1
|
Schachner LF, Phung W, Han G, Darwish M, Bell A, Mellors JS, Srzentic K, Huguet R, Blanchette C, Sandoval W. High-Throughput, Quantitative Analysis of Peptide-Exchanged MHCI Complexes by Native Mass Spectrometry. Anal Chem 2022; 94:14593-14602. [PMID: 36179215 PMCID: PMC9607865 DOI: 10.1021/acs.analchem.2c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Immune monitoring in cancer immunotherapy involves screening CD8+ T-cell responses against neoantigens, the tumor-specific peptides presented by Major histocompatibility complex Class I (MHCI) on the cell surface. High-throughput immune monitoring requires methods to produce and characterize small quantities of thousands of MHCI-peptide complexes that may be tested for a patient's T-cell response. MHCI synthesis has been achieved using a photocleavable peptide that is exchanged by the neoantigen; however, assays that measure peptide exchange currently disassemble the complex prior to analysis─precluding direct molecular characterization. Here, we use native mass spectrometry (MS) to profile intact recombinant MHCI complexes and directly measure peptide exchange. Coupled with size-exclusion chromatography or capillary-zone electrophoresis, the assay identified all tested human leukocyte antigen (HLA)/peptide combinations in the nanomole to picomole range with minimal run time, reconciling the synthetic and analytical requirements of MHCI-peptide screening with the downstream T-cell assays. We further show that the assay can be "multiplexed" by measuring exchange of multiple peptides simultaneously and also enables calculation of Vc50, a measure of gas-phase stability. Additionally, MHCI complexes were fragmented by top-down sequencing, demonstrating that the intact complex, peptide sequence, and their binding affinity can be determined in a single analysis. This screening tool for MHCI-neoantigen complexes represents a step toward the application of state-of-the-art MS technology in translational settings. Not only is this assay already informing on the viability of immunotherapy in practice, the platform also holds promise to inspire novel MS readouts for increasingly complex biomolecules used in the diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Luis F. Schachner
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South
San Francisco, California 94080, United States
| | - Wilson Phung
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South
San Francisco, California 94080, United States
| | - Guanghui Han
- BGI
Americas, San Jose, California 95134, United States
| | - Martine Darwish
- Department
of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Ashley Bell
- 908
Devices, Carrboro, North Carolina 27510, United States
| | | | | | - Romain Huguet
- Thermo
Fisher Scientific, San Jose, California 95134, United States
| | - Craig Blanchette
- Department
of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South
San Francisco, California 94080, United States
| |
Collapse
|
2
|
Kubota M, Iizasa E, Chuuma Y, Kiyohara H, Hara H, Yoshida H. Adjuvant activity of Mycobacteria-derived mycolic acids. Heliyon 2020; 6:e04064. [PMID: 32490252 PMCID: PMC7260583 DOI: 10.1016/j.heliyon.2020.e04064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/29/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Successful vaccination, especially with safe vaccines such as component/subunit vaccines, requires proper activation of innate immunity and, for this purpose, adjuvant is used. For clinical use, alum is frequently used while, for experimental use, CFA, containing Mycobacterial components, was often used. In this report, we demonstrated that mycolic acids (MA), major and essential lipid components of the bacterial cell wall of the genus Mycobacterium, has adjuvant activity. MA plus model antigen-immunization induced sufficient humoral response, which was largely comparable to conventional CFA plus antigen-immunization. Importantly, while CFA plus antigen-immunization induced Th17-biased severe and destructive inflammatory responses at the injected site, MA plus antigen-immunization induced Th1-biased mild inflammation at the site. MA induced dendritic cell activation by co-stimulatory molecule induction as well as inflammatory cytokine/chemokine induction. MA plus antigen-immunization successfully protected mice from tumor progression both in prevention and in therapy models. We thus submit that MA is a promising adjuvant candidate material for clinical purposes and for experimental purposes from a perspective of animal welfare.
Collapse
Affiliation(s)
- Mio Kubota
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Saga-ken Medical Center Koseikan, Saga, 840-8571, Japan
| | - Ei'ichi Iizasa
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 890-8544, Japan
| | - Yasushi Chuuma
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, 204-0022, Japan
| | - Hideyasu Kiyohara
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, 204-0022, Japan
| | - Hiromitsu Hara
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 890-8544, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Corresponding author.
| |
Collapse
|