1
|
Yao R, Pan JS, He RB, Hou BB, Suo XG, Li GX, Xia KG, Hu DK, Mao XK, Li W, Hao ZY. Pectolinarigenin alleviates calcium oxalate-induced renal inflammation and oxidative stress by binding to HIF-1α. Int Immunopharmacol 2024; 143:113284. [PMID: 39378657 DOI: 10.1016/j.intimp.2024.113284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Calcium oxalate (CaOx) crystals are the main constituents of renal crystals in humans and induce tubular lumen damage in renal tubules, leading to renal calcium deposition and kidney stone formation. Oxidative stress and inflammation play important roles in regulating calcium oxalate-induced injury. Here, we evaluated the efficacy in inhibiting oxidation and inflammation of pectinolinarigenin, a biologically active natural metabolite, in CaOx nephrocalcinosis and further explored its targets of action. First, we developed cellular and mouse models of calcium oxalate renal nephrocalcinosis and identified the onset of oxidative stress and inflammation according to experimental data. We found that pectolinarigenin inhibited this onset while reducing renal crystal deposition. Network pharmacology was subsequently utilized to screen for hypoxia-inducible factor-1α (HIF-1α), a regulator involved in the body's release and over-oxidation of inflammatory factors. Finally, molecular docking, cellular thermal shift assay, and other experiments to detect HIF-1α expression showed that pectolinarigenin directly combined with HIF-1α and prevented downstream reactive oxygen species activation and release. Our results indicate that pectolinarigenin can target and inhibit HIF-1α-mediated inflammatory responses and oxidative stress damage and be a novel drug for CaOx nephrocalcinosis treatment.
Collapse
Affiliation(s)
- Rui Yao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Jia-Shan Pan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Ruo-Bing He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Bing-Bing Hou
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Guo-Xiang Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Kai-Guo Xia
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - De-Kai Hu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Xi-Ke Mao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| | - Wei Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zong-Yao Hao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China.
| |
Collapse
|
2
|
Guo ZY, Wu X, Zhang SJ, Yang JH, Miao H, Zhao YY. Poria cocos: traditional uses, triterpenoid components and their renoprotective pharmacology. Acta Pharmacol Sin 2024:10.1038/s41401-024-01404-7. [PMID: 39482471 DOI: 10.1038/s41401-024-01404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024] Open
Abstract
Poria cocos and its surface layer of Poria cocos (Schw.) Wolf (Polyporaceae), are used in traditional Chinese medicine for its diuretic and renoprotective effects. Phytochemical studies have shown that lanostane and 3,4-seco-lanostane tetracyclic triterpenoids are the main components of P. cocos and its surface layer. Accumulating evidence shows that triterpenoid components in P. cocos and its surface layer contribute to their renoprotective effect. The surface layer of P. cocos showed a stronger diuretic effect than P. cocos. The ethanol extract of the surface layer and its components improved acute kidney injury, acute kidney injury-to-chronic kidney disease transition and chronic kidney disease such as diabetic kidney disease, nephrotic syndrome and tubulointerstitial nephropathy, and protected against renal fibrosis. It has been elucidated that P. cocos and its surface layer exert a diuretic effect and improve kidney diseases through a variety of molecular mechanisms such as aberrant pathways TGF-β1/Smad, Wnt/β-catenin, IκB/NF-κB and Keap1/Nrf2 signaling as well as the activation of renin-angiotensin system, matrix metalloproteinases, aryl hydrocarbon receptor and endogenous metabolites. These studies further confirm the renoprotective effect of P. cocos and its surface layer and provide a beneficial basis to its clinical use in traditional medicine.
Collapse
Affiliation(s)
- Zhi-Yuan Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shui-Juan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian-Hua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Clinical Drug Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Hua Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ying-Yong Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Oršolić N, Jazvinšćak Jembrek M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024; 16:3741. [PMID: 39519572 PMCID: PMC11547968 DOI: 10.3390/nu16213741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial-mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients' quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
4
|
Song B, Niu W, Zhang S, Hao M, Li Y, Chen Q, Li S, Tong C. A mechanistic review of the pharmacological aspects of Kaempferide as a natural compound. Heliyon 2024; 10:e38243. [PMID: 39397988 PMCID: PMC11467526 DOI: 10.1016/j.heliyon.2024.e38243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Background Kaempferide exhibits a range of pharmacological effects, including anti-tumor activity, kidney protection, oxidative stress relief, gastroprotection, and endocrine regulation. The increasing attention surrounding kaempferide, a promising therapeutic agent, has sparked considerable debate, making it a topic of significant interest in recent research. Purpose This paper aims to provide a comprehensive review of the clinical applications, pharmacological properties, and underlying molecular mechanisms of kaempferide, while also examining its potential for future therapeutic applications in the field of pharmacology. Methodology We used the keywords "kaempferide" and "kaempferide derivatives" to search for relevant articles in Science Direct, PubMed, MEDLINE, and Web of Science databases. Results Kaempferide possesses anti-inflammatory, stomach-protective, antioxidant, anti-tumor, and anti-adipogenic activities, and thus has great potential in different systemic therapies. These interactions involve a multitude of pathways that directly or indirectly affect upstream and downstream key molecules. Conclusions Although kaempferide has shown promising potential, its practical applications still require further in-depth investigation. Future research should prioritize elucidating its mechanisms of action, identifying specific therapeutic targets, and optimizing the compound to facilitate its translation into drug development.
Collapse
Affiliation(s)
- Bocui Song
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wenqi Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Zhang
- Administration Committee of Jilin Yongji Economic Development Zone, Jilin, China
| | - Meihan Hao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yuqi Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qian Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
5
|
Zhang Y, Wu Q, Fu H, Pang J, Zhang Y, Zhou H, Zhuang L, Zhang X, Chen L, Yang Q. Kaempferol attenuates cyclosporine-induced renal tubular injury via inhibiting the ROS-ASK1-MAPK pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03409-9. [PMID: 39316086 DOI: 10.1007/s00210-024-03409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
Cyclosporine (CSA) is a widely used immunosuppressive medication. CSA nephrotoxicity severely limits its application. Kaempferol (KPF), a naturally occurring phenolic compound, has a promising protective effect in reducing CSA-induced renal tubular injury, but the mechanism remains unknown. Our study aimed to determine the protective role of KPF against CSA-induced renal tubular injury. C57/B6 mice and the NRK-52E cell line were employed. CSA worsened renal function in mice, causing detachment and necrosis of tubular cells, leading to tubular vacuolation and renal interstitial fibrosis. CSA caused the detachment, rupture, and death of tubular cells in vitro, resulting in cell viability loss. KPF mitigated all these injurious alterations. KPF hindered CSA-induced ROS generation and protected renal tubular epithelial cells, similar to the antioxidant NAC. CSA lowered SOD activity and GSH levels while increasing MDA levels, and KPF ameliorated these changes. CSA caused phosphorylation of ASK1, JNK, and p38, similar to H2O2, whereas KPF significantly inhibited these changes. In conclusion, KPF reduces CSA-induced tubular epithelial cell injury via its antioxidant properties, inhibits the phosphorylation of ASK1, and inhibits the phosphorylation of p38 and JNK, implying that the synergistic use of KPF in CSA immunotherapy may be a promising option to reduce CSA-evoked renal injury.
Collapse
Affiliation(s)
- Yaowu Zhang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Qijing Wu
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Huali Fu
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Jieya Pang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yiyuan Zhang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Hui Zhou
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Ling Zhuang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Xiaobo Zhang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Lianhua Chen
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China.
| | - Qianqian Yang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China.
| |
Collapse
|
6
|
Jung YY, Son NT, Mohan CD, Bastos JK, Luyen ND, Huong LM, Ahn KS. Kaempferide triggers apoptosis and paraptosis in pancreatic tumor cells by modulating the ROS production, SHP-1 expression, and the STAT3 pathway. IUBMB Life 2024; 76:745-759. [PMID: 38708996 DOI: 10.1002/iub.2827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/07/2024] [Indexed: 05/07/2024]
Abstract
Pancreatic cancer is one of the deadliest diseases with a poor prognosis and a five-survival rate. The STAT3 pathway is hyperactivated which contributes to the sustained proliferative signals in pancreatic cancer cells. We have isolated kaempferide (KF), an O-methylated flavonol, from the green propolis of Mimosa tenuiflora and examined its effect on two forms of cell death namely, apoptosis and paraptosis. KF significantly increased the cleavage of caspase-3 and PARP. It also downmodulated the expression of Alix (an intracellular inhibitor of paraptosis) and increased the expression of CHOP and ATF4 (transcription factors that promote paraptosis) indicating that KF promotes apoptosis as well as paraptosis. KF also increased intracellular reactive oxygen species (ROS) suggesting the perturbance of the redox state. N-acetylcysteine reverted the apoptosis- and paraptosis-inducing effects of KF. Some ROS inducers are known to suppress the STAT3 pathway and investigation revealed that KF downmodulates STAT3 and its upstream kinases (JAK1, JAK2, and Src). Additionally, KF also elevated the expression of SHP-1, a tyrosine phosphatase which is involved in the negative modulation of the STAT3 pathway. Knockdown of SHP-1 prevented KF-driven STAT3 inhibition. Altogether, KF has been identified as a promoter of apoptosis and paraptosis in pancreatic cancer cells through the elevation of ROS generation and SHP-1 expression.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, VAST, Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, SP, Brazil
| | | | - Jairo Kenupp Bastos
- University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, SP, Brazil
| | - Nguyen Dinh Luyen
- Institute of Natural Products Chemistry, VAST, Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Le Mai Huong
- Institute of Natural Products Chemistry, VAST, Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
7
|
Zang YD, Wu HJ, Chen XY, Ma ZL, Li CJ, Ma J, Chen XG, Sheng L, Zhang S, Zhang DM. Synthesis and Biological Evaluation of Novel Psidium Meroterpenoid Derivatives against Cisplatin-Induced Acute Kidney Injury. J Med Chem 2024; 67:14234-14255. [PMID: 39137258 DOI: 10.1021/acs.jmedchem.4c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Cisplatin is a widely used drug for the clinical treatment of tumors. However, nephrotoxicity limits its widespread use. A series of compounds including eight analogs (G3-G10) and 40 simplifiers (G11-G50) were synthesized based on the total synthesis of Psiguamer A and B, which were novel meroterpenoids with unusual skeletons from the leaves of Psidium guajava. Among these compounds, (d)-G8 showed the strongest protective effect on cisplatin-induced acute kidney injury (AKI) in vitro and vivo, and slightly enhanced the antitumor efficacy of cisplatin. A mechanistic study showed that (d)-G8 promoted the efflux of cisplatin via upregulating the copper transporting efflux proteins ATP7A and ATP7B. It enhanced autophagy through the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. (d)-G8 showed no acute toxicity or apparent pathological damage in the healthy mice at a single dose of 1 g/kg. This study provides a promising lead against cisplatin-induced AKI.
Collapse
Affiliation(s)
- Ying-Da Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Hai-Jie Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xin-Yi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Zhi-Ling Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Chuang-Jun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xiao-Guang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Li Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Dong-Ming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
8
|
Li XJ, Wang YN, Wang WF, Nie X, Miao H, Zhao YY. Barleriside A, an aryl hydrocarbon receptor antagonist, ameliorates podocyte injury through inhibiting oxidative stress and inflammation. Front Pharmacol 2024; 15:1386604. [PMID: 39239643 PMCID: PMC11374728 DOI: 10.3389/fphar.2024.1386604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Increasing evidence shows that hyperactive aryl hydrocarbon receptor (AHR) signalling is involved in renal disease. However, no currently available intervention strategy is effective in halting disease progression by targeting the AHR signalling. Our previous study showed that barleriside A (BSA), a major component of Plantaginis semen, exhibits renoprotective effects. Methods In this study, we determined the effects of BSA on AHR expression in 5/6 nephrectomized (NX) rats. We further determined the effect of BSA on AHR, nuclear factor kappa B (NF-ƙB), and the nuclear factor erythroid 2-related factor 2 (Nrf2) signalling cascade in zymosan-activated serum (ZAS)-stimulated MPC5 cells. Results BSA treatment improved renal function and inhibited intrarenal nuclear AHR protein expression in NX-treated rats. BSA mitigated podocyte lesions and suppressed AHR mRNA and protein expression in ZAS-stimulated MPC5 cells. BSA inhibited inflammation by improving the NF-ƙB and Nrf2 pathways in ZAS-stimulated MPC5 cells. However, BSA did not markedly upregulate the expression of podocyte-specific proteins in the ZAS-mediated MPC5 cells treated with CH223191 or AHR siRNA compared to untreated ZAS-induced MPC5 cells. Similarly, the inhibitory effects of BSA on nuclear NF-ƙB p65, Nrf2, and AHR, as well as cytoplasmic cyclooxygenase-2, heme oxygenase-1, and AHR, were partially abolished in ZAS-induced MPC5 cells treated with CH223191 or AHRsiRNA compared with untreated ZAS-induced MPC5 cells. These results indicated that BSA attenuated the inflammatory response, partly by inhibiting AHR signalling. Discussion Both pharmacological and siNRA findings suggested that BSA mitigated podocyte lesions by improving the NF-ƙB and Nrf2 pathways via inhibiting AHR signalling. Therefore, BSA is a high-affinity AHR antagonist that abolishes oxidative stress and inflammation.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wen-Feng Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaoli Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Zuo Z, Luo M, Liu Z, Liu T, Wang X, Huang X, Li S, Wu H, Pan Q, Chen T, Yang L, Liu HF. Selenium nanoparticles alleviate renal ischemia/reperfusion injury by inhibiting ferritinophagy via the XBP1/NCOA4 pathway. Cell Commun Signal 2024; 22:376. [PMID: 39061070 PMCID: PMC11282718 DOI: 10.1186/s12964-024-01751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Acute kidney injury (AKI) is closely related to lysosomal dysfunction and ferroptosis in renal tubular epithelial cells (TECs), for which effective treatments are urgently needed. Although selenium nanoparticles (SeNPs) have emerged as promising candidates for AKI therapy, their underlying mechanisms have not been fully elucidated. Here, we investigated the effect of SeNPs on hypoxia/reoxygenation (H/R)-induced ferroptosis and lysosomal dysfunction in TECs in vitro and evaluated their efficacy in a murine model of ischemia/reperfusion (I/R)-AKI. We observed that H/R-induced ferroptosis was accompanied by lysosomal Fe2+ accumulation and dysfunction in TECs, which was ameliorated by SeNPs administration. Furthermore, SeNPs protected C57BL/6 mice against I/R-induced inflammation and ferroptosis. Mechanistically, we found that lysosomal Fe2+ accumulation and ferroptosis were associated with the excessive activation of NCOA4-mediated ferritinophagy, a process mitigated by SeNPs through the upregulation of X-box binding protein 1 (XBP1). Downregulation of XBP1 promoted ferritinophagy and partially counteracted the protective effects of SeNPs on ferroptosis inhibition in TECs. Overall, our findings revealed a novel role for SeNPs in modulating ferritinophagy, thereby improving lysosomal function and attenuating ferroptosis of TECs in I/R-AKI. These results provide evidence for the potential application of SeNPs as therapeutic agents for the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Zhenying Zuo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mianna Luo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhongyu Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ting Liu
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Xi Wang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shangmei Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hongluan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Lawei Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
10
|
Li Q, Wang Y, Yan J, Yuan R, Zhang J, Guo X, Zhao M, Li F, Li X. Osthole ameliorates early diabetic kidney damage by suppressing oxidative stress, inflammation and inhibiting TGF-β1/Smads signaling pathway. Int Immunopharmacol 2024; 133:112131. [PMID: 38669945 DOI: 10.1016/j.intimp.2024.112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Osthole is a natural active ingredient extracted from the traditional Chinese medicine Cnidium monnieri. It has been demonstrated to have anti-inflammatory, anti-fibrotic, and anti-hyperglycemic properties. However, its effect on diabetic kidney disease (DKD) remains uncertain. This study aims to assess the preventive and therapeutic effects of osthole on DKD and investigate its underlying mechanisms. METHODS A streptozotocin/high-fat and high-sucrose diet induced Type 2 diabetic rat model was established. Metformin served as the positive drug control. Diabetic rats were treated with metformin or three different doses of osthole for 8 weeks. Throughout the treatment period, the progression of DKD was assessed by monitoring increases in urinary protein, serum creatinine, urea nitrogen, and uric acid, along with scrutinizing kidney pathology. Enzyme-linked immunosorbent assay (ELISA) was employed to detect inflammatory factors and oxidative stress levels. At the same time, immunohistochemical staining was utilized to evaluate changes in alpha-smooth muscle actin, fibronectin, E-cadherin, and apoptosis. The alterations in TGF-β1/Smads signaling pathway were ascertained through western blot and immunofluorescence. Furthermore, we constructed a high glucose-stimulated HBZY-1 cells model to uncover its molecular protective mechanism. RESULTS Osthole significantly reduced fasting blood glucose, insulin resistance, serum creatinine, uric acid, blood urea nitrogen, urinary protein excretion, and glomerular mesangial matrix deposition in diabetic rats. Additionally, significant improvements were observed in inflammation, oxidative stress, apoptosis, and fibrosis levels. The increase of ROS, apoptosis and hypertrophy in HBZY-1 cells induced by high glucose was reduced by osthole. Immunofluorescence and western blot results demonstrated that osthole down-regulated the TGF-β1/Smads signaling pathway and related protein expression. CONCLUSION Our findings indicate that osthole exhibits potential preventive and therapeutic effects on DKD. It deserves further investigation as a promising drug for preventing and treating DKD.
Collapse
Affiliation(s)
- Qiangsheng Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yifei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jia Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruyan Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiamin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinhao Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Engineering Research Center for Water Environment and Health of Henan, College of Pharmacy and Chemical Engineering, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China.
| |
Collapse
|
11
|
Wu X, Zhou L, Li Z, Rong K, Gao S, Chen Y, Zuo J, Tang W. Arylacryl amides: Design, synthesis and the protection against cisplatin-induced acute kidney injury via TLR4/STING/NF-κB pathway. Bioorg Chem 2024; 146:107303. [PMID: 38521012 DOI: 10.1016/j.bioorg.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Arylpropionic ester scaffold was found as anti-inflammatory agents for the treatment and prevention of acute kidney injury (AKI). To further study the structure-activity relationship (SAR) of this scaffold, a series of acryl amides were designed, synthesized, and evaluated their anti-inflammation. Of these, compound 9d displayed the protective effect on renal tubular epithelial cells to significantly enhance the survival rate through inhibiting NF-κB phosphorylation and promoting cell proliferation in cisplatin-induced HK2 cells. Furthermore, 9d can interact with TLR4 to inhibit TLR4/STING/NF-κB pathway in the RAW264.7 cell. In vivo AKI mice model, 9d significantly downregulated the level of serum creatinine (Scr), blood urea nitrogen (BUN) and the inflammatory factors (IL-1β, IL-6, TNF-α) to improve kidney function. Morphological and KIM-1 analyses showed that 9d alleviated cisplatin-induced tubular damage. In a word, 9d was a promising lead compound for preventive and therapeutic of AKI.
Collapse
Affiliation(s)
- Xiaoming Wu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Long Zhou
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Ziyun Li
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Kuanrong Rong
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Shan Gao
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Yun Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Jiawei Zuo
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China.
| | - Wenjian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
12
|
Zuo Z, Li Q, Zhou S, Yu R, Wu C, Chen J, Xiao Y, Chen H, Song J, Pan Y, Wang W. Berberine ameliorates contrast-induced acute kidney injury by regulating HDAC4-FoxO3a axis-induced autophagy: In vivo and in vitro. Phytother Res 2024; 38:1761-1780. [PMID: 37922559 DOI: 10.1002/ptr.8059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
In hospitals, contrast-induced acute kidney injury (CI-AKI) is a major cause of renal failure. This study evaluates berberine's (BBR) renal protection and its potential HDAC4 mechanism. CI-AKI in rats was induced with 10 mL kg-1 ioversol. Rats were divided into five groups: Ctrl, BBR, CI-AKI, CI-AKI + BBR, and CI-AKI + Tasq. The renal function of CI-AKI rats was determined by measuring serum creatinine and blood urea nitrogen. Histopathological changes and apoptosis of renal tubular epithelial cells were observed by HE and terminal deoxynucleotidyl transferase (TdTase)-mediated dUTP-biotin nick end labeling (TUNEL) staining. Transmission electron microscopy was used to observe autophagic structures. In vitro, a CI-AKI cell model was created with ioversol-treated HK-2 cells. Treatments included BBR, Rapa, HCQ, and Tasq. Analyses focused on proteins and genes associated with kidney injury, apoptosis, autophagy, and the HDAC4-FoxO3a axis. BBR showed significant protective effects against CI-AKI both in vivo and in vitro. It inhibited apoptosis by increasing Bcl-2 protein levels and decreasing Bax levels. BBR also activated autophagy, as indicated by changes in autophagy-related proteins and autophagic flux. The study further revealed that the contrast agent ioversol increased the expression of HDAC4, which led to elevated levels of phosphorylated FoxO3a (p-FoxO3a) and acetylated FoxO3a (Ac-FoxO3a). However, BBR inhibited HDAC4 expression, resulting in decreased levels of p-FoxO3a and Ac-FoxO3a. This activation of autophagy-related genes, regulated by the transcription factor FoxO3a, played a role in BBR's protective effects. BBR, a traditional Chinese medicine, shows promise against CI-AKI. It may counteract CI-AKI by modulating HDAC4 and FoxO3a, enhancing autophagy, and limiting apoptosis.
Collapse
Affiliation(s)
- Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University/Jiangsu Province Hospital, Nanjing, China
| | - Qingju Li
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| | - Suqin Zhou
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Ran Yu
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| | - Caixia Wu
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Jiajia Chen
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Yao Xiao
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- Jiangsu College of Nursing, Huai'an, China
| | - Haoyu Chen
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Jian Song
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Yan Pan
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Wanpeng Wang
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| |
Collapse
|
13
|
Wang L, Xie Y, Xiao B, He X, Ying G, Zha H, Yang C, Jin X, Li G, Ping L, Wang J, Weng Q. Isorhamnetin alleviates cisplatin-induced acute kidney injury via enhancing fatty acid oxidation. Free Radic Biol Med 2024; 212:22-33. [PMID: 38101584 DOI: 10.1016/j.freeradbiomed.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Cisplatin is an effective chemotherapy drug widely used in the treatment of various solid tumors. However, the clinical usage of cisplatin is limited by its nephrotoxicity. Isorhamnetin, a natural flavanol compound, displays remarkable pharmacological effects, including anti-inflammatory and anti-oxidation. In this study, we aimed to investigate the potential of isorhamnetin in alleviating acute kidney injury induced by cisplatin. In vitro study showed that isorhamnetin significantly suppressed the cytotoxic effects of cisplatin on human tubular epithelial cells. Furthermore, isorhamnetin exerted significantly inhibitory effects on cisplatin-induced apoptosis and inflammatory response. In acute kidney injury mice induced by a single intraperitoneal injection with 20 mg/kg cisplatin, oral administration of isorhamnetin two days before or 2 h after cisplatin injection effectively ameliorated renal function and renal tubule injury. Transcriptomics RNA-seq analysis of the mice kidney tissues suggested that isorhamnetin treatment may protect against cisplatin-induced nephrotoxicity via PGC-1α mediated fatty acid oxidation. Isorhamnetin achieved significant enhancements in the lipid clearance, ATP level, as well as the expression of PGC-1α and its downstream target genes PPARα and CPT1A, which were otherwise impaired by cisplatin. In addition, the protection effects of isorhamnetin against cisplatin-induced nephrotoxicity were abolished by a PGC-1α inhibitor, SR-18292. In conclusion, our findings indicate that isorhamnetin could protect against cisplatin-induced acute kidney injury by inducing PGC-1α-dependent reprogramming of fatty acid oxidation, which highlights the clinical potential of isorhamnetin as a therapeutic approach for the management of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Lingkun Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Yaochen Xie
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Boneng Xiao
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Department of Nephrology, Beilun People's Hospital, Ningbo, 315826, China
| | - Guanghui Ying
- Department of Nephrology, Beilun People's Hospital, Ningbo, 315826, China
| | - Huiyan Zha
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Chen Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Xuejin Jin
- Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310053, China
| | - Guilin Li
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Li Ping
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China; Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China; Beijing Life Science Academy, Beijing, 102200, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China; Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
14
|
Wang R, Deng Z, Zhu Z, Wang J, Yang X, Xu M, Wang X, Tang Q, Zhou Q, Wan X, Wu W, Wang S. Kaempferol promotes non-small cell lung cancer cell autophagy via restricting Met pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155090. [PMID: 37738907 DOI: 10.1016/j.phymed.2023.155090] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Kaempferol is extracted from Hedyotis diffusa, exerting an obvious anti-cancer effect. Here in the present study, we explored the anti-cancer effects and mechanism of kaempferol in non-small cell lung cancer cell (NSCLC). PURPOSE Our objective is to figure out the molecular mechanism by which kaempferol promotes autophagy in NSCLC cells. STUDY DESIGN A549 and H1299 NSCLC cell lines were used for in vitro experiments. And BALB/c nude mice of NSCLC were used to perform in vivo experiments. METHODS For in vitro experiments, CCK-8 and EdU assay was used to observe the effect of kaempferol on NSCLC cell proliferation. Confocal microscopy of mCherry-EGFR-LC3 assay and electron microscopy assay were used to detect NSCLC cell autophagy. Protein expression was determined using Western blot, and mRNA expression was determined using qRT-PCR. Flow cytometry was performed to detect the cell apoptosis. For in vivo experiments, a subcutaneously implanted tumor model in BALB/C nude mice was performed using human NSCLC cell line A549-Luc. The kaempferol effect on NSCLC mice model was detected by measuring the tumor weight and bioluminescence intensity. Immunohistochemistry was done to measure the key protein expression from mice tumor tissues. RESULTS Our results confirmed that kaempferol inhibited NSCLC cell proliferation significantly. And it promoted NSCLC cell autophagy, leading to NSCLC cell death. Interestingly, Met-was greatly inhibited at both protein and mRNA levels. Meanwhile, PI3K/AKT/mTOR signaling pathway was inhibited accordingly. Furthermore, overexpressing Met-reversed the effect of kaempferol on NSCLC cell viability and cell autophagy with significance. Finally, the above effect and pathway were validated using the xenograft model. CONCLUSION Kaempferol may exert its anti-NSCLC effect by promoting NSCLC cell autophagy. Mechanistically, Met-and its downstream PI3K/AKT/mTOR signaling pathway were involved in the process, which provides a novel mechanism how kaempferol functions in inhibiting NSCLC.
Collapse
Affiliation(s)
- Rui Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Zhiyin Deng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Zhiming Zhu
- Department of Pharmacy, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Juanjuan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xiaobing Yang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Mengfei Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xi Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qing Tang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qichun Zhou
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xinliang Wan
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Wanyin Wu
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| | - Sumei Wang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
15
|
Yang J, Gan Y, Feng X, Chen X, Wang S, Gao J. Effects of melatonin against acute kidney injury: A systematic review and meta-analysis. Int Immunopharmacol 2023; 120:110372. [PMID: 37279642 DOI: 10.1016/j.intimp.2023.110372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Melatonin is a hormone synthesized by the pineal gland, and has antioxidative effects in reducing acute kidney injury (AKI). In the past three years, an increasing number of studies have evaluated whether melatonin has a protective effect on AKI. The study systematically reviewed and assessed the efficacy and safety of melatonin in preventing AKI. MATERIAL AND METHODS A systematic literature search was conducted in the PubMed, Embase, and Web of Science databases on February 15, 2023. Eligible records were screened according to the inclusion and exclusion criteria. The odds ratio and Hedges' gwith the corresponding 95% confidence intervals were selected to evaluate the effects of melatonin on AKI. We pooled extracted data using a fixed- or random-effects model based on a heterogeneity test. RESULTS There were five studies (one cohort study and four randomized controlled trials) included in the meta-analysis. Although the glomerular filtration rate (GFR) may be significantly improved by melatonin, the incidence of AKI was not significantly decreased in the melatonin group compared with the control group in randomized controlled trials (RCTs). CONCLUSIONS In our study, the present results do not support a direct effect of melatonin use on the reduction of AKI. More well-designed clinical studies with larger sample size are required in the future.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Intensive Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400016, China.
| | - Yuanxiu Gan
- Department of Intensive Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400016, China.
| | - Xuanyun Feng
- Department of Intensive Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400016, China.
| | - Xiangyu Chen
- Department of Emergency, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shu Wang
- Department of Intensive Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400016, China.
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|