1
|
Yabushita T, Goyama S. Nucleic acid metabolism: the key therapeutic target for myeloid tumors. Exp Hematol 2024; 142:104693. [PMID: 39647658 DOI: 10.1016/j.exphem.2024.104693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Nucleic acid analogs, including cytarabine, decitabine, and azacitidine, have significantly advanced therapeutic approaches for myeloid tumors over the past five decades. Nucleic acid metabolism is a crucial pathway driving myeloid tumorigenesis, with emerging evidence indicating that myeloid tumors are particularly dependent on the de novo nucleotide synthesis pathway, underscoring its potential as a therapeutic target. This review provides a comprehensive overview of nucleic acid metabolism, focusing on de novo nucleotide synthesis. We then described the range of clinically utilized agents targeting nucleic acid metabolism and discussed our recent findings on the nonepigenetic actions of decitabine, as well as the therapeutic effects of inosine monophosphate dehydrogenase (IMPDH) inhibitors in the treatment of myeloid tumors.
Collapse
Affiliation(s)
- Tomohiro Yabushita
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan.
| |
Collapse
|
2
|
He H, Wen X, Zheng H. Efficacy and safety of venetoclax-based combination therapy for previously untreated acute myeloid leukemia: a meta-analysis. Hematology 2024; 29:2343604. [PMID: 38703055 DOI: 10.1080/16078454.2024.2343604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/24/2024] [Indexed: 05/06/2024] Open
Abstract
PURPOSE To explore the efficacy and safety of venetoclax-based combination therapy for older patients with newly diagnosed acute myeloid leukemia (AML). METHODS We performed a systematic review and meta-analysis of clinical trials comparing venetoclax plus hypomethylating agents (HMAs) or low-dose cytarabine (LDAC) with mono-HMAs or LDAC. The random or fixed effects model was applied to the studies based on heterogeneity. Dichotomous data were summarized using the risk ratio (RR) and 95% confidence interval (CI). Continuous variable data were reported as weighted mean differences (WMDs). RESULTS Nine studies, including a total of 1232 patients, were included in this meta-analysis. Thec complete remission (CR)/complete remission with incomplete hematological recovery (CRi) rate of the venetoclax (Ven) + azacytidine (Aza) group was significantly greater than that of the Aza monotherapy group (RR: 2.42; 95% CI: 1.85-3.15; P < 0.001). Similarly, the CR/CRi rate of the Ven + LDAC group was also significantly greater than that of the LDAC monotherapy group (RR: 2.57; 95% CI: 1.58-4.17; P = 0.00). The same results were observed for OS among these groups. However, the incidence of febrile neutropenia was greater in the Ven + Aza group than in the Ven + Decitabine (Dec) or monotherapy Aza group (RR: 0.69; 95% CI: 0.53-0.90; P = 0.006 and RR: 2.19; 95% CI: 1.58-3.03; P < 0.001, respectively). In addition, the Ven + LDAC group had significantly greater rates of constipation, diarrhea, nausea, and vomiting than the LDAC monotherapy group, with RRs and CIs of 0.61 (95% CI 0.44-0.83, P = 0.002), 1.81 (95% CI 1.22-2.67, P = 0.003), 1.39 (95% CI 1.06-1.82, P = 0.016), and 1.80 (95% CI 1.19-2.72, P = 0.005), respectively. CONCLUSION Venetoclax combined with azacitidine, decitabine, or LDAC significantly improved the CR/CRi and OS of patients with previously untreated AML. However, venetoclax plus azacitidine or LDAC was more likely to lead to increased febrile neutropenia and gastrointestinal toxicity.
Collapse
Affiliation(s)
- Hongbo He
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, People's Republic of China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University)
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, People's Republic of China
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Xiaojia Wen
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, People's Republic of China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University)
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, People's Republic of China
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Huyong Zheng
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, People's Republic of China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University)
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, People's Republic of China
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| |
Collapse
|
3
|
Wen X, Lu Y, Li Y, Qi P, Wu Y, Yu J, Zhang R, Huang Q, Huang P, Hou B, Yang J, Liu M, Liu H, Li H, Sun N, Zhang Y, Zhang Y, Lin W, Fan J, Liu Y, Zheng H. Remission rate, toxicity and pharmacokinetics of venetoclax-based induction regimens in untreated pediatric acute myeloid leukemia. NPJ Precis Oncol 2024; 8:248. [PMID: 39488621 PMCID: PMC11531506 DOI: 10.1038/s41698-024-00740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024] Open
Abstract
The efficacy and safety of venetoclax in newly diagnosed pediatric acute myeloid leukemia (AML) are not well-established as they are in adults. Children newly diagnosed with AML were recommended for induction therapy with venetoclax and chemotherapy or hypomethylating agents (HMAs) as per for the ChiCTR1900027146 trial. Venetoclax was administered at a consistent dose of 200 mg/m2/day for 28 days, with adjustments when used concurrently with azoles. The study measured both the remission rates and the safety assessments of venetoclax. We enrolled 45 newly diagnosed pediatric patients with AML. The complete remission rates were 94.7% in the low/middle-risk group and 80.8% in the high-risk group; MRD-negative rates were 52.6% and 38.5% in the low/middle-risk group and high-risk group, respectively. Venetoclax based combination therapy was well tolerated by the majority of patients. The median duration of venetoclax dosing was 18 days (range 9-28), with hematological toxicity and infection being the most common adverse events. Venetoclax-based induction regimens demonstrated a high response rate and safety profile in newly diagnosed pediatric AML cases. This underscores the significance of venetoclax as a viable treatment option for untreated AML, extending beyond its role as salvage therapy for refractory/relapsed AML.
Collapse
Affiliation(s)
- Xiaojia Wen
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Yu Lu
- Hematology Oncology Center, Baoding Key Laboratory of Precision Medicine for Pediatric Hematology Oncology; Baoding Hospital of Beijing Children's Hospital, Capital Medical University, National Center for Children's Health in Baoding, Beijing, China
| | - Yanming Li
- Department of pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Peijing Qi
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Ying Wu
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Jiaole Yu
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Ruidong Zhang
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Qian Huang
- Hematology Oncology Center, Baoding Key Laboratory of Precision Medicine for Pediatric Hematology Oncology; Baoding Hospital of Beijing Children's Hospital, Capital Medical University, National Center for Children's Health in Baoding, Beijing, China
| | - Pengli Huang
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Bei Hou
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Jie Yang
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Mengjia Liu
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Huiqing Liu
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Hongqiao Li
- Hematology Oncology Center, Baoding Key Laboratory of Precision Medicine for Pediatric Hematology Oncology; Baoding Hospital of Beijing Children's Hospital, Capital Medical University, National Center for Children's Health in Baoding, Beijing, China
| | - Ning Sun
- Department of pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Yanni Zhang
- Department of pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Zhang
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Wei Lin
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Jia Fan
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China
| | - Yan Liu
- Hematology Oncology Center, Baoding Key Laboratory of Precision Medicine for Pediatric Hematology Oncology; Baoding Hospital of Beijing Children's Hospital, Capital Medical University, National Center for Children's Health in Baoding, Beijing, China.
| | - Huyong Zheng
- Leukemia Department, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, China.
| |
Collapse
|
4
|
Urrutia S, Takahashi K. Precision medicine in AML: overcoming resistance. Int J Hematol 2024; 120:439-454. [PMID: 39085680 DOI: 10.1007/s12185-024-03827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The development of molecularly targeted therapy for acute myeloid leukemia is progressing at an accelerated pace. Therapies targeting FLT3, IDH1, IDH2, and BCL2 have been approved in the last 5 years. As we exploit these biological vulnerabilities, various mechanisms of resistance arise. Emergence of competing clones with different genetic drivers and acquisition of constitutional mutations in the target renders therapies ineffective, and enzymatic isoform changes can lead to reappearance of the disease phenotype. Understanding the timing and circumstances of resistance origination will allow clinicians to develop combinatorial and sequential therapeutic approaches to deepen responses and improve survival. The objective of this review is to illustrate the biological underpinnings of each therapy and the landscape of resistance mechanisms and discuss strategies to overcome on- and off-target resistance.
Collapse
Affiliation(s)
- Samuel Urrutia
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, 4SCR6.2085, Houston, TX, 77030-4009, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
5
|
Fowler-Shorten DJ, Hellmich C, Markham M, Bowles KM, Rushworth SA. BCL-2 inhibition in haematological malignancies: Clinical application and complications. Blood Rev 2024; 65:101195. [PMID: 38523032 DOI: 10.1016/j.blre.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
B-cell lymphoma-2 (BCL-2) family proteins are fundamental regulators of the intrinsic apoptotic pathway which modulate cellular fate. In many haematological malignancies, overexpression of anti-apoptotic factors (BCL-2, BCL-XL and MCL-1) circumvent apoptosis. To address this cancer hallmark, a concerted effort has been made to induce apoptosis by inhibiting BCL-2 family proteins. A series of highly selective BCL-2 homology 3 (BH3) domain mimetics are in clinical use and in ongoing clinical trials for acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), and multiple myeloma (MM). These inhibitors serve as promising candidates, both as single agents or in combination therapy to improve patient outcomes. In other diseases such as follicular lymphoma, efficacy has been notably limited. There are also clinical problems with BCL-2 family inhibition, including drug resistance, disease relapse, tumour lysis syndrome, and clinically relevant cytopenias. Here, we provide a balanced view on both the clinical benefits of BCL-2 inhibition as well as the associated challenges.
Collapse
Affiliation(s)
- Dominic J Fowler-Shorten
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Charlotte Hellmich
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK; Department of Haematology, Norfolk and Norwich University Hospital NHS Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Matthew Markham
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Kristian M Bowles
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK; Department of Haematology, Norfolk and Norwich University Hospital NHS Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Stuart A Rushworth
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
6
|
Di Pasqua LG, Abdallah MM, Feletti F, Vairetti M, Ferrigno A. Venetoclax-Related Neutropenia in Leukemic Patients: A Comprehensive Review of the Underlying Causes, Risk Factors, and Management. Pharmaceuticals (Basel) 2024; 17:484. [PMID: 38675444 PMCID: PMC11054081 DOI: 10.3390/ph17040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Venetoclax is a Bcl-2 homology domain 3 (BH3) mimetic currently approved for the treatment of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) that has proven to be highly effective in reinstating apoptosis in leukemic cells through the highly selective inhibition of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2). Clinically, venetoclax has provided lasting remissions through the inhibition of CLL and AML blasts. However, this activity has often come at the cost of grade III/IV neutropenia due to hematopoietic cells' dependence on Bcl-2 for survival. As life-threatening infections are an important complication in these patients, an effective management of neutropenia is indispensable to maximize patient outcomes. While there is general consensus over dose reduction and scheduling modifications to minimize the risk of neutropenia, the impact of these modifications on survival is uncertain. Moreover, guidelines do not yet adequately account for patient-specific and disease-specific risk factors that may predict toxicity, or the role combination treatment plays in exacerbating neutropenia. The objective of this review is to discuss the venetoclax-induced mechanism of hematological toxicity, the potential predictive risk factors that affect patient vulnerability to neutropenia, and the current consensus on practices for management of neutropenia.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
7
|
Zhu J, Fan J, Xie T, Zhao H, Lu R, Zhang Y, Li Y, Xie X, Wan D, Jiang Z, He F, Guo R. Venetoclax combined chemotherapy versus chemotherapy alone for acute myeloid leukemia: a systematic review and meta-analysis. Front Oncol 2024; 14:1361988. [PMID: 38595818 PMCID: PMC11002170 DOI: 10.3389/fonc.2024.1361988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Objective To compare the efficacy and safety of venetoclax (VEN) in combination with chemotherapy (chemo) versus chemo alone in the treatment of acute myeloid leukemia (AML). Method To compare the efficacy and/or safety of VEN+chemo versus chemotherapy alone for AML, PubMed, Embase, Web of Science, and the Cochrane Library were used to searching up to June 2023. Comparisons included complete remission (CR), CR with incomplete hematologic recovery (CRi), morphologic leukemia-free state (MLFS), overall response rate (ORR), and adverse events (AEs). Result A total of 9 articles were included, including 3124 patients. The baseline characteristics between two patient groups were similar. The combined analysis showed that compared with the group receiving chemo alone, the VEN+chemo group exhibited higher rates of CR, CRi, MLFS and ORR. Additionally, the VEN+chemo group had longer event-free survival (EFS) and overall survival (OS) durations. The incidence rates of AEs and serious AEs (SAEs) were similar between the two groups, but the early 30-day mortality rate was lower in the VEN+chemo group than in the chemo alone group. Conclusion The VEN+chemo therapy demonstrates significant efficacy and safety profile in AML patients. However, more prospective studies are needed in the future to provide more accurate and robust evidence for treatment selection in patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023439288, identifier CRD42023439288.
Collapse
Affiliation(s)
- Jingkui Zhu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jixin Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tiantian Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiqiu Zhao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runqing Lu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei He
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Extermann M, Artz A, Rebollo MA, Klepin HD, Krug U, Loh KP, Mims AS, Neuendorff N, Santini V, Stauder R, Vey N. Treating acute myelogenous leukemia in patients aged 70 and above: Recommendations from the International Society of Geriatric Oncology (SIOG). J Geriatr Oncol 2024; 15:101626. [PMID: 37741771 DOI: 10.1016/j.jgo.2023.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
Acute myeloid leukemia (AML) treatment is challenging in older patients. There is a lack of evidence-based recommendations for older patients ≥70, a group largely underrepresented in clinical trials. With new treatment options being available in recent years, recommendations are needed for these patients. As such the International Society of Geriatric Oncology (SIOG) assembled a task force to review the evidence specific to treatment and outcomes in this population of patients ≥70 years. Six questions were selected by the expert panel in domains of (1) baseline assessment, (2) frontline therapy, (3) post-remission therapy, (4) treatment for relapse, (5) targeted therapies, and (6) patient reported outcome/function and enhancing treatment tolerance. Information from current literature was extracted, combining evidence from systematic reviews/meta-analyses, decision models, individual trials targeting these patients, and subgroup data. Accordingly, recommendations were generated using a GRADE approach upon reviewing current evidence by consensus of the whole panel. It is our firm recommendation and hope that direct evidence should be generated for patients aged ≥70 as a distinct group in high need of improvement of their survival outcomes. Such studies should integrate information from a geriatric assessment to optimize external validity and outcomes.
Collapse
Affiliation(s)
- Martine Extermann
- Senior Adult Oncology Program, Moffitt Cancer Center, Tampa, FL, USA.
| | - Andrew Artz
- Division of Leukemia, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Maite Antonio Rebollo
- Institut Català d'Oncologia, Oncohematogeriatrics Unit, L'Hospitalet de Llobregat, Spain
| | - Heidi D Klepin
- Wake Forest University School of Medicine, Department of Internal Medicine, Section on Hematology and Oncology, Winston-Salem, NC, USA
| | - Utz Krug
- Klinikum Leverkusen, Department of Medicine 3, Leverkusen, Germany
| | - Kah Poh Loh
- University of Rochester Medical Center, Department of Medicine, Division of Hematology and Oncology, James P. Wilmot Cancer Institute, Rochester, NY, USA
| | - Alice S Mims
- The Ohio State University Wexner Medical Center, Department of Internal Medicine, Columbus, OH, USA
| | - Nina Neuendorff
- University Hospital Essen, Department of Hematology and Stem-Cell Transplantation, Essen, Germany
| | - Valeria Santini
- MDS Unit, AOUC, Hematology, University of Florence, Florence, Italy
| | - Reinhard Stauder
- Department of Internal Medicine V (Hematology Oncology), Innsbruck Medical University, Innsbruck, Austria
| | - Norbert Vey
- Aix-Marseille University, Institut Paoli-Calmettes, Hematology Department, Marseille, France
| |
Collapse
|
9
|
Leroy H, Gadaud N, Bérard E, Klein E, Luquet I, Vial J, Rieu J, Lechevalier N, Tavitian S, Leguay T, Largeaud L, Bidet A, Delabesse E, Sarry A, de Grande A, Récher C, Pigneux A, Bertoli S, Dumas P. Dismal outcome of refractory or relapsing patients with myelodysplasia-related acute myeloid leukemia partially alleviated by intensive chemotherapy. Cancer Med 2024; 13:e7003. [PMID: 38400682 PMCID: PMC10891460 DOI: 10.1002/cam4.7003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) with myelodysplasia-related characteristics is a heterogeneous subset of AML that has been challenged throughout the history of myeloid malignancies classifications, considered to have similar outcomes as intermediate- or adverse-risk AML depending on the subgroup. However, little is known about the fate of these patients in refractory or relapsed situation (R/R) after first line therapy. METHODS A large series of R/R AML patients, recorded in the French DATAML registry, have received either intensive chemotherapy (ICT), azacitidine (AZA) as single agent, or best supportive care (BSC). A cohort of 183 patients (median age 63-year-old) with what was called at the time AML-MRC has been explored, and data are reported here. RESULTS Patient status was refractory for 93, while 90 had relapsed. Respectively, 88, 34, and 61 were included in the three treatment arms. The median OS of the whole cohort was 4.2 months (95%CI: 3.1-5.6) with a mean 1-year overall survival of 24% ± 3.2%. There was no significant survival difference between refractory and relapsed patients. The BSC group had overall a significantly worse outcome (p = 0.0001), and this remained true in both refractory (p = 0.01) and relapsed (p = 0.002) patients. Similar survivals were observed in both groups comparing ICT and AZA. CONCLUSIONS These data, reporting about an ill-explored population, indicate the poor prognosis of this condition where both ICT and AZA can be proposed. The latter, which was demonstrated here to be a feasible option, should be added to new targeted therapies.
Collapse
Affiliation(s)
- Harmony Leroy
- CHU Bordeaux, Service d'Hématologie Clinique et de Thérapie CellulaireBordeauxFrance
| | - Noémie Gadaud
- Service d'HématologieCentre Hospitalier Universitaire de ToulouseInstitut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | - Emilie Bérard
- Centre Hospitalier Universitaire de Toulouse, Service d'Epidémiologie, CERPOP, Inserm, Université Toulouse III Paul SabatierToulouseFrance
| | - Emilie Klein
- CHU Bordeaux, Laboratoire d'Hématologie BiologiqueBordeauxFrance
| | - Isabelle Luquet
- Laboratoire d'HématologieCentre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | | | - Jean‐Baptiste Rieu
- Laboratoire d'HématologieCentre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | | | - Suzanne Tavitian
- Service d'HématologieCentre Hospitalier Universitaire de ToulouseInstitut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | - Thibaut Leguay
- CHU Bordeaux, Service d'Hématologie Clinique et de Thérapie CellulaireBordeauxFrance
| | - Laetitia Largeaud
- Laboratoire d'HématologieCentre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | - Audrey Bidet
- CHU Bordeaux, Laboratoire d'Hématologie BiologiqueBordeauxFrance
| | - Eric Delabesse
- Laboratoire d'HématologieCentre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | - Audrey Sarry
- Service d'HématologieCentre Hospitalier Universitaire de ToulouseInstitut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | | | - Christian Récher
- Service d'HématologieCentre Hospitalier Universitaire de ToulouseInstitut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | - Arnaud Pigneux
- CHU Bordeaux, Service d'Hématologie Clinique et de Thérapie CellulaireBordeauxFrance
- Université de Bordeaux, Bordeaux, Institut National de la Santé et de la Recherche MédicaleBordeauxFrance
| | - Sarah Bertoli
- Service d'HématologieCentre Hospitalier Universitaire de ToulouseInstitut Universitaire du Cancer de Toulouse‐OncopoleToulouseFrance
| | - Pierre‐Yves Dumas
- CHU Bordeaux, Service d'Hématologie Clinique et de Thérapie CellulaireBordeauxFrance
- Université de Bordeaux, Bordeaux, Institut National de la Santé et de la Recherche MédicaleBordeauxFrance
| |
Collapse
|
10
|
Extermann M, Al-Jumayli M, Sam C, Kish JA. Oncogeriatric Developments. Gerontology 2023; 69:1045-1055. [PMID: 37321185 DOI: 10.1159/000531559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Cancer is a disease of aging and is rapidly becoming the number one cause of mortality in older people. Over their lifetime, one in two men and one in three women will develop a cancer, with half of the risk being beyond the age of seventy. Therefore, cancer is a problem frequently encountered by geriatricians. In this article, we review a few recent progresses that will be of interest to the geriatric community. First, we now have robust evidence that a comprehensive geriatric assessment and management change outcomes in older cancer patients, notably allowing decreased treatment toxicity, better treatment completion, and increased functional outcomes. In gastrointestinal cancers and breast cancer, several recent studies have addressed when treatment intensity can be decreased, and when it cannot. New treatments for acute myeloid leukemia are finally beginning to improve outcomes for older patients and such patients should be referred to oncologists for management. In prostate cancer, new imaging techniques (e.g., PSMA scan) and treatment options can allow better treatment targeting and spare some hormonal and chemotherapy toxicity. Finally, we review recent public policy efforts to address the epidemiologic wave of cancer in older patients on a global scale.
Collapse
Affiliation(s)
- Martine Extermann
- Senior Adult Oncology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Christine Sam
- Senior Adult Oncology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Julie A Kish
- Senior Adult Oncology Program, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
11
|
Wei AH, Roberts AW. BCL2 Inhibition: A New Paradigm for the Treatment of AML and Beyond. Hemasphere 2023; 7:e912. [PMID: 37304937 PMCID: PMC10256369 DOI: 10.1097/hs9.0000000000000912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Altering the natural history of acute myeloid leukemia (AML) in unfit and older patients has proved a highly challenging hurdle, despite several decades of concerted clinical trial effort. The arrival of venetoclax (VEN) to the clinical stage represents the most important therapeutic advance to date for older patients with AML. In this review, we will explain how and why VEN works, summarize its remarkable pathway to regulatory approval, and highlight the key milestones that have been important for its successful development in AML. We also provide perspectives on some of the challenges associated with using VEN in the clinic, emerging knowledge regarding mechanisms of treatment failure, and current clinical research directions likely to shape how this drug and others in this new class of anticancer agents are used in the future.
Collapse
Affiliation(s)
- Andrew H Wei
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Andrew W Roberts
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Lai C, Bhansali RS, Kuo EJ, Mannis G, Lin RJ. Older Adults With Newly Diagnosed AML: Hot Topics for the Practicing Clinician. Am Soc Clin Oncol Educ Book 2023; 43:e390018. [PMID: 37155946 DOI: 10.1200/edbk_390018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Over the past decade, our understanding of AML pathogenesis and pathophysiology has improved significantly with mutational profiling. This has led to translational advances in therapeutic options, as there have been 10 new US Food and Drug Administration (FDA) approvals for AML therapies since 2017, half of which target specific driver mutations in FLT3, IDH1, or IDH2. These new agents have expanded the therapeutic armamentarium for AML, particularly for patients who are considered ineligible for intensive chemotherapy with anthracycline- and cytarabine-containing regimens. These new treatment options are relevant because the median age at diagnosis is 68 years, and outcomes for patients older than 60 years have historically been dismal. However, the optimal approach to incorporating novel agents into frontline regimens remains a clinical challenge, particularly with regard to sequencing of therapies, considering the role of allogeneic hematopoietic stem cell transplantation and managing toxicities.
Collapse
Affiliation(s)
- Catherine Lai
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Rahul S Bhansali
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Eric J Kuo
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - Gabriel Mannis
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - Richard J Lin
- Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
13
|
El-Cheikh J, Bidaoui G, Saleh M, Moukalled N, Abou Dalle I, Bazarbachi A. Venetoclax: A New Partner in the Novel Treatment Era for Acute Myeloid Leukemia and Myelodysplastic Syndrome. Clin Hematol Int 2023:10.1007/s44228-023-00041-x. [PMID: 37071328 DOI: 10.1007/s44228-023-00041-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS) are two closely related blood cancers that are more frequent in older adults. AML is the most common type of adult acute leukemia, and MDS is characterized by ineffective blood cell production and abnormalities in the bone marrow and blood. Both can be resistant to treatment, often due to dysfunction in the process of apoptosis, the body's natural mechanism for cell death. Venetoclax, an orally-administered medication that selectively targets the BCL-2 protein, has shown promise in enhancing treatment sensitivity in some hematological malignancies by reducing the apoptotic threshold. This review aims to evaluate the effectiveness of venetoclax in treating AML and MDS, as well as potential mechanisms of resistance to the medication. METHODS A literature search was conducted utilizing PUBMED to capture all relevant research articles on the use of venetoclax as a therapy for both diseases. The MeSH terms "acute myeloid leukemia", "myelodysplastic syndrome" and "venetoclax" were searched. Furthermore, Clinicaltrials.gov was accessed to ensure the inclusion of all ongoing clinical trials. RESULTS Although Venetoclax showed modest results as a single-agent therapy in AML, venetoclax-based combination therapies? mainly with hypomethylating agents or low-dose cytarabine? yielded significantly positive results. Preliminary results oN the use of venetoclax-based combination therapy with HMA, mainly azacitidine, in unfit high-risk MDS also yielded optimistic results. Identification of mutations for which various drugs have been approved has spurred active investigation of venetoclax in combination trials. CONCLUSION Venetoclax-based combination therapies have been shown to induce rapid responses and increase overall survival in AML patients unfit for intensive chemotherapy. These therapies are also yielding positive preliminary results in high-risk MDS patients in phase I trials. Resistance to venetoclax and drug-related toxicity are two main obstacles that need to be overcome to reap the full benefits of this therapy.
Collapse
Affiliation(s)
- Jean El-Cheikh
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
- Department of Internal Medicine, Medical Center, Bone Marrow Transplantation Program, American University of Beirut, P.O. Box 113-6044, Beirut, Lebanon.
| | - Ghassan Bidaoui
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mustafa Saleh
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Nour Moukalled
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Iman Abou Dalle
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Bazarbachi
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
14
|
Hoff FW, Patel PA, Belli AJ, Hansen E, Foss H, Schulte M, Wang CK, Madanat YF. Real-world outcomes of frontline venetoclax-based therapy in older adults with acute myeloid leukemia: an analysis utilizing EHR data. Leuk Lymphoma 2023:1-6. [PMID: 37052347 DOI: 10.1080/10428194.2023.2197090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Venetoclax (VEN) in combination with hypomethylating agents (HMA) or low-dose cytarabine has become the standard of care for patients with acute myeloid leukemia (AML) who are ineligible to receive intensive induction chemotherapy. Clinical trials are performed in a controlled setting that can be difficult to emulate in the real world. We sought to investigate outcomes of patients treated with VEN-based therapy in the real world. Patients with an age of ≥65 years who received frontline VEN-based therapy were identified using the COTA database (n = 112). The majority of patients (91%) were treated in the community setting and had adverse-risk AML (63%). The real-world overall response rate (rwORR) was 55% with a median real-world overall survival (rwOS) of 13 months after VEN/HMA. The rwORR was lower and median rwOS was shorter than those reported in the VIALE-A trial, underscoring the importance of studying novel therapies using real-world data.
Collapse
Affiliation(s)
- Fieke W Hoff
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX, USA
| | - Prapti A Patel
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX, USA
| | | | | | | | | | | | - Yazan F Madanat
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
15
|
Bhansali RS, Pratz KW, Lai C. Recent advances in targeted therapies in acute myeloid leukemia. J Hematol Oncol 2023; 16:29. [PMID: 36966300 PMCID: PMC10039574 DOI: 10.1186/s13045-023-01424-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. While survival for younger patients over the last several decades has improved nearly sixfold with the optimization of intensive induction chemotherapy and allogeneic stem cell transplantation (alloHSCT), this effect has been largely mitigated in older and less fit patients as well as those with adverse-risk disease characteristics. However, the last 10 years has been marked by major advances in the molecular profiling of AML characterized by a deeper understanding of disease pathobiology and therapeutic vulnerabilities. In this regard, the classification of AML subtypes has recently evolved from a morphologic to a molecular and genetic basis, reflected by recent updates from the World Health Organization and the new International Consensus Classification system. After years of stagnation in new drug approvals for AML, there has been a rapid expansion of the armamentarium against this disease since 2017. Low-intensity induction therapy with hypomethylating agents and venetoclax has substantially improved outcomes, including in those previously considered to have a poor prognosis. Furthermore, targeted oral therapies against driver mutations in AML have been added to the repertoire. But with an accelerated increase in treatment options, several questions arise such as how to best sequence therapy, how to combine therapies, and if there is a role for maintenance therapy in those who achieve remission and cannot undergo alloHSCT. Moreover, certain subtypes of AML, such as those with TP53 mutations, still have dismal outcomes despite these recent advances, underscoring an ongoing unmet need and opportunity for translational advances. In this review, we will discuss recent updates in the classification and risk stratification of AML, explore the literature regarding low-intensity and novel oral combination therapies, and briefly highlight investigative agents currently in early clinical development for high-risk disease subtypes.
Collapse
Affiliation(s)
- Rahul S Bhansali
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, South Pavilion, 12th Floor, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Keith W Pratz
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, South Pavilion, 12th Floor, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Catherine Lai
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, South Pavilion, 12th Floor, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
17
|
Krawiec K, Strzałka P, Czemerska M, Wiśnik A, Zawlik I, Wierzbowska A, Pluta A. Targeting Apoptosis in AML: Where Do We Stand? Cancers (Basel) 2022; 14:cancers14204995. [PMID: 36291779 PMCID: PMC9600036 DOI: 10.3390/cancers14204995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary In patients with acute myeloid leukemia (AML), genetic mutations can cause cells to evade regulated cell death (RCD), resulting in excessive cell proliferation. The best-known form of RCD is apoptosis, which prevents the emergence of cancer cells; disturbances in this process are an important factor in the development and progression of AML. Clearly, it is essential to understand the mechanisms of apoptosis to establish a personalized, patient-specific approach in AML therapy. Therefore, this paper comprehensively reviews the current range of AML treatment approaches related to apoptosis and highlights other promising concepts such as neddylation. Abstract More than 97% of patients with acute myeloid leukemia (AML) demonstrate genetic mutations leading to excessive proliferation combined with the evasion of regulated cell death (RCD). The most prominent and well-defined form of RCD is apoptosis, which serves as a defense mechanism against the emergence of cancer cells. Apoptosis is regulated in part by the BCL-2 family of pro- and anti-apoptotic proteins, whose balance can significantly determine cell survival. Apoptosis evasion plays a key role in tumorigenesis and drug resistance, and thus in the development and progression of AML. Research on the structural and biochemical aspects of apoptosis proteins and their regulators offers promise for new classes of targeted therapies and strategies for therapeutic intervention. This review provides a comprehensive overview of current AML treatment options related to the mechanism of apoptosis, particularly its mitochondrial pathway, and other promising concepts such as neddylation. It pays particular attention to clinically-relevant aspects of current and future AML treatment approaches, highlighting the molecular basis of individual therapies.
Collapse
Affiliation(s)
- Kinga Krawiec
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Piotr Strzałka
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Magdalena Czemerska
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Aneta Wiśnik
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Izabela Zawlik
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Agnieszka Pluta
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
- Correspondence:
| |
Collapse
|
18
|
Targeting EZH2 Promotes Chemosensitivity of BCL-2 Inhibitor through Suppressing PI3K and c-KIT Signaling in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms231911393. [PMID: 36232694 PMCID: PMC9569949 DOI: 10.3390/ijms231911393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological malignancies with high heterogeneity, characterized by a differentiating block at the early progenitor stage. The selective BCL-2 inhibitor, Venetoclax (Ven), has shown exciting clinical results in a certain group of AML patients. However, Ven alone is insufficient to reach an enduringly complete response, which leads to the concern of Ven resistance. Alternative combined therapies with Ven are demanded in AML. Here, we reported the synergistic effect and molecular mechanism of the enhancer of zeste homolog 2 (EZH2) inhibitor DZNeP with Ven in AML cells. Results showed that the combination of DZNeP with Ven significantly induces cell proliferation arrest compared to single-drug control in AML cells and primary samples, and CalcuSyn analysis showed their significant synergy. The combination also significantly promotes apoptosis and increases the expression of pro-apoptotic proteins. The whole transcriptome analysis showed that phosphoinositide-3-kinase-interacting protein1 (PIK3IP1), the PI3K/AKT/mTOR signaling suppressor, is upregulated upon DZNeP treatment. Moreover, EZH2 is upregulated but PIK3IP1 is downregulated in 88 newly diagnosed AML cohorts compared to 70 healthy controls, and a higher expression of EZH2 is associated with poor outcomes in AML patients. Particularly, the combination of DZNeP with Ven dramatically eliminated CD117 (c-KIT) (+) AML blasts, suggesting the effect of the combination on tumor stem cells. In summary, our data indicated that DZNeP increases the sensitivity of Ven in AML by affecting PI3K and c-KIT signaling in AML. Our results also suggested that the therapeutic targeting of both EZH2 and BCL-2 provides a novel potential combined strategy against AML.
Collapse
|
19
|
Saliba AN, Gangat N. Accelerated and blast phase myeloproliferative neoplasms. Best Pract Res Clin Haematol 2022; 35:101379. [DOI: 10.1016/j.beha.2022.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
|
20
|
Tilsed CM, Fisher SA, Nowak AK, Lake RA, Lesterhuis WJ. Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front Oncol 2022; 12:960317. [PMID: 35965519 PMCID: PMC9372369 DOI: 10.3389/fonc.2022.960317] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy has historically been the mainstay of cancer treatment, but our understanding of what drives a successful therapeutic response remains limited. The diverse response of cancer patients to chemotherapy has been attributed principally to differences in the proliferation rate of the tumor cells, but there is actually very little experimental data supporting this hypothesis. Instead, other mechanisms at the cellular level and the composition of the tumor microenvironment appear to drive chemotherapy sensitivity. In particular, the immune system is a critical determinant of chemotherapy response with the depletion or knock-out of key immune cell populations or immunological mediators completely abrogating the benefits of chemotherapy in pre-clinical models. In this perspective, we review the literature regarding the known mechanisms of action of cytotoxic chemotherapy agents and the determinants of response to chemotherapy from the level of individual cells to the composition of the tumor microenvironment. We then summarize current work toward the development of dynamic biomarkers for response and propose a model for a chemotherapy sensitive tumor microenvironment.
Collapse
Affiliation(s)
- Caitlin M. Tilsed
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Scott A. Fisher
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - W. Joost Lesterhuis
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA, Australia
- *Correspondence: W. Joost Lesterhuis,
| |
Collapse
|