1
|
Zhang Y, Li Z, Chen X. The role of galectin-3 in bone homeostasis: A review. Int J Biol Macromol 2024; 278:134882. [PMID: 39168209 DOI: 10.1016/j.ijbiomac.2024.134882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The skeletal system maintains a delicate balance known as bone homeostasis, which is essential for the lifelong preservation of bone mass, shape, and integrity. This equilibrium relies on a complex interplay between bone marrow mesenchymal stem cells (BMSCs), osteoblasts, osteocytes, and osteoclasts. Galectin-3 (Gal-3), a chimeric galectin with a unique N-terminal tail and a conserved carbohydrate recognition domain (CRD) at its C-terminus, has emerged as a critical regulator in bone homeostasis. The CRD of Gal-3 mediates carbohydrate binding, while its N-terminal tail is implicated in oligomerization and phase separation, which are vital for its functionality. Gal-3's multivalency is central to its role in a range of cellular activities, including inflammation, immune response, apoptosis, cell adhesion, and migration. Imbalances in bone homeostasis often arise from disruptions in osteoblast differentiation and activity, increased osteoclast differentiation and activity. Gal-3's influence on these processes suggests its significant role in the regulation of bone remodeling. This review will examine the molecular mechanisms through which Gal-3 contributes to bone remodeling and discuss its potential as a therapeutic target for the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Yanchao Zhang
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China
| | - Zhiyong Li
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China
| | - Xueqing Chen
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China.
| |
Collapse
|
2
|
Wei F, Hughes M, Omer M, Ngo C, Pugazhendhi AS, Kolanthai E, Aceto M, Ghattas Y, Razavi M, Kean TJ, Seal S, Coathup M. A Multifunctional Therapeutic Strategy Using P7C3 as A Countermeasure Against Bone Loss and Fragility in An Ovariectomized Rat Model of Postmenopausal Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308698. [PMID: 38477537 PMCID: PMC11151083 DOI: 10.1002/advs.202308698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 03/14/2024]
Abstract
By 2060, an estimated one in four Americans will be elderly. Consequently, the prevalence of osteoporosis and fragility fractures will also increase. Presently, no available intervention definitively prevents or manages osteoporosis. This study explores whether Pool 7 Compound 3 (P7C3) reduces progressive bone loss and fragility following the onset of ovariectomy (OVX)-induced osteoporosis. Results confirm OVX-induced weakened, osteoporotic bone together with a significant gain in adipogenic body weight. Treatment with P7C3 significantly reduced osteoclastic activity, bone marrow adiposity, whole-body weight gain, and preserved bone area, architecture, and mechanical strength. Analyses reveal significantly upregulated platelet derived growth factor-BB and leukemia inhibitory factor, with downregulation of interleukin-1 R6, and receptor activator of nuclear factor kappa-B (RANK). Together, proteomic data suggest the targeting of several key regulators of inflammation, bone, and adipose turnover, via transforming growth factor-beta/SMAD, and Wingless-related integration site/be-catenin signaling pathways. To the best of the knowledge, this is first evidence of an intervention that drives against bone loss via RANK. Metatranscriptomic analyses of the gut microbiota show P7C3 increased Porphyromonadaceae bacterium, Candidatus Melainabacteria, and Ruminococcaceae bacterium abundance, potentially contributing to the favorable inflammatory, and adipo-osteogenic metabolic regulation observed. The results reveal an undiscovered, and multifunctional therapeutic strategy to prevent the pathological progression of OVX-induced bone loss.
Collapse
Affiliation(s)
- Fei Wei
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Megan Hughes
- School of BiosciencesCardiff UniversityWalesCF10 3ATUK
| | - Mahmoud Omer
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Christopher Ngo
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | | | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Matthew Aceto
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Yasmine Ghattas
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Mehdi Razavi
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Thomas J Kean
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Sudipta Seal
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Melanie Coathup
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| |
Collapse
|
3
|
Yu C, Lad EM, Mathew R, Shiraki N, Littleton S, Chen Y, Hou J, Schlepckow K, Degan S, Chew L, Amason J, Kalnitsky J, Bowes Rickman C, Proia AD, Colonna M, Haass C, Saban DR. Microglia at sites of atrophy restrict the progression of retinal degeneration via galectin-3 and Trem2. J Exp Med 2024; 221:e20231011. [PMID: 38289348 PMCID: PMC10826045 DOI: 10.1084/jem.20231011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Outer retinal degenerations, including age-related macular degeneration (AMD), are characterized by photoreceptor and retinal pigment epithelium (RPE) atrophy. In these blinding diseases, macrophages accumulate at atrophic sites, but their ontogeny and niche specialization remain poorly understood, especially in humans. We uncovered a unique profile of microglia, marked by galectin-3 upregulation, at atrophic sites in mouse models of retinal degeneration and human AMD. In disease models, conditional deletion of galectin-3 in microglia led to phagocytosis defects and consequent augmented photoreceptor death, RPE damage, and vision loss, indicating protective roles. Mechanistically, Trem2 signaling orchestrated microglial migration to atrophic sites and induced galectin-3 expression. Moreover, pharmacologic Trem2 agonization led to heightened protection but in a galectin-3-dependent manner. In elderly human subjects, we identified this highly conserved microglial population that expressed galectin-3 and Trem2. This population was significantly enriched in the macular RPE-choroid of AMD subjects. Collectively, our findings reveal a neuroprotective population of microglia and a potential therapeutic target for mitigating retinal degeneration.
Collapse
Affiliation(s)
- Chen Yu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Eleonora M. Lad
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Nobuhiko Shiraki
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Sejiro Littleton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases Munich, Munich, Germany
| | - Simone Degan
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Lindsey Chew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua Amason
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Alan D. Proia
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Campbell University Jerry M. Wallace School of Osteopathic Medicine, Lillington, NC, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Haass
- German Center for Neurodegenerative Diseases Munich, Munich, Germany
- Chair of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Daniel R. Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Yu C, Lad EM, Mathew R, Littleton S, Chen Y, Schlepckow K, Degan S, Chew L, Amason J, Kalnitsky J, Rickman CB, Proia AD, Colonna M, Haass C, Saban DR. Microglia at Sites of Atrophy Restrict the Progression of Retinal Degeneration via Galectin-3 and Trem2 Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549403. [PMID: 37502831 PMCID: PMC10370087 DOI: 10.1101/2023.07.19.549403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Degenerative diseases of the outer retina, including age-related macular degeneration (AMD), are characterized by atrophy of photoreceptors and retinal pigment epithelium (RPE). In these blinding diseases, macrophages are known to accumulate ectopically at sites of atrophy, but their ontogeny and functional specialization within this atrophic niche remain poorly understood, especially in the human context. Here, we uncovered a transcriptionally unique profile of microglia, marked by galectin-3 upregulation, at atrophic sites in mouse models of retinal degeneration and in human AMD. Using disease models, we found that conditional deletion of galectin-3 in microglia led to defects in phagocytosis and consequent augmented photoreceptor death, RPE damage and vision loss, suggestive of a protective role. Mechanistically, Trem2 signaling orchestrated the migration of microglial cells to sites of atrophy, and there, induced galectin-3 expression. Moreover, pharmacologic Trem2 agonization led to heightened protection, but only in a galectin-3-dependent manner, further signifying the functional interdependence of these two molecules. Likewise in elderly human subjects, we identified a highly conserved population of microglia at the transcriptomic, protein and spatial levels, and this population was enriched in the macular region of postmortem AMD subjects. Collectively, our findings reveal an atrophy-associated specialization of microglia that restricts the progression of retinal degeneration in mice and further suggest that these protective microglia are conserved in AMD.
Collapse
Affiliation(s)
- Chen Yu
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Sejiro Littleton
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Immunology, Duke University; Durham, NC 27710, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE) Munich; 81377 Munich, Germany
| | - Simone Degan
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Lindsey Chew
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Joshua Amason
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Cell Biology, Duke University; Durham, NC 27710, USA
| | - Alan D Proia
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Pathology, Campbell University Jerry M. Wallace School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich; 81377 Munich, Germany
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München; 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy); 81377 Munich, Germany
| | - Daniel R Saban
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Immunology, Duke University; Durham, NC 27710, USA
| |
Collapse
|
5
|
Zhang Z, Zhang Z, Shu H, Meng Y, Lin T, Ma J, Zhao J, Zhou X. Association between gut microbiota and bone metabolism: Insights from bibliometric analysis. Front Physiol 2023; 14:1156279. [PMID: 37153210 PMCID: PMC10154530 DOI: 10.3389/fphys.2023.1156279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Gut microbiota has been reported to participate in bone metabolism. However, no article has quantitatively and qualitatively analyzed this crossing field. The present study aims to analyze the current international research trends and demonstrate possible hotspots in the recent decade through bibliometrics. We screened out 938 articles meeting the standards from 2001 to 2021 in the Web of Science Core Collection database. Bibliometric analyses were performed and visualized using Excel, Citespace, and VOSviewer. Generally, the annual number of published literatures in this field shows an escalating trend. The United States has the largest number of publications, accounting for 30.4% of the total. Michigan State University and Sichuan University have the largest number of publications, while Michigan State University has the highest average number of citations at 60.00. Nutrients published 49 articles, ranking first, while the Journal of Bone and Mineral Research had the highest average number of citations at 13.36. Narayanan Parameswaran from Michigan State University, Roberto Pacifici from Emory University, and Christopher Hernandez from Cornell University were the three professors who made the largest contribution to this field. Frequency analysis showed that inflammation (148), obesity (86), and probiotics (81) are keywords with the highest focus. Moreover, keywords cluster analysis and keywords burst analysis showed that "inflammation", "obesity", and "probiotics" were the most researched topics in the field of gut microbiota and bone metabolism. Scientific publications related to gut microbiota and bone metabolism have continuously risen from 2001 to 2021. The underlying mechanism has been widely studied in the past few years, and factors affecting the alterations of the gut microbiota, as well as probiotic treatment, are emerging as new research trends.
Collapse
Affiliation(s)
- Zhanrong Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- Department of Orthopedic Rehabilitation, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, China
| | - Haoming Shu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Tao Lin
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Jun Ma
- Department of Orthopedics, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jun Ma, ; Jianquan Zhao, ; Xuhui Zhou,
| | - Jianquan Zhao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- *Correspondence: Jun Ma, ; Jianquan Zhao, ; Xuhui Zhou,
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- Translational Research Center of Orthopedics, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jun Ma, ; Jianquan Zhao, ; Xuhui Zhou,
| |
Collapse
|
6
|
Zhang C, Adler HJ, Manohar S, Salvi R, Sun W, Ye M, Hu BH. Galectin-3 protects auditory function in female mice. Hear Res 2022; 424:108602. [PMID: 36103788 DOI: 10.1016/j.heares.2022.108602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
Sex differences in the development of sensorineural hearing loss have been recognized in various inner ear disorders, but the molecular basis for such differences is poorly understood. Autosomal genes have been shown to cause sex differences in disease susceptibility, but many genes exerting sex-dependent effects on auditory function remain to be identified. Galectin-3 (Gal-3), a protein encoded by the autosomal gene Lgals3, is a member of the β-galactoside-binding protein family, and has been linked to multiple biological processes, including immune responses, apoptosis, and cell adhesion. Here, we investigated auditory function and hair cell integrity in Gal-3 knockout (KO, Lgals3-/-) and wild-type (WT, Lgals3+/+) mice from age 1 to 6 months. KO mice show a more rapid age-related increase in ABR thresholds compared to WT mice. Noticeably, the threshold deterioration in female KO mice is significantly greater than in the male KO and WT mice. The ABR threshold elevation manifests over a broad frequency range in female KO mice, whereas the threshold elevations are confined to high frequencies in the male KO and WT mice. Moreover, DPOAE input/output functions reveal a similar pattern of auditory dysfunction, with the female KO mice displaying a significantly greater reduction in DPOAE amplitudes than male KO mice and WT mice of both sexes. Finally, age-related outer hair cell loss is greater for female KO mice compared to male KO mice and WT mice of both sexes. Together, these results indicate that Gal-3 deficiency exacerbates age-related cochlear degeneration and auditory dysfunction in female mice. Our study identifies Gal-3 as a sex-dependent molecule for maintaining female cochlear integrity.
Collapse
Affiliation(s)
- Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Henry J Adler
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Wei Sun
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Mengxiao Ye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
7
|
Maupin KA, Diegel CR, Stevens PD, Dick D, Williams BO. Mutation of the galectin-3 glycan-binding domain (Lgals3-R200S) enhances cortical bone expansion in male mice and trabecular bone mass in female mice. FEBS Open Bio 2022; 12:1717-1728. [PMID: 36062328 PMCID: PMC9527582 DOI: 10.1002/2211-5463.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
We previously observed that genomic loss of galectin-3 (Gal-3; encoded by Lgals3) in mice has a significant protective effect on age-related bone loss. Gal-3 has both intracellular and extracellular functionality, and we wanted to assess whether the affect we observed in the Lgals3 knockout (KO) mice could be attributed to the ability of Gal-3 to bind glycoproteins. Mutation of a highly conserved arginine to a serine in human Gal-3 (LGALS3-R186S) blocks glycan binding and secretion. We generated mice with the equivalent mutation (Lgals3-R200S) and observed a subsequent reduction in Gal-3 secretion from mouse embryonic fibroblasts and in circulating blood. When examining bone structure in aged mice, we noticed some similarities to the Lgals3-KO mice and some differences. First, we observed greater bone mass in Lgals3-R200S mutant mice, as was previously observed in Lgals3-KO mice. Like Lgals3-KO mice, significantly increased trabecular bone mass was only observed in female Lgals3-R200S mice. These results suggest that the greater bone mass observed is driven by the loss of extracellular Gal-3 functionality. However, the results from our cortical bone expansion data showed a sex-dependent difference, with only male Lgals3-KO mice having an increased response, contrasting with our earlier study. These notable sex differences suggest a potential role for sex hormones, most likely androgen signaling, being involved. In summary, our results suggest that targeting extracellular Gal-3 function may be a suitable treatment for age-related loss of bone mass.
Collapse
|
8
|
Humphries DC, Mills R, Dobie R, Henderson NC, Sethi T, Mackinnon AC. Selective Myeloid Depletion of Galectin-3 Offers Protection Against Acute and Chronic Lung Injury. Front Pharmacol 2021; 12:715986. [PMID: 34526900 PMCID: PMC8435800 DOI: 10.3389/fphar.2021.715986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 12/03/2022] Open
Abstract
Rationale: Galectin-3 (Gal-3) is an immune regulator and an important driver of fibrosis in chronic lung injury, however, its role in acute lung injury (ALI) remains unknown. Previous work has shown that global deletion of galectin-3 reduces collagen deposition in a bleomycin-induced pulmonary fibrosis model (MacKinnon et al., Am. J. Respir. Crit. Care Med., 2012, 185, 537–46). An inhaled Gal-3 inhibitor, GB0139, is undergoing Phase II clinical development for idiopathic pulmonary fibrosis (IPF). This work aims to elucidate the role of Gal-3 in the myeloid and mesenchymal compartment on the development of acute and chronic lung injury. Methods:LgalS3fl/fl mice were generated and crossed with mice expressing the myeloid (LysM) and mesenchymal (Pdgfrb) cre drivers to yield LysM-cre+/-/LgalS3fl/fl and Pdgfrb-cre+/-/LgalS3fl/fl mice. The response to acute (bleomycin or LPS) or chronic (bleomycin) lung injury was compared to globally deficient Gal-3−/− mice. Results: Myeloid depletion of Gal-3 led to a significant reduction in Gal-3 expression in alveolar macrophages and neutrophils and a reduction in neutrophil recruitment into the interstitium but not into the alveolar space. The reduction in interstitial neutrophils corelated with decreased levels of pulmonary inflammation following acute bleomycin and LPS administration. In addition, myeloid deletion decreased Gal-3 levels in bronchoalveolar lavage (BAL) and reduced lung fibrosis induced by chronic bleomycin. In contrast, no differences in BAL Gal-3 levels or fibrosis were observed in Pdgfrb-cre+/-/LgalS3fl/flmice. Conclusions: Myeloid cell derived Galectin-3 drives acute and chronic lung inflammation and supports direct targeting of galectin-3 as an attractive new therapy for lung inflammation.
Collapse
Affiliation(s)
- Duncan C Humphries
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Mills
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Alison C Mackinnon
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Galecto Inc, Copenhagen, Denmark
| |
Collapse
|
9
|
Xu W, Ni C, Wang Y, Zheng G, Zhang J, Xu Y. Age-related trabecular bone loss is associated with a decline in serum Galectin-1 level. BMC Musculoskelet Disord 2021; 22:394. [PMID: 33906620 PMCID: PMC8080405 DOI: 10.1186/s12891-021-04272-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Senile osteoporosis with age-related bone loss is diagnosed depending on radiographic changes of bone and bone mineral density (BMD) measurement. However, radiographic alterations are usually signs of medium-late stage osteoporosis. Therefore, biomarkers have been proposed as indicators of bone loss. In the current study, Galectin-1 (Gal-1) showed age-related decline in mice serum. The role of Gal-1 in osteoporosis has not been investigated so far. Hence, the current study illustrated the relationship of serum Gal-1 level with bone loss. METHODS We employed 6- and 18-month-old mice to establish an animal model of age-related trabecular bone loss, whose bone density and microstructure were investigated by micro-CT. ELISA was used to measure the levels of Gal-1 in serum. The correlation analysis was performed to illustrate the relationship between serum Gal-1 levels and trabecular bone loss. In addition, immunohistochemistry was used to investigate the abundance of Gal-1 in bone marrow of mice. ELISA and western blot were performed to measure the secretion ability and protein expression of Gal-1 in bone marrow stromal cells (BMSC), hematopoietic stem cells (HSC) and myeloid progenitor (MP) respectively. Flow cytometry was used to measure BMSC number in bone marrow. Finally, male volunteers with age-related BMD decrease were recruited and the relationship between serum Gal-1 and BMD was analyzed. RESULTS Gal-1 showed age-related decline in mice serum. Serum Gal-1 was positively associated with BV/TV of femur, tibia and L1 vertebrae in mice. BMSC secreted more Gal-1 compared with HSC and MP. BMSC number in bone marrow was significantly lower in aged mice compared with young mice. Significant attenuation of Gal-1 protein expression was observed in BMSC and HSC from aged mice compared with young mice. Further, we found a decline in serum Gal-1 levels in men with age-related BMD decrease. There was positive correlation between BMD and serum Gal-1 levels in these men. CONCLUSIONS Age-related trabecular bone loss is associated with a decline in serum Gal-1 level in mice and men. Our study suggested Gal-1 had great potential to be a biomarker for discovering BMSC senescence, diagnosing early osteoporosis and monitoring trabecular bone loss.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.,Department of Orthopaedics, Shanghai Jiangong Hospital, Shanghai, 200083, China
| | - Cheng Ni
- Department of Orthopaedics, Shanghai Jiangong Hospital, Shanghai, 200083, China
| | - Yuxuan Wang
- Department of Orthopaedics, Shanghai Jiangong Hospital, Shanghai, 200083, China
| | - Guoqing Zheng
- Department of Orthopaedics, Shanghai Jiangong Hospital, Shanghai, 200083, China
| | - Jinshan Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
10
|
Maupin KA, Dick D, Lee J, Williams BO. Loss of Lgals3 Protects Against Gonadectomy-Induced Cortical Bone Loss in Mice. Calcif Tissue Int 2020; 106:283-293. [PMID: 31745588 DOI: 10.1007/s00223-019-00630-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/01/2019] [Indexed: 11/28/2022]
Abstract
Sex hormone deprivation commonly occurs following menopause in women or after androgen-depletion during prostate cancer therapy in men, resulting in rapid bone turnover and loss of bone mass. There is a need to identify novel therapies to improve bone mass in these conditions. Previously, we identified age- and sex-dependent effects on bone mass in mice with deletion of the gene encoding the β-galactoside binding lectin, galectin-3 (Lgals3-KO). Due to the influence of sex on the phenotype, we tested the role of sex hormones, estrogen (β-estradiol; E2), and androgen (5α-dihydroxytestosterone; DHT) in Lgals3-KO mice. To address this, we subjected male and female wild-type and Lgals3-KO mice to gonadectomy ± E2 or DHT rescue and compared differential responses in bone mass and bone formation. Following gonadectomy, male and female Lgals3-KO mice had greater cortical bone expansion (increased total area; T.Ar) and reduced loss of bone area (B.Ar). While T.Ar and B.Ar were increased in response to DHT in wild-type mice, DHT did not alter these parameters in Lgals3-KO mice. E2 rescue more strongly increased B.Ar in Lgals3-KO compared to wild-type female mice due to a failure of E2 to repress the increase in T.Ar following gonadectomy. Lgals3-KO mice had more osteoblasts relative to bone surface when compared to wild-type animals in sham, gonadectomy, and E2 rescue groups. DHT suppressed this increase. This study revealed a mechanism for the sex-dependency of the Lgals3-KO aging bone phenotype and supports targeting galectin-3 to protect against bone loss associated with decreased sex hormone production.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Daniel Dick
- Program for Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Johan Lee
- Program for Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Bart O Williams
- Program for Skeletal Disease and Tumor Microenvironment and Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|