1
|
Zicari S, Merlino G, Paoli A, Fiascarelli A, Tunici P, Bisignano D, Belli F, Irrissuto C, Talucci S, Cirigliano E, Iannitto ML, Bigioni M, Bressan A, Brzózka K, Ghiaur G, Bellarosa D, Binaschi M. The Dual PIM/FLT3 Inhibitor MEN1703 Combines Synergistically With Gilteritinib in FLT3-ITD-Mutant Acute Myeloid Leukaemia. J Cell Mol Med 2024; 28:e70235. [PMID: 39653657 PMCID: PMC11628189 DOI: 10.1111/jcmm.70235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
MEN1703 is a first-in-class, oral, Type I dual PIM/FMS-like tyrosine kinase 3 inhibitor (FLT3i) investigated in a Phase I/II DIAMOND-01 trial in patients with acute myeloid leukaemia (AML). Gilteritinib is a highly potent and selective oral FLT3i approved for the treatment of relapsed/refractory AML with FLT3 mutations. Although gilteritinib showed strong single-agent activity in FLT3-mutated AML, the development of gilteritinib resistance limits response durability, indicating the importance of novel combination strategies to improve disease outcome. PIM kinases govern FLT3-ITD signalling and increased PIM kinase expression is found in samples from AML patients relapsing on FLT3i. Here, we report that the simultaneous inhibition of PIM and FLT3, through the combination of MEN1703 and gilteritinib, can consistently improve the in vitro/in vivo antitumor activity over the single agents, demonstrating the benefit of this combination. Moreover, we demonstrate that resistance to gilteritinib can be circumvented by combining MEN1703 with gilteritinib. MEN1703 interferes with FLT3 upregulation, Mcl-1 overexpression and PIM kinase signalling, which are all involved in FLT3i resistance. We also show that MEN1703 downregulates stromal cytokines that promote cytokine-mediated resistance of AML blast cells to FLT3 inhibition. These results demonstrate the importance of the combination approach to overcome microenvironment-mediated resistance to FLT3 inhibitors.
Collapse
Affiliation(s)
- Sonia Zicari
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Giuseppe Merlino
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Alessandro Paoli
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | | | - Patrizia Tunici
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Diego Bisignano
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Francesco Belli
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Clelia Irrissuto
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Simone Talucci
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Elena Cirigliano
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | | | - Mario Bigioni
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | | | | | - Gabriel Ghiaur
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Daniela Bellarosa
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| | - Monica Binaschi
- Menarini GroupPreclinical and Translational SciencesPomeziaRomeItaly
| |
Collapse
|
2
|
Su P, Lu Q, Wang Y, Mou Y, Jin W. Targeting MELK in tumor cells and tumor microenvironment: from function and mechanism to therapeutic application. Clin Transl Oncol 2024:10.1007/s12094-024-03664-5. [PMID: 39187643 DOI: 10.1007/s12094-024-03664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Maternal embryonic leucine zipper kinase (MELK), a member of the adenosine monophosphate-activated protein kinase (AMPK) protein family, has been reported to be involved in the regulation of many cellular events. The aberrant expression of MELK is associated with tumorigenesis and malignant progression of various tumors. Moreover, MELK plays an essential role in the regulation of tumor microenvironment (TME), which affects the function of immune cells and the responsiveness to immunotherapy. Currently, small molecule inhibitors targeting MELK have been developed and evaluated in clinical trials. A comprehensive understanding of MELK may provide clues and confidence for subsequent basic research and scientific transformation. In this review, we provide a comprehensive overview of the structural features, molecular biological functions, and critical roles of MELK in tumors and TME, as well as the targeted agents under development for the treatment of tumors and discuss the perspective for MELK-targeted therapies for tumors.
Collapse
Affiliation(s)
- Pengfei Su
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Qiliang Lu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yuanyu Wang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yiping Mou
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Weiwei Jin
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China.
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China.
| |
Collapse
|
3
|
Sun Y, Liu X, He Q, Zhang N, Yan W, Lv X, Wang Y. Discovery of first-in-class PROTACs targeting maternal embryonic leucine zipper kinase (MELK) for the treatment of Burkitt lymphoma. RSC Med Chem 2024; 15:2351-2356. [PMID: 39026635 PMCID: PMC11253867 DOI: 10.1039/d4md00252k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK) is a novel target for the treatment of various kinds of B-cell malignancies. However, the toxicity of inhibitors of MELK has led to clinical failures in cancer treatments. Moreover, inactivation of MELK catalytic domain is insufficient for achieving cancer cell apoptosis. To further confirm the role of MELK in Burkitt lymphoma treatment, we describe herein a structure-guided design of PROTACs targeting MELK. Through design, computer-assisted optimization and SAR studies, we developed the first-in-class MELK-targeting PROTAC MGP-39, which promoted a rapid and potent degradation of MELK in RAMOS cells. Additionally, the newly designed MELK degrader induced significant cell cycle arrest and apoptosis in cancer cells. Notably, compared to MELK inhibitors, MGP-39 has better anti-cancer activity and lower toxicity, indicating the practical role of PROTACs in avoiding the side effects of traditional inhibitors. More importantly, our results show that the use of a PROTAC can be adopted as a general and effective strategy for targeted cancer therapy.
Collapse
Affiliation(s)
- Yonghui Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Xiao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Qiyu He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Naizhen Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Wei Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Xucheng Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Yanjie Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| |
Collapse
|
4
|
Abdel-Aziz AK, Dokla EME, Saadeldin MK. FLT3 inhibitors and novel therapeutic strategies to reverse AML resistance: An updated comprehensive review. Crit Rev Oncol Hematol 2023; 191:104139. [PMID: 37717880 DOI: 10.1016/j.critrevonc.2023.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations occur in almost 30% of acute myeloid leukemia (AML) patients. Despite the initial clinical efficacy of FLT3 inhibitors, many treated AML patients with mutated FLT3 eventually relapse. This review critically discusses the opportunities and challenges of FLT3-targeted therapies and sheds light on their drug interactions as well as potential biomarkers. Furthermore, we focus on the molecular mechanisms underlying the resistance of FLT3 internal tandem duplication (FLT3-ITD) AMLs to FLT3 inhibitors alongside novel therapeutic strategies to reverse resistance. Notably, dynamic heterogeneous patterns of clonal selection and evolution contribute to the resistance of FLT3-ITD AMLs to FLT3 inhibitors. Ongoing preclinical research and clinical trials are actively directed towards devising rational "personalized" or "patient-tailored" combinatorial therapeutic regimens to effectively treat patients with FLT3 mutated AML.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Smart Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mona Kamal Saadeldin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Leahy Drive, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Saygin C, Giordano G, Shimamoto K, Eisfelder B, Thomas-Toth A, Venkataraman G, Ananthanarayanan V, Vincent TL, DuVall A, Patel AA, Chen Y, Tan F, Anthony SP, Chen Y, Shen Y, Odenike O, Teachey DT, Kee BL, LaBelle J, Stock W. Dual Targeting of Apoptotic and Signaling Pathways in T-Lineage Acute Lymphoblastic Leukemia. Clin Cancer Res 2023; 29:3151-3161. [PMID: 37363966 PMCID: PMC10425730 DOI: 10.1158/1078-0432.ccr-23-0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE Relapsed T-acute lymphoblastic leukemia (T-ALL) has limited treatment options. We investigated mechanisms of resistance to BH3 mimetics in T-ALL to develop rational combination strategies. We also looked at the preclinical efficacy of NWP-0476, a novel BCL-2/BCL-xL inhibitor, as single agent and combination therapy in T-ALL. EXPERIMENTAL DESIGN We used BH3 profiling as a predictive tool for BH3 mimetic response in T-ALL. Using isogenic control, venetoclax-resistant (ven-R) and NWP-0476-resistant (NWP-R) cells, phosphokinase array was performed to identify differentially regulated signaling pathways. RESULTS Typical T-ALL cells had increased dependence on BCL-xL, whereas early T-precursor (ETP)-ALL cells had higher BCL-2 dependence for survival. BCL-2/BCL-xL dual inhibitors were effective against both subtypes of T-lineage ALL. A 71-protein human phosphokinase array showed increased LCK activity in ven-R cells, and increased ACK1 activity in ven-R and NWP-R cells. We hypothesized that pre-TCR and ACK1 signaling pathways are drivers of resistance to BCL-2 and BCL-xL inhibition, respectively. First, we silenced LCK gene in T-ALL cell lines, which resulted in increased sensitivity to BCL-2 inhibition. Mechanistically, LCK activated NF-κB pathway and the expression of BCL-xL. Silencing ACK1 gene resulted in increased sensitivity to both BCL-2 and BCL-xL inhibitors. ACK1 signaling upregulated AKT pathway, which inhibited the pro-apoptotic function of BAD. In a T-ALL patient-derived xenograft model, combination of NWP-0476 and dasatinib demonstrated synergy without major organ toxicity. CONCLUSIONS LCK and ACK1 signaling pathways are critical regulators of BH3 mimetic resistance in T-ALL. Combination of BH3 mimetics with tyrosine kinase inhibitors might be effective against relapsed T-ALL.
Collapse
Affiliation(s)
- Caner Saygin
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Giorgia Giordano
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Kathryn Shimamoto
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Bart Eisfelder
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | | | | | | | - Tiffaney L. Vincent
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Adam DuVall
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Anand A. Patel
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Yi Chen
- Newave Pharmaceutical Inc., Pleasanton, California
| | - Fenlai Tan
- Newave Pharmaceutical Inc., Pleasanton, California
| | | | - Yu Chen
- Newave Pharmaceutical Inc., Pleasanton, California
| | - Yue Shen
- Newave Pharmaceutical Inc., Pleasanton, California
| | - Olatoyosi Odenike
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - David T. Teachey
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Barbara L. Kee
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - James LaBelle
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Wendy Stock
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Solana-Altabella A, Ballesta-López O, Megías-Vericat JE, Martínez-Cuadrón D, Montesinos P. Emerging FLT3 inhibitors for the treatment of acute myeloid leukemia. Expert Opin Emerg Drugs 2022; 27:1-18. [DOI: 10.1080/14728214.2021.2009800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Antonio Solana-Altabella
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia– Spain
- Instituto de Investigación Sanitaria La Fe (IISLAFE). Av. Fernando Abril Martorell, Valencia–Spain
| | - Octavio Ballesta-López
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia– Spain
- Instituto de Investigación Sanitaria La Fe (IISLAFE). Av. Fernando Abril Martorell, Valencia–Spain
| | - Juan Eduardo Megías-Vericat
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia– Spain
| | - David Martínez-Cuadrón
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia– Spain
- Instituto de Investigación Sanitaria La Fe (IISLAFE). Av. Fernando Abril Martorell, Valencia–Spain
| | - Pau Montesinos
- Instituto de Investigación Sanitaria La Fe (IISLAFE). Av. Fernando Abril Martorell, Valencia–Spain
- Servicio de Hematología y Hemoterapia. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia-Spain
| |
Collapse
|
7
|
Chen B, Chen Y, Rai KR, Wang X, Liu S, Li Y, Xiao M, Ma Y, Wang G, Guo G, Huang S, Chen JL. Deficiency of eIF4B Increases Mouse Mortality and Impairs Antiviral Immunity. Front Immunol 2021; 12:723885. [PMID: 34566982 PMCID: PMC8461113 DOI: 10.3389/fimmu.2021.723885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic translation initiation factor 4B (eIF4B) plays an important role in mRNA translation initiation, cell survival and proliferation in vitro. However, its function in vivo is poorly understood. Here, we identified that eIF4B knockout (KO) in mice led to embryonic lethality, and the embryos displayed severe liver damage. Conditional KO (CKO) of eIF4B in adulthood profoundly increased the mortality of mice, characterized by severe pathological changes in several organs and reduced number of peripheral blood lymphocytes. Strikingly, eIF4B CKO mice were highly susceptible to viral infection with severe pulmonary inflammation. Selective deletion of eIF4B in lung epithelium also markedly promoted replication of influenza A virus (IAV) in the lung of infected animals. Furthermore, we observed that eIF4B deficiency significantly enhanced the expression of several important inflammation-associated factors and chemokines, including serum amyloid A1 (Saa1), Marco, Cxcr1, Ccl6, Ccl8, Ccl20, Cxcl2, Cxcl17 that are implicated in recruitment and activation of neutrophiles and macrophages. Moreover, the eIF4B-deficient mice exhibited impaired natural killer (NK) cell-mediated cytotoxicity during the IAV infection. Collectively, the results reveal that eIF4B is essential for mouse survival and host antiviral responses, and establish previously uncharacterized roles for eIF4B in regulating normal animal development and antiviral immunity in vivo.
Collapse
Affiliation(s)
- Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kul Raj Rai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingying Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Meng Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Guoqing Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Almatani MF, Ali A, Onyemaechi S, Zhao Y, Gutierrez L, Vaikari VP, Alachkar H. Strategies targeting FLT3 beyond the kinase inhibitors. Pharmacol Ther 2021; 225:107844. [PMID: 33811956 PMCID: PMC11490306 DOI: 10.1016/j.pharmthera.2021.107844] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by clonal expansion and differentiation arrest of the myeloid progenitor cells, which leads to the accumulation of immature cells called blasts in the bone marrow and peripheral blood. Mutations in the receptor tyrosine kinase FLT3 occur in 30% of normal karyotype patients with AML and are associated with a higher incidence of relapse and worse survival. Targeted therapies against FLT3 mutations using small-molecule FLT3 tyrosine kinase inhibitors (TKIs) have long been investigated, with some showing favorable clinical outcomes. However, major setbacks such as limited clinical efficacy and the high risk of acquired resistance remain unresolved. FLT3 signaling, mutations, and FLT3 inhibitors are topics that have been extensively reviewed in recent years. Strategies to target FLT3 beyond the small molecule kinase inhibitors are expanding, nevertheless they are not receiving enough attention. These modalities include antibody-based FLT3 targeted therapies, immune cells mediated targeting strategies, and approaches targeting downstream signaling pathways and FLT3 translation. Here, we review the most recent advances and the challenges associated with the development of therapeutic modalities targeting FLT3 beyond the kinase inhibitors.
Collapse
Affiliation(s)
- Mohammed F Almatani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Atham Ali
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Sandra Onyemaechi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Yang Zhao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Lucas Gutierrez
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Vijaya Pooja Vaikari
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Houda Alachkar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|