1
|
Lei M, Liang J, Guo K, Tang L, He Y, Wu X. Roles of noncoding RNAs in multiple myeloma. Leuk Res 2024; 146:107593. [PMID: 39307099 DOI: 10.1016/j.leukres.2024.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024]
Abstract
Noncoding RNAs (ncRNAs) constitute a class of nucleic acid molecules within cells that do not encode proteins but play important roles in regulating gene expression, maintaining cellular homeostasis, and mediating cell signaling. This class encompasses microRNAs (miRNAs), long noncoding RNAs (lncRNAs), transfer RNAs (tRNAs), circular RNAs (circRNAs), small interfering RNAs (siRNAs), and others. miRNAs are pivotal in the regulation of gene expression in hematologic malignancies. Aberrant expression of lncRNAs has been confirmed in cancerous tissues, implicating their involvement in carcinogenesis or tumor suppression processes. tRNAs may induce errors or disturbances in protein synthesis, thereby affecting normal cellular function and proliferation. Moreover, circRNAs influence disease progression in tumors by modulating the expression of relevant genes, and siRNAs can inhibit tumor cell proliferation, invasion, and metastasis while inducing apoptosis. This review will elucidate the biological functions of ncRNAs in multiple myeloma (MM) and explore their potential value as therapeutic targets.
Collapse
Affiliation(s)
- Ming Lei
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Juan Liang
- Hengyang Medical College, University of South China, China
| | - Kaiyun Guo
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Langui Tang
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Yuxing He
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China
| | - Xuefeng Wu
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), China.
| |
Collapse
|
2
|
Pallabothula VSK, Abdalrahman NT, Mori M, Fekri AH, Janďourek O, Konečná K, Paterová P, Novák M, Dudášová-Hatoková P, Štěrbová-Kovaříková P, Castellano C, Meneghetti F, Villa S, Kuneš J, Juhás M, Zitko J. A hit expansion of 3-benzamidopyrazine-2-carboxamide: Toward inhibitors of prolyl-tRNA synthetase with antimycobacterial activity. Arch Pharm (Weinheim) 2024; 357:e2400171. [PMID: 38710636 DOI: 10.1002/ardp.202400171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
This study presents an exploration of the chemical space around derivatives of 3-benzamidopyrazine-2-carboxamides, previously identified as potent antimycobacterial compounds with predicted binding to mycobacterial prolyl-transfer RNA synthetase. New urea derivatives (Series-1) were generally inactive, probably due to their preference for cis-trans conformation (confirmed by density functional theory calculations and experimentally by nuclear overhauser effect spectroscopy NMR). Series-2 (3-benzamidopyrazine-2-carboxamides with disubstituted benzene ring) demonstrated that substituents larger than fluorine are not tolerated in the ortho position of the benzene ring. This series brought two new compounds (21: R = 2-F, 4-Cl and 22: R = 2-F, 4-Br) with in vitro activity against Mycobacterium tuberculosis H37Rv as well as multidrug-resistant clinical isolates, with minimum inhibitory concentration ranging from 6.25 to 25 μg/mL. The lactone-type derivatives 4H-pyrazino[2,3-d][1,3]oxazin-4-ones (Series-3) were inactive, but solvent stability studies of compound 29 indicated that they might be developed to usable lactone prodrugs of inhibitors of mycobacterial aspartate decarboxylase (PanD).
Collapse
Affiliation(s)
| | | | - Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Amir Hossein Fekri
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Ondřej Janďourek
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Klára Konečná
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavla Paterová
- Department of Clinical Microbiology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Martin Novák
- Biomedical Research Centre, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | | | | | | | | | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Jiří Kuneš
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Martin Juhás
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jan Zitko
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Sun C, Zhang W, Liu H, Ding Y, Guo J, Xiong S, Zhai Z, Hu W. Identification of a novel lactylation-related gene signature predicts the prognosis of multiple myeloma and experiment verification. Sci Rep 2024; 14:15142. [PMID: 38956267 PMCID: PMC11219856 DOI: 10.1038/s41598-024-65937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy with poor survival. Accumulating evidence reveals that lactylation modification plays a vital role in tumorigenesis. However, research on lactylation-related genes (LRGs) in predicting the prognosis of MM remains limited. Differentially expressed LRGs (DELRGs) between MM and normal samples were investigated from the Gene Expression Omnibus database. Univariate Cox regression and LASSO Cox regression analysis were applied to construct gene signature associated with overall survival. The signature was validated in two external datasets. A nomogram was further constructed and evaluated. Additionally, Enrichment analysis, immune analysis, and drug chemosensitivity analysis between the two groups were investigated. qPCR and immunofluorescence staining were performed to validate the expression and localization of PFN1. CCK-8 and flow cytometry were performed to validate biological function. A total of 9 LRGs (TRIM28, PPIA, SOD1, RRP1B, IARS2, RB1, PFN1, PRCC, and FABP5) were selected to establish the prognostic signature. Kaplan-Meier survival curves showed that high-risk group patients had a remarkably worse prognosis in the training and validation cohorts. A nomogram was constructed based on LRGs signature and clinical characteristics, and showed excellent predictive power by calibration curve and C-index. Moreover, biological pathways, immunologic status, as well as sensitivity to chemotherapy drugs were different between high- and low-risk groups. Additionally, the hub gene PFN1 is highly expressed in MM, knocking down PFN1 induces cell cycle arrest, suppresses cell proliferation and promotes cell apoptosis. In conclusion, our study revealed that LRGs signature is a promising biomarker for MM that can effectively early distinguish high-risk patients and predict prognosis.
Collapse
Affiliation(s)
- Cheng Sun
- College of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wanqiu Zhang
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hao Liu
- College of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yangyang Ding
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jingjing Guo
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Wei Hu
- College of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
4
|
Lin LQ, Lv SY, Ren HZ, Li RR, Li L, Pang YQ, Wang J. Evodiamine inhibits EPRS expression to regulate glutamate metabolism and proliferation of oral squamous cell carcinoma cells. Kaohsiung J Med Sci 2024; 40:348-359. [PMID: 38243370 DOI: 10.1002/kjm2.12803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
The effects of evodiamine (EVO) on oral squamous cell carcinoma (OSCC) are not yet understood. Based on our earlier findings, we hypothesized that evodiamine may affect OSCC cell proliferation and glutamate metabolism by modulating the expression of EPRS (glutamyl-prolyl-tRNA synthetase 1). From GEPIA, we obtained EPRS expression data in patients with OSCC as well as survival prognosis data. An animal model using Cal27 cells in BALB/c nude mice was established. The expression of EPRS was assessed by immunofluorescence, Western blotting, and quantitative PCR. Glutamate measurements were performed to evaluate the impact of evodiamine on glutamate metabolism of Cal27 and SAS tumor cells. transient transfection techniques were used to knock down and modulate EPRS in these cells. EPRS is expressed at higher levels in OSCC than in normal tissues, and it predicts poor prognosis in patients. In a nude mouse xenograft model, evodiamine inhibited tumor growth and the expression of EPRS. Evodiamine impacted cell proliferation, glutamine metabolism, and EPRS expression on Cal27 and SAS cell lines. In EPRS knockdown cell lines, both cell proliferation and glutamine metabolism are suppressed. EPRS's overexpression partially restores evodiamine's inhibitory effects on cell proliferation and glutamine metabolism. This study provides crucial experimental evidence supporting the potential therapeutic application of evodiamine in treating OSCC. Evodiamine exhibits promising anti-tumor effects by targeting EPRS to regulate glutamate metabolism.
Collapse
Affiliation(s)
- Li-Qi Lin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Si-Yi Lv
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Hao-Zhe Ren
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Rong-Rong Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Yun-Qing Pang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Oral Diseases, Lanzhou, Gansu Province, China
| | - Jing Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Oral Diseases, Lanzhou, Gansu Province, China
| |
Collapse
|
5
|
Shi R, DU W, He Y, Hu J, Yu H, Zhou W, Guo J, Feng X. High expression of VARS promotes the growth of multiple myeloma cells by causing imbalance in valine metabolism. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:795-808. [PMID: 37587064 PMCID: PMC10930441 DOI: 10.11817/j.issn.1672-7347.2023.220602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 08/18/2023]
Abstract
OBJECTIVES Multiple myeloma (MM) is a plasma cell malignancy occurring in middle and old age. MM is still an incurable disease due to its frequent recurrence and drug resistance. However, its pathogenesis is still unclear. Abnormal amino acid metabolism is one of the important characteristics of MM, and the important metabolic pathway of amino acids participates in protein synthesis as basic raw materials. Aminoacyl transfer ribonucleic acid synthetase (ARS) gene is a key regulatory gene in protein synthesis. This study aims to explore the molecular mechanism for ARS, a key factor of amino acid metabolism, in regulating amino acid metabolism in MM and affecting MM growth. METHODS The corresponding gene number was combined with the gene expression profile GSE5900 dataset and GSE2658 dataset in Gene Expression Omnibus (GEO) database to standardize the gene expression data of ARS. GSEA_4.2.0 software was used to analyze the difference of gene enrichment between healthy donors (HD) and MM patients in GEO database. GraphPad Prism 7 was used to draw heat maps and perform data analysis. Kaplan-Meier and Cox regression model were used to analyze the expression of ARS gene and the prognosis of MM patients, respectively. Bone marrow samples from 7 newly diagnosed MM patients were collected, CD138+ and CD138- cells were obtained by using CD138 antibody magnetic beads, and the expression of ARS in MM clinical samples was analyzed by real-time RT-PCR. Human B lymphocyte GM12878 cells and human MM cell lines ARP1, NCI-H929, OCI-MY5, U266, RPMI 8266, OPM-2, JJN-3, KMS11, MM1.s cells were selected as the study objects. The expression of ARS in MM cell lines was analyzed by real-time RT-PCR and Western blotting. Short hairpin RNA (shRNA) lentiviruses were used to construct gene knock-out plasmids (VARS-sh group). No-load plasmids (scramble group) and gene knock-out plasmids (VARS-sh group) were transfected into HEK 293T cells with for virus packaging, respectively. Stable expression cell lines were established by infecting ARP1 and OCI-MY5 cells, and the effects of knockout valyl-tRNA synthetase (VARS) gene on proliferation and apoptosis of MM cells were detected by cell counting and flow cytometry, respectively. GEO data were divided into a high expression group and a low expression group according to the expression of VARS. Bioinformatics analysis was performed to explore the downstream pathways affected by VARS. Gas chromatography time-of-flight mass spectrometry (GC-TOF/MS) and high performance liquid chromatography (HPLC) were used to detect the valine content in CD138+ cells and ARP1, OCI-MY5 cells and supernatant of knockdown VARS gene in bone marrow samples from patients, respectively. RESULTS Gene enrichment analysis showed that tRNA processing related genes were significantly enriched in MM compared with HD (P<0.0001). Further screening of tRNA processing-pathway related subsets revealed that cytoplasmic aminoacyl tRNA synthetase family genes were significantly enriched in MM (P<0.0001). The results of gene expression heat map showed that the ARS family genes except alanyl-tRNA synthetase (AARS), arginyl-tRNA synthetase (RARS), seryl-tRNA synthetase (SARS) in GEO data were highly expressed in MM (all P<0.01). With the development of monoclonal gammopathy of undetermined significance (MGUS) to MM, the gene expression level was increased gradually. Kaplan-Meier univariate analysis of survival results showed that there were significant differences in the prognosis of MM patients in methionyl-tRNA synthetase (MARS), asparaginyl-tRNA synthetase (NARS) and VARS between the high expression group and the low expression group (all P<0.05). Cox regression model multivariate analysis showed that the high expression of VARS was associated with abnormal overall survival time of MM (HR=1.83, 95% CI 1.10 to 3.06, P=0.021). The high expression of NARS (HR=0.90, 95% CI 0.34 to 2.38) and MARS (HR=1.59, 95% CI 0.73 to 3.50) had no effect on the overall survival time of MM patients (both P>0.05). Real-time RT-PCR and Western blotting showed that VARS, MARS and NARS were highly expressed in CD138+ MM cells and MM cell lines of clinical patients (all P<0.05). Cell counting and flow cytometry results showed that the proliferation of MM cells by knockout VARS was significantly inhibited (P<0.01), the proportion of apoptosis was significantly increased (P<0.05). Bioinformatics analysis showed that in addition to several pathways including the cell cycle regulated by VARS, the valine, leucine and isoleucine catabolic pathways were upregulated. Non-targeted metabolomics data showed reduced valine content in CD138+ tumor cells in MM patients compared to HD (P<0.05). HPLC results showed that compared with the scramble group, the intracellular and medium supernatant content of ARP1 cells and the medium supernatant of OCI-MY5 in the VARS-shRNA group was increased (all P<0.05). CONCLUSIONS MM patients with abnormal high expression of VARS have a poor prognosis. VARS promotes the malignant growth of MM cells by affecting the regulation of valine metabolism.
Collapse
Affiliation(s)
- Rui Shi
- Department of Health Inspection and Quarantine, Xiangya School of Public Health, Central South University, Changsha 410006.
| | - Wanqing DU
- Department of Health Inspection and Quarantine, Xiangya School of Public Health, Central South University, Changsha 410006
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008
| | - Jian Hu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008
| | - Han Yu
- Department of Health Inspection and Quarantine, Xiangya School of Public Health, Central South University, Changsha 410006
| | - Wen Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Jiaojiao Guo
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008.
| | - Xiangling Feng
- Department of Health Inspection and Quarantine, Xiangya School of Public Health, Central South University, Changsha 410006.
| |
Collapse
|