mechanosensitive cation channels such as Piezo1 and Piezo2 are activated by mechanical force like a starched wall of the aorta while blood pressure (BP) rising, which helps to elucidate the underlying mechanism of mechanotransduction of baroreceptor endings. In this study we investigated how Piezo1 channel activation-mediated gender- and afferent-specific BP regulation in rats. We established high-fat diet and fructose drink-induced hypertension model rats (HFD-HTN) and deoxycorticosterone (DOCA)-sensitive hypertension model rats. We showed that the expression levels of Piezo1 and Piezo2 were significantly up-regulated in left ventricle of HFD and DOCA hypertensive rats, whereas the down-regulation of Piezo1 was likely to be compensated by Piezo2 up-regulation in the aorta. Likewise, down-regulated Piezo1 was observed in the nodose ganglion (NG), while up-regulated Piezo2 was found in the nucleus tractus solitarius (NTS), which might synergistically reduce the excitatory neurotransmitter release from the presynaptic membrane. Notably, microinjection of Yoda1 (0.025-2.5 mg/ml) into the NG concentration-dependently reduced BP in both hypertensive rat models as well as in control rats with similar EC50; the effect of Yoda1 was abolished by microinjection of a Piezo1 antagonist GsMTx4 (1.0 μM). Functional analysis in an in vitro aortic arch preparation showed that instantaneous firing frequency of single Ah-fiber of aortic depressor nerve was dramatically increased by Yoda1 (0.03-1.0 μM) and blocked by GsMTx4 (1.0 μM). Moreover, spontaneous synaptic currents recorded from identified 2nd-order Ah-type baroreceptive neurons in the NTS was also facilitated over 100% by Yoda1 (1.0 μM) and completely blocked by GsMTx4 (3.0 μM). These results demonstrate that Piezo1 expressed on Ah-type baroreceptor and baroreceptive neurons in the NG and NTS plays a key role in a sexual-dimorphic BP regulation under physiological and hypertensive condition through facilitation of baroreflex afferent neurotransmission, which is presumably collaborated by Piezo2 expression at different level of baroreflex afferent pathway via compensatory and synergistic mechanisms.
Collapse
Affiliation(s)
- Chang-Peng Cui
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue Xiong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jia-Xin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Dong-Hong Fu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Peng-Bo Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Di Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
4
|
Wu D, Zhao D, Huang D, Sun X, Li KX, Feng Y, Yan QX, Li XY, Cui CP, Li HD, Li BY. Estrogen-dependent depressor response of melatonin via baroreflex afferent function and intensification of PKC-mediated Na v1.9 activation. Acta Pharmacol Sin 2022; 43:2313-2324. [PMID: 35132193 PMCID: PMC9433371 DOI: 10.1038/s41401-022-00867-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/16/2022] [Indexed: 11/09/2022] Open
Abstract
Recent studies suggest that melatonin (Mel) plays an important role in the regulation of blood pressure (BP) via the aortic baroreflex pathway. In this study, we investigated the interaction between the baroreflex afferent pathway and Mel-mediated BP regulation in rats under physiological and hypertensive conditions. Mel (0.1, 0.3, and 1.0 mg/mL) was microinjected into the nodose ganglia (NG) of rats. We showed that Mel-induced reduction of mean arterial pressure in female rats was significantly greater than that in male and in ovariectomized rats under physiological condition. Consistently, the expression of Mel receptors (MTNRs) in the NG of female rats was significantly higher than that of males. In L-NAME-induced hypertensive and spontaneously hypertensive rat models, MTNRs were upregulated in males but downregulated in female models. Interestingly, Mel-induced BP reduction was found in male hypertensive models. In whole-cell recording from identified baroreceptor neurons (BRNs) in female rats, we found that Mel (0.1 μM) significantly increased the excitability of a female-specific subpopulation of Ah-type BRNs by increasing the Nav1.9 current density via a PKC-mediated pathway. Similar results were observed in baroreceptive neurons of the nucleus tractus solitarius, showing the facilitation of spontaneous and evoked excitatory post-synaptic currents in Ah-type neurons. Collectively, this study reveals the estrogen-dependent effect of Mel/MTNRs under physiological and hypertensive conditions is mainly mediated by Ah-type BRNs, which may provide new theoretical basis and strategies for the gender-specific anti-hypertensive treatment in clinical practice.
Collapse
Affiliation(s)
- Di Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Dan Zhao
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Di Huang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xun Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ke-Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yan Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qiu-Xin Yan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xin-Yu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chang-Peng Cui
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hu-Die Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
5
|
Li KX, Feng Y, Fan XX, Sun X, Li Y, Wu D, Liu L, Cui CP, Xiong X, Li HD, Zhou M, Ma HL, Liu Y, Zhang R, Li BY. Bradykinin-mediated estrogen-dependent depressor response by direct activation of female-specific distribution of myelinated Ah-type baroreceptor neurons in rats. CNS Neurosci Ther 2021; 28:435-447. [PMID: 34964272 PMCID: PMC8841294 DOI: 10.1111/cns.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Aim To understand the direct impact of bradykinin in autonomic control of circulation through baroreflex afferent pathway. Methods The mean arterial pressure (MAP) was monitored while bradykinin and its agonists were applied via nodose (NG) microinjection, the expression of bradykinin receptors (BRs) in the NG (1st‐order) and nucleus tractus solitarius (NTS, 2nd‐order) were tested in adult male, age‐matched female, and ovariectomized rats under physiological and hypertensive conditions. Additionally, bradykinin‐induced depolarization was also tested in identified baroreceptor and baroreceptive neurons using whole‐cell patch‐clamp technique. Results Under physiological condition, bradykinin‐induced dose‐ and estrogen‐dependent reductions of MAP with lower estimated EC50 in females. B2R agonist mediated more dramatic MAP reduction with long‐lasting effect compared with B1R activation. These functional observations were consistent with the molecular and immunostaining evidences. However, under hypertensive condition, the MAP reduction was significantly less dramatic in N’‐Nitro‐L‐Arginine‐methyl ester (L‐NAME) induced secondary and spontaneous hypertension rats in males compared with female rats. Electrophysiological data showed that bradykinin‐elicited concentration‐dependent membrane depolarization with discharges during initial phase in identified myelinated Ah‐types baroreceptor neurons, not myelinated A‐types; while, higher concentration of bradykinin was required for depolarization of unmyelinated C‐types without initial discharges. Conclusion These datasets have demonstrated for the first time that bradykinin mediates direct activation of baroreflex afferent function to trigger estrogen‐dependent depressor response, which is due mainly to the direct activation/neuroexcitation of female‐specific myelinated Ah‐type baroreceptor neurons leading to a sexual dimorphism in parasympathetic domination of blood pressure regulation via activation of B2R/B1R expression in baroreflex afferent pathway.
Collapse
Affiliation(s)
- Ke-Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiong-Xiong Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xun Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Di Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Li Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chang-Peng Cui
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xue Xiong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hu-Die Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Meng Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hai-Lan Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of clinical Laboratory, The 1st Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|