1
|
Xie H, Zhang P, Yang S, Du J, Ren Y, Gao X, Li N, Yang T, Ma Y, Hou X. Myeloid-derived MANF ameliorates ethanol-induced liver injury by enhancing microRNA-223 expression. J Gastroenterol 2025:10.1007/s00535-025-02240-0. [PMID: 40111540 DOI: 10.1007/s00535-025-02240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Myeloid cells play a pivotal role in the pathogenesis of alcoholic liver disease (ALD), yet the mechanisms regulating their function and specific contributions to ALD remain inadequately understood. This study aims to investigate the role of mesencephalic astrocyte-derived neurotrophic factor (MANF) in the development of ALD. METHODS Myeloid-specific Manf knockout mice and wild-type controls were fed an ethanol-based diet for 10 days, followed by a single ethanol binge. Hepatic MANF levels, along with the correlation between MANF and inflammatory factors in patients with alcoholic hepatitis, were analyzed using the GSE28619 dataset. RESULTS Our study demonstrated that myeloid MANF expression in the liver was upregulated following chronic-plus-binge ethanol exposure. Deletion of the Manf gene in myeloid cells, including neutrophils, exacerbated ethanol-induced liver injury, steatosis, neutrophil infiltration, and reactive oxygen species production. Mechanistic analysis revealed that MANF promotes neutrophil miR-223 expression, a key anti-inflammatory factor in these cells. MANF enhances miR-223 transcription by increasing the expression of the transcription factor PU.1 via p38 mitogen-activated protein kinase signaling. In addition, hepatic MANF levels were elevated in patients with alcoholic hepatitis and correlated with IL-6, IL-1β, and phagocytic oxidase (phox) p47phoxlevels. CONCLUSION Myeloid-derived MANF mitigates alcohol-induced liver injury by upregulating the neutrophilic p38-PU.1-miR-223 axis.
Collapse
Affiliation(s)
- Huiyuan Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Pingping Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shanru Yang
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jia Du
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xianxian Gao
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tao Yang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yang Ma
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
2
|
Xia J, Liu W, Ni Y, Shahzad A, Cui K, Xu Z, Zhang J, Wei Z, Teng Z, Yang Z, Zhang Q. Advances in the impact of ASS1 dysregulation on metabolic reprogramming of tumor cells. Cell Signal 2025; 127:111593. [PMID: 39778698 DOI: 10.1016/j.cellsig.2025.111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
ASS1(argininosuccinate synthase 1) is a rate-limiting enzyme in the urea cycle, catalyzing the synthesis of argininosuccinate from citrulline and aspartate to ultimately produce arginine and support cellular metabolism. Increasing evidence suggests that ASS1 is commonly dysregulated in the tumor microenvironment, promoting tumor cell metastasis and infiltration. With a deeper understanding of tumor metabolic reprogramming in recent years, the impact of ASS1 dysregulation on abnormal tumor metabolism has attracted growing interest among researchers. In tumors with lacked or downregulated expression of ASS1, tumor cells become 'addicted' to exogenous arginine. Several strategies for arginine deprivation have been developed and entered clinical trials for treating such tumors. Therefore, we focus on elucidating the commonalities and characteristics of ASS1 dysregulation in tumors, as well as its implications for diagnosis, treatment, and prognosis. The mechanisms by which ASS1 gene dysregulation leads to metabolic abnormalities in tumor cells vary across different types of tumors. Extensive experimental studies have demonstrated that overexpression or low expression of ASS1 exhibits varying effects-either inhibitory or stimulatory proliferation-on tumor cells across different types. Restoring its expression can inhibit proliferation in some tumors lacking or downregulating ASS1 but can promote metastasis and infiltration in others (e.g., resistance to arginine deprivation therapy). Additionally, the expression level of ASS1 dynamically changes during tumorigenesis and progression. Finally, this review discusses the diagnostic, therapeutic, and prognostic value of ASS1 in future clinical practice.
Collapse
Affiliation(s)
- Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China; Qujing Medical College, Qujing 655011, Yunnan Province, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Zhenyan Wei
- Yunnan Center for Disease Control and Prevention, Kunming 650022, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China.
| | - Zhe Yang
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, PR China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China.
| |
Collapse
|
3
|
Mei Q, Zhang Y, Li H, Ma W, Huang W, Wu Z, Huang Y, Liang Y, Wei C, Wang J, Ruan Y, Yang L, Huang Y, Shen Y, Liu J, Feng L, Shen Y. Hepatic factor MANF drives hepatocytes reprogramming by detaining cytosolic CK19 in intrahepatic cholangiocarcinoma. Cell Death Differ 2025:10.1038/s41418-025-01460-4. [PMID: 39972058 DOI: 10.1038/s41418-025-01460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is characterized by poor prognosis and limited treatment. Hepatocytes have been considered as one of the origins of ICC, however, the underlying mechanisms remain unclear. Here, we found mesencephalic astrocyte-derived neurotrophic factor (MANF), a hepatoprotective factor, was exceptionally upregulated in human ICC tissues and experimental mouse ICC models induced by sleeping beauty transposon (SBT) or thioacetamide (TAA) challenge. We identified MANF as a biomarker for distinguishing the primary liver cancer and verified the oncogenic role of MANF in ICC using cell lines overexpressing/knocked down MANF and mice specifically knocked in/out MANF in hepatocytes. Lineage tracing revealed that MANF promoted mature hepatocyte transformation into ICC cells. Mechanistically, MANF interacted with CK19 at Ser35 to suppress CK19 membrane recruitment. Cytosolic CK19 bound to AR domain of Notch2 intracellular domain (NICD2) to stabilize NICD2 protein level and trigger Notch signaling, which contributed to hepatocyte transformation to ICC cells. We uncover a novel profile of MANF and the original mechanism, which shed light on ICC diagnosis and intervention.
Collapse
Affiliation(s)
- Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yu Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Hong Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wei Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wenkai Huang
- College & Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Wu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yongli Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jinfeng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yuefeng Ruan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Han D, Ma Q, Ballar P, Zhang C, Dai M, Luo X, Gu J, Wei C, Guo P, Zeng L, Hu M, Jiang C, Liang Y, Wang Y, Hou C, Wang X, Feng L, Shen Y, Shen Y, Hu X, Liu J. Reprogramming tumor-associated macrophages and inhibiting tumor neovascularization by targeting MANF-HSF1-HSP70-1 pathway: An effective treatment for hepatocellular carcinoma. Acta Pharm Sin B 2024; 14:4396-4412. [PMID: 39525584 PMCID: PMC11544390 DOI: 10.1016/j.apsb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 11/16/2024] Open
Abstract
In advanced hepatocellular carcinoma (HCC) tissues, M2-like tumor-associated macrophages (TAMs) are in the majority and promotes HCC progression. Contrary to the pro-tumor effect of M2-like TAMs, M1-like TAMs account for a small proportion and have anti-tumor effects. Since TAMs can switch from one type to another, reprogramming TAMs may be an important treatment for HCC therapy. However, the mechanisms of phenotypic switch and reprogramming TAMs are still obscure. In this study, we analyzed differential genes in normal macrophages and TAMs, and found that loss of MANF in TAMs accompanied by high levels of downstream genes negatively regulated by MANF. MANF reprogrammed TAMs into M1 phenotype. Meanwhile, loss of MANF promoted HCC progression in HCC patients and mice HCC model, especially tumor neovascularization. Additionally, macrophages with MANF supplement suppressed HCC progression in mice, suggesting MANF supplement in macrophage was an effective treatment for HCC. Mechanistically, MANF enhanced the HSF1-HSP70-1 interaction, restricted HSF1 in the cytoplasm of macrophages, and decreased both mRNA and protein levels of HSP70-1, which in turn led to reprogramming TAMs, and suppressing neovascularization of HCC. Our study contributes to the exploration the mechanism of TAMs reprogramming, which may provide insights for future therapeutic exploitation of HCC neovascularization.
Collapse
Affiliation(s)
- Dan Han
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Qiannan Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Petek Ballar
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir 35130, Turkey
| | - Chunyang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Min Dai
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Xiaoyuan Luo
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Jiong Gu
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Panhui Guo
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Lulu Zeng
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Min Hu
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Can Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yanyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Chao Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xian Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Xiangpeng Hu
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
5
|
Hou C, Wang D, Zhao M, Ballar P, Zhang X, Mei Q, Wang W, Li X, Sheng Q, Liu J, Wei C, Shen Y, Yang Y, Wang P, Shao J, Xu S, Wang F, Sun Y, Shen Y. MANF brakes TLR4 signaling by competitively binding S100A8 with S100A9 to regulate macrophage phenotypes in hepatic fibrosis. Acta Pharm Sin B 2023; 13:4234-4252. [PMID: 37799387 PMCID: PMC10547964 DOI: 10.1016/j.apsb.2023.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
The mesencephalic astrocyte-derived neurotrophic factor (MANF) has been recently identified as a neurotrophic factor, but its role in hepatic fibrosis is unknown. Here, we found that MANF was upregulated in the fibrotic liver tissues of the patients with chronic liver diseases and of mice treated with CCl4. MANF deficiency in either hepatocytes or hepatic mono-macrophages, particularly in hepatic mono-macrophages, clearly exacerbated hepatic fibrosis. Myeloid-specific MANF knockout increased the population of hepatic Ly6Chigh macrophages and promoted HSCs activation. Furthermore, MANF-sufficient macrophages (from WT mice) transfusion ameliorated CCl4-induced hepatic fibrosis in myeloid cells-specific MANF knockout (MKO) mice. Mechanistically, MANF interacted with S100A8 to competitively block S100A8/A9 heterodimer formation and inhibited S100A8/A9-mediated TLR4-NF-κB signal activation. Pharmacologically, systemic administration of recombinant human MANF significantly alleviated CCl4-induced hepatic fibrosis in both WT and hepatocytes-specific MANF knockout (HKO) mice. This study reveals a mechanism by which MANF targets S100A8/A9-TLR4 as a "brake" on the upstream of NF-κB pathway, which exerts an impact on macrophage differentiation and shed light on hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Chao Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Mingxia Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Petek Ballar
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
| | - Xinru Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Xiang Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Qiang Sheng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yi Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Peng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Juntang Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Sa Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Fuyan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
6
|
Cheng D, Zhou T, Liu H, Li L, Xuan Y, Huang L, Liu Y, Zhang X, Wei W, Wu H. MANF inhibits Sjögren's syndrome salivary gland epithelial cell apoptosis and antigen expression of Ro52/SSA through endoplasmic reticulum stress/autophagy pathway. Int Immunopharmacol 2023; 122:110582. [PMID: 37393840 DOI: 10.1016/j.intimp.2023.110582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Sjögren's syndrome (SS) is a typical autoimmune disease characterized by lymphocyte infiltration accompanied by the production of Ro52/SSA and La/SSB autoantibodies against whole body ribonucleoprotein particles. The release of type I IFN can induce endoplasmic reticulum stress (ERS) in submandibular gland cells. ERS not only produces a large number of Ro52/SSA antigens and changes their location, but also down-regulates autophagy and increases apoptosis. METHOD We collected human submandibular gland tissue samples, established an Experimental Sjögren's syndrome (ESS) mouse model, and used submandibular gland cells to test whether Mesencephalic astrocyte-derived neurotrophic factor (MANF) could reverse ERS-induced autophagy downregulation and reduce apoptosis and Ro52/SSA antigen expression. RESULT It was found that MANF could reduce lymphocyte infiltration and the proportion of CD4+ T cell subsets in the salivary glands, reduce the phosphorylation of AKT and mTOR proteins and the expression of ERS-related proteins, and increase the expression of autophagy proteins. We also found that MANF can reduce the expression of Ro52/SSA antigen on the cell membrane and reduce apoptosis. CONCLUSION In short, we found that MANF can activate autophagy, inhibit apoptosis and reduce the expression of Ro52/SSA by regulating the AKT/mTOR/LC3B signaling pathway. The above results suggest that MANF may be a protective factor against SS.
Collapse
Affiliation(s)
- Danqian Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Tongtong Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Hui Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Lijun Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Yuhao Xuan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Lijun Huang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Yuqi Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Xiao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translation Medicine, Hefei 230032, China
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translation Medicine, Hefei 230032, China.
| |
Collapse
|
7
|
Ding L, Teng R, Zhu Y, Liu F, Wu L, Qin L, Wu X, Liu T. Electroacupuncture treatment ameliorates metabolic disorders in obese ZDF rats by regulating liver energy metabolism and gut microbiota. Front Endocrinol (Lausanne) 2023; 14:1207574. [PMID: 37441502 PMCID: PMC10335763 DOI: 10.3389/fendo.2023.1207574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Metabolic disorders represent a major therapeutic challenge to public health worldwide due to their dramatically increasing prevalence. Acupuncture is widely used as adjuvant therapy for multiple metabolic diseases. However, detailed biological interpretation of the acupuncture stimulations is still limited. The gut and the liver are intrinsically connected and related to metabolic function. Microbial metabolites might affect the gut-liver axis through multiple mechanisms. Liver metabolomics and 16S rRNA sequencing were used to explore the specific mechanism of electroacupuncture in treating ZDF rats in this study. Electroacupuncture effectively improved glycolipid metabolism disorders of the ZDF rats. Histopathology confirmed that electroacupuncture improved diffuse hepatic steatosis and hepatocyte vacuolation, and promoted glycogen accumulation in the liver. The treatment significantly improved microbial diversity and richness and upregulated beneficial bacteria that maintain intestinal epithelial homeostasis and decreased bacteria with detrimental metabolic features on host metabolism. Liver metabolomics showed that the main effects of electroacupuncture include reducing the carbon flow and intermediate products in the TCA cycle, regulating the metabolism of various amino acids, and inhibiting hepatic glucose output and de novo lipogenesis. The gut-liver axis correlation analysis showed a strong correlation between the liver metabolites and the gut microbiota, especially allantoin and Adlercreutzia. Electroacupuncture treatment can improve abnormal energy metabolism by reducing oxidative stress, ectopic fat deposition, and altering metabolic fluxes. Our results will help us to further understand the specific mechanism of electroacupuncture in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Lei Ding
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rufeng Teng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yifei Zhu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengming Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Department of Science and Technology, Beijing University of Chinese Medicine, Beijing, China
| | - Xi Wu
- Department of Education, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Deng H, Zhang P, Gao X, Chen W, Li J, Wang F, Gu Y, Hou X. Emerging trophic activities of mesencephalic astrocyte-derived neurotrophic factor in tissue repair and regeneration. Int Immunopharmacol 2023; 114:109598. [PMID: 36538855 DOI: 10.1016/j.intimp.2022.109598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a soluble endoplasmic reticulum (ER) luminal protein and its expression and secretion can be induced by ER stress. Despite initially being classified as a neurotrophic factor, MANF has been demonstrated to have restorative and protective effects in many different cell types such as neurons, liver cells, retinal cells, cardiac myocytes, and pancreatic β cells. However, underlying molecular mechanisms are complex and remain incompletely understood. The aims of this review are to highlight the latest advances in the understanding of the trophic activities of MANF in tissue repair and regeneration as well as underlying molecular mechanisms. The structural motifs and immune modulation of MANF are also described. We therefore propose that MANF might be a promising therapeutic target for tissue repair.
Collapse
Affiliation(s)
- Haiyan Deng
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Pingping Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, PR China
| | - Xianxian Gao
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Weiyi Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jianing Li
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Fuyan Wang
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China; Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, 266000, PR China
| | - Yiyue Gu
- Department of Cardiology, Xuzhou No.1 Peoples Hospital, Xuzhou, PR China
| | - Xin Hou
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China; The Affiliated Hospital of Medical School, Ningbo University, Ningbo, PR China.
| |
Collapse
|