1
|
Wang M, Zhang S, Tian J, Yang F, Chen H, Bai S, Kang J, Pang K, Huang J, Dong M, Dong S, Tian Z, Fang S, Fan H, Lu F, Yu B, Li S, Zhang W. Impaired Iron-Sulfur Cluster Synthesis Induces Mitochondrial PARthanatos in Diabetic Cardiomyopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406695. [PMID: 39495652 DOI: 10.1002/advs.202406695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/22/2024] [Indexed: 11/06/2024]
Abstract
Diabetic cardiomyopathy (DCM), a severe complication of diabetes, is characterized by mitochondrial dysfunction, oxidative stress, and DNA damage. Despite its severity, the intrinsic factors governing cardiomyocyte damage in DCM remain unclear. It is hypothesized that impaired iron-sulfur (Fe-S) cluster synthesis plays a crucial role in the pathogenesis of DCM. Reduced S-sulfhydration of cysteine desulfurase (NFS1) is a novel mechanism that contributes to mitochondrial dysfunction and PARthanatos in DCM. Mechanistically, hydrogen sulfide (H2S) supplementation restores NFS1 S-sulfhydration at cysteine 383 residue, thereby enhancing Fe-S cluster synthesis, improving mitochondrial function, increasing cardiomyocyte viability, and alleviating cardiac damage. This study provides novel insights into the interplay between Fe-S clusters, mitochondrial dysfunction, and PARthanatos, highlighting a promising therapeutic target for DCM and paving the way for potential clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Mengyi Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu ROAD, Harbin, 150086, China
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, 150000, China
- Department of Pathophysiology, Harbin Medical University, Harbin, 150000, China
| | - Shiwu Zhang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu ROAD, Harbin, 150086, China
- Department of Pathophysiology, Harbin Medical University, Harbin, 150000, China
| | - Jinwei Tian
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu ROAD, Harbin, 150086, China
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, 150000, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, 150000, China
| | - Fan Yang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu ROAD, Harbin, 150086, China
- Department of Pathophysiology, Harbin Medical University, Harbin, 150000, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, 150000, China
| | - He Chen
- Department of Forensic Medicine, Harbin Medical University, Harbin, 150000, China
| | - Shuzhi Bai
- Department of Pathophysiology, Harbin Medical University, Harbin, 150000, China
| | - Jiaxin Kang
- Department of Pathophysiology, Harbin Medical University, Harbin, 150000, China
| | - Kemiao Pang
- Department of Pathophysiology, Harbin Medical University, Harbin, 150000, China
| | - Jiayi Huang
- Department of Pathophysiology, Harbin Medical University, Harbin, 150000, China
| | - Mingjie Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, 150000, China
| | - Zhen Tian
- Department of Pathophysiology, Harbin Medical University, Harbin, 150000, China
| | - Shaohong Fang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu ROAD, Harbin, 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, 150000, China
| | - Huitao Fan
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery of Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150000, China
| | - Bo Yu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu ROAD, Harbin, 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, 150000, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, 150000, China
| | - Shuijie Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, 150000, China
- Heilongjiang Province Key Laboratory of Research on Molecular Targeted Anti-Tumor Drugs, Harbin, 150000, China
| | - Weihua Zhang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu ROAD, Harbin, 150086, China
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, 150000, China
- Department of Pathophysiology, Harbin Medical University, Harbin, 150000, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, 150000, China
| |
Collapse
|
2
|
Liu YL, Cao YG, Zheng YJ, Niu Y, Chen L, Chen X, Ma XY, Li XD, Zheng XK, Feng WS. Targeted isolation of lignans from the roots of Anthriscus sylvestris (L.) Hoffm. by small molecule accurate recognition technology. PHYTOCHEMISTRY 2024; 229:114293. [PMID: 39349233 DOI: 10.1016/j.phytochem.2024.114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Five undescribed lignans (1-5), along with sixteen known lignans (6-21), were isolated from the roots of Anthriscus sylvestris using small molecule accurate recognition technology (SMART). The structures of the isolated compounds were determined by comprehensive spectroscopic analyses, and the absolute configurations of compounds 3-5 were elucidated by comparison of their calculated and experimental ECD spectra. Compounds 5, 14-15, 19, and 21 exhibited significantly inhibitory effects against hypoxia-stimulated abnormal proliferation of pulmonary arterial smooth muscle cells (PASMCs). Moreover, compounds 5, 14-15, 19, and 21 can significantly restore expression of expression of PASMCs proliferation-related protein, including α-SMA, PCNA, P27, and CyclinD3, which are closely related to cell proliferation.
Collapse
Affiliation(s)
- Yan-Ling Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, 450046, China
| | - Yan-Gang Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, 450046, China
| | - Ya-Juan Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, 450046, China
| | - Ying Niu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, 450046, China
| | - Lan Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, 450046, China
| | - Xu Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, 450046, China
| | - Xin-Yi Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, 450046, China
| | - Xiang-da Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, 450046, China
| | - Xiao-Ke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Disease Diagnosis by Henan and Education Ministry of PR China, Zhengzhou, 450046, China.
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Disease Diagnosis by Henan and Education Ministry of PR China, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Nafe R, Hattingen E. Forms of Non-Apoptotic Cell Death and Their Role in Gliomas-Presentation of the Current State of Knowledge. Biomedicines 2024; 12:1546. [PMID: 39062119 PMCID: PMC11274595 DOI: 10.3390/biomedicines12071546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In addition to necrosis and apoptosis, the two forms of cell death that have been known for many decades, other non-apoptotic forms of cell death have been discovered, many of which also play a role in tumors. Starting with the description of autophagy more than 60 years ago, newer forms of cell death have become important for the biology of tumors, such as ferroptosis, pyroptosis, necroptosis, and paraptosis. In this review, all non-apoptotic and oncologically relevant forms of programmed cell death are presented, starting with their first descriptions, their molecular characteristics, and their role and their interactions in cell physiology and pathophysiology. Based on these descriptions, the current state of knowledge about their alterations and their role in gliomas will be presented. In addition, current efforts to therapeutically influence the molecular components of these forms of cell death will be discussed. Although research into their exact role in gliomas is still at a rather early stage, our review clarifies that all these non-apoptotic forms of cell death show significant alterations in gliomas and that important insight into understanding them has already been gained.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
4
|
Kibria F, Das SK, Arefin MS. The role of nicotinamide adenine dinucleotide salvage enzymes in cardioprotection. KARDIOCHIRURGIA I TORAKOCHIRURGIA POLSKA = POLISH JOURNAL OF CARDIO-THORACIC SURGERY 2024; 21:86-95. [PMID: 39055245 PMCID: PMC11267644 DOI: 10.5114/kitp.2024.141145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/07/2024] [Indexed: 07/27/2024]
Abstract
The increasing trend of cardiac diseases is becoming a major threat globally. Cardiac activities are based on integrated action potential through electronic flux changes within intra- and extracellular molecular activities. Nicotinamide adenine dinucleotide (NAD) is a major electron carrier present in almost all living cells and creates gated potential by electron exchange from one chemical to another in terms of oxidation (NAD+) and reduction (NADH) reactions. NAD+ plays an important role directly or indirectly in protecting against various cardiovascular diseases, including heart failure, occlusion, ischemia-reperfusion (IR) injury, arrhythmia, myocardial infarction (MI), rhythmic disorder, and a higher order of cardiovascular complexity. Nicotinamide phosphoribosyl transferase (NAMPT) is well known as a rate-limiting enzyme in this pathway except for de-novo NAD synthesis and directly involved in the cardioprotective activity. There are two more enzymes - nicotinate phosphoribosyl transferase (NAPRT) and nicotinamide riboside kinase (NRK) - which also work as rate-limiting factors in the NAD+ synthesis pathway. This study concentrated on the role of NAMPT, NAPRT, and NRK in cardioprotective activity and prospective cardiac health.
Collapse
Affiliation(s)
- Fazle Kibria
- Department of Pharmaceutical Science, University of South Florida, Tampa, Florida, USA
| | - Sudip Kumar Das
- Department of Otolaryngology and ENT Surgery, Kolkata Medical College and Hospital, Kolkata, India
| | - Md Sahidul Arefin
- Department of Otolaryngology and ENT Surgery, IPGME & R-SSKM Hospital, Kolkata, India
| |
Collapse
|
5
|
Liu F, Zheng A, Li M, Chen Y, Liu X. Study on pharmacokinetics and tissue distribution of deoxypodophyllotoxin and its metabolites in tumour-bearing mice. Xenobiotica 2024; 54:316-321. [PMID: 38913540 DOI: 10.1080/00498254.2024.2370049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
To study the pharmacokinetics of deoxypodophyllotoxin and its metabolites in non-small cell lung cancer (NSCLC) bearing mice.Using the established LC-MS/MS method for simultaneous determination of deoxypodophyllotoxin and its three main metabolites (M1, M2 and M7) in biological samples, the concentrations of deoxypodophyllotoxin and its metabolites in plasma, tumour and major tissues of tumour-bearing mice were investigated after 6.25 and 25 mg/kg intravenous administration of deoxypodophyllotoxin.The exposure results of drug concentration showed that after intravenous injection of 6.25 and 25 mg/kg of DPT into tumour-bearing mice, the AUC ratio of DPT in tumour tissue to DPT in plasma was 4.23 and 3.80, respectively. While, the AUC ratio of metabolite M2 in tumour tissue to M2 in plasma was 0.82 and 0.76, respectively.Deoxypodophyllotoxin had higher affinity with tumour tissues than plasma, while its metabolite M2 had less affinity with tumour tissues than deoxypodophyllotoxin, but the exposure level of M2 in plasma was higher than that of deoxypodophyllotoxin. Deoxypodophyllotoxin was widely distributed in tumour-bearing mice. After intravenous injection of 25 mg/kg deoxypodophyllotoxin, the concentration of deoxypodophyllotoxin in other tissues except liver and muscle was relatively high, especially in lung, fat and reproductive organs.
Collapse
Affiliation(s)
- Fei Liu
- Department of Pharmacy, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, China
| | - Aibin Zheng
- Department of Pharmacy, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, China
| | - Min Li
- Department of Pharmacy, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, China
| | - Yang Chen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Chen X, Wang Z, Li C, Zhang Z, Lu S, Wang X, Liang Q, Zhu X, Pan C, Wang Q, Ji Z, Wang Y, Piao M, Chi G, Ge P. SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via induction of NAD+ depletion-dependent activation of ATF3. Redox Biol 2024; 69:103030. [PMID: 38181705 PMCID: PMC10791567 DOI: 10.1016/j.redox.2024.103030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Ferroptosis is a type of programmed cell death resulting from iron overload-dependent lipid peroxidation, and could be promoted by activating transcription factor 3 (ATF3). SIRT1 is an enzyme accounting for removing acetylated lysine residues from target proteins by consuming NAD+, but its role remains elusive in ferroptosis and activating ATF3. In this study, we found SIRT1 was activated during the process of RSL3-induced glioma cell ferroptosis. Moreover, the glioma cell death was aggravated by SIRT1 activator SRT2183, but suppressed by SIRT inhibitor EX527 or when SIRT1 was silenced with siRNA. These indicated SIRT1 sensitized glioma cells to ferroptosis. Furthermore, we found SIRT1 promoted RSL3-induced expressional upregulation and nuclear translocation of ATF3. Silence of ATF3 with siRNA attenuated RSL3-induced increases of ferrous iron and lipid peroxidation, downregulation of SLC7A11 and GPX4 and depletion of cysteine and GSH. Thus, SIRT1 promoted glioma cell ferroptosis by inducting ATF3 activation. Mechanistically, ATF3 activation was reinforced when RSL3-induced decline of NAD+ was aggravated by FK866 that could inhibit NAD + synthesis via salvage pathway, but suppressed when intracellular NAD+ was maintained at higher level by supplement of exogenous NAD+. Notably, the NAD + decline caused by RSL3 was enhanced when SIRT1 was further activated by SRT2183, but attenuated when SIRT1 activation was inhibited by EX527. These indicated SIRT1 promoted ATF3 activation via consumption of NAD+. Finally, we found RSL3 activated SIRT1 by inducing reactive oxygen species-dependent upregulation of AROS. Together, our study revealed SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via activation of ATF3-dependent inhibition of SLC7A11 and GPX4.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenchuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Qi Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoxi Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chengliang Pan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Qingxuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhilin Ji
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Yubo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Meihua Piao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Guangfan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Li K, Geng Y, Lin B, Xi Z. Molecular mechanisms underlying mitochondrial damage, endoplasmic reticulum stress, and oxidative stress induced by environmental pollutants. Toxicol Res (Camb) 2023; 12:1014-1023. [PMID: 38145103 PMCID: PMC10734609 DOI: 10.1093/toxres/tfad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/09/2023] [Accepted: 09/15/2023] [Indexed: 12/26/2023] Open
Abstract
Mitochondria and endoplasmic reticulum (ER) are essential organelles playing pivotal roles in the regulation of cellular metabolism, energy production, and protein synthesis. In addition, these organelles are important targets susceptible to external stimuli, such as environmental pollutants. Exposure to environmental pollutants can cause the mitochondrial damage, endoplasmic reticulum stress (ERS), and oxidative stress, leading to cellular dysfunction and death. Therefore, understanding the toxic effects and molecular mechanisms of environmental pollution underlying these processes is crucial for developing effective strategies to mitigate the adverse effects of environmental pollutants on human health. In the present study, we summarized and reviewed the toxic effects and molecular mechanisms of mitochondrial damage, ERS, and oxidative stress caused by exposure to environmental pollutants as well as interactions inducing the cell apoptosis and the roles in exposure to environmental pollutants.
Collapse
Affiliation(s)
- Kang Li
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanpei Geng
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bencheng Lin
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|