1
|
Balzano T, Pineda-Pardo JA, Esteban-García N, López-Aguirre M, Reinares-Sebastián A, Trigo-Damas I, Takada M, Obeso JA, Blesa J. Temporal dynamics of neurovascular unit changes following blood-brain barrier opening in the putamen of non-human primates. J Control Release 2025; 377:116-126. [PMID: 39547418 DOI: 10.1016/j.jconrel.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Low-intensity focused ultrasound (LIFU) combined with intravenously circulating microbubbles has recently emerged as a novel approach for increasing delivery through the blood-brain barrier (BBB). This technique safely and transiently enables therapeutic agents to overcome the BBB, which typically poses a significant obstacle for treatment of brain disorders. However, the full impact of LIFU on the entire neurovascular unit (NVU), as well as the mechanisms and factors involved in restoring BBB integrity still require further elucidation. We conducted immunohistochemical analyses of the putamen in non-human primates to monitor changes over time [immediately post-treatment (3 h) and at 7- and 30-days post-BBB opening] in vascular, glial, and immune cells. Additionally, we examined the dynamic interactions among these elements and their role in the restorative process at the BBB level. A mild inflammatory response primarily involving microglia, astrocytes, and T- and B-lymphocytes was observed in the treated putamen acutely after BBB opening. These cells, recruited in response to the vascular changes, stimulate upregulation of PDGFRβ, a pericyte-specific marker, and VEGF-A, a pro-angiogenic factor. This was associated with vascular sprouting by 7 days post-BBB opening. Importantly, no notable long-term alterations were observed in the NVU 30 days post-BBB opening. These results offer further evidence regarding the efficacy and safety of LIFU in achieving BBB opening in the primate brain, indicating that nearly all changes in the NVU revert to baseline within 30 days post-treatment. This also suggests that angiogenesis may play an important role in restoring vascular integrity after BBB opening.
Collapse
Affiliation(s)
- Tiziano Balzano
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales.
| | - José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| | - Noelia Esteban-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales; Neuroscience Autonoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Miguel López-Aguirre
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain; Physics, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Reinares-Sebastián
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| | - Inés Trigo-Damas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain; Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan; Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - José A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain; Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain.
| |
Collapse
|
2
|
Song Q, Li Y, Wu T, Hu W, Liu Y, Liu A. Feasibility of iodine concentration parameter and extracellular volume fraction derived from dual-energy CT for distinguishing type I and type II epithelial ovarian carcinoma. Abdom Radiol (NY) 2024:10.1007/s00261-024-04752-4. [PMID: 39665991 DOI: 10.1007/s00261-024-04752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVES To investigate the feasibility of using the iodine concentration (IC) parameter and extracellular volume (ECV) fraction derived from dual-energy CT for distinguishing between type I and type II epithelial ovarian carcinoma (EOC). METHODS This study retrospectively included 172 patients with EOC preoperatively underwent dual-energy CT scans. Patients were grouped as type I and type II EOC according to postoperatively pathologic results. Normalized IC (NIC, %) values from arterial-phase (AP), venous-phase (VP) and delay-phase (DP) were measured by two observers. ECV fraction (%) was calculated by DP-NIC and hematocrit. Intra-observer correlation coefficient (ICC) was used to assess the agreement between measurements made by two observers. The differences of imaging parameters between the two groups were compared. Logistic regression was used to select independent predictive factors and establish combined parameter. Receiver operating characteristic curve was used to analyze performance of all parameters. RESULTS The ICCs for all parameters exceeded 0.75. All parameters in type II EOC were all significantly higher than those in type I EOC (all P < 0.05). VP-NIC exhibited the highest Area under the curve (AUC) of 0.804, along with 80.39% sensitivity and 71.43% specificity. VP-NIC was identified as the independent factor. The sensitivity and specificity of ECV fraction were 78.43% and 71.43%, respectively. The combined parameter consisting of AP-NIC, VP-NIC, DP-NIC, and ECV fraction yielded an AUC of 0.823, with sensitivity of 76.47% and specificity of 77.14%. The sensitivity of the combined parameter was significantly higher than that of AP-NIC (P = 0.049). CONCLUSION It is valuable for dual-energy CT IC-based parameters and ECV fraction in preoperatively identifying type I and type II EOC. CRITICAL RELEVANCE STATEMENT Dual-energy CT-normalized iodine concentration and extracellular volume fraction achieved satisfactory discriminative efficacy, distinguishing between type I and type II epithelial ovarian carcinoma.
Collapse
Affiliation(s)
- Qingling Song
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ye Li
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tingfan Wu
- United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| | - Wenjun Hu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yijun Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Ghisoni E, Morotti M, Sarivalasis A, Grimm AJ, Kandalaft L, Laniti DD, Coukos G. Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach. Nat Rev Clin Oncol 2024; 21:801-817. [PMID: 39232212 DOI: 10.1038/s41571-024-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8+ T cell-based immunophenotypic classification of this malignancy, followed by discussions of the preclinical data providing the basis to treat such immunophenotypes with combination immunotherapies. We posit that the integration of an accurate TME immunophenotype characterization with genetic data can enable the design of tailored therapeutic approaches and improve patient recruitment in clinical trials. Lastly, we propose a roadmap incorporating tissue-based profiling to guide future trials testing adoptive cell therapy approaches and assess novel immunotherapy combinations while promoting collaborative research.
Collapse
Affiliation(s)
- Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Lana Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
4
|
Monjé N, Dragomir MP, Sinn BV, Hoffmann I, Makhmut A, Simon T, Kunze CA, Ihlow J, Schmitt WD, Pohl J, Piwonski I, Marchenko S, Keunecke C, Calina TG, Tiso F, Kulbe H, Kreuzinger C, Cacsire Castillo-Tong D, Sehouli J, Braicu EI, Denkert C, Darb-Esfahani S, Kübler K, Capper D, Coscia F, Morkel M, Horst D, Sers C, Taube ET. AHRR and SFRP2 in primary versus recurrent high-grade serous ovarian carcinoma and their prognostic implication. Br J Cancer 2024; 130:1249-1260. [PMID: 38361045 PMCID: PMC11014847 DOI: 10.1038/s41416-023-02550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND The aim of this study was to analyse transcriptomic differences between primary and recurrent high-grade serous ovarian carcinoma (HGSOC) to identify prognostic biomarkers. METHODS We analysed 19 paired primary and recurrent HGSOC samples using targeted RNA sequencing. We selected the best candidates using in silico survival and pathway analysis and validated the biomarkers using immunohistochemistry on a cohort of 44 paired samples, an additional cohort of 504 primary HGSOCs and explored their function. RESULTS We identified 233 differential expressed genes. Twenty-three showed a significant prognostic value for PFS and OS in silico. Seven markers (AHRR, COL5A2, FABP4, HMGCS2, ITGA5, SFRP2 and WNT9B) were chosen for validation at the protein level. AHRR expression was higher in primary tumours (p < 0.0001) and correlated with better patient survival (p < 0.05). Stromal SFRP2 expression was higher in recurrent samples (p = 0.009) and protein expression in primary tumours was associated with worse patient survival (p = 0.022). In multivariate analysis, tumour AHRR and SFRP2 remained independent prognostic markers. In vitro studies supported the anti-tumorigenic role of AHRR and the oncogenic function of SFRP2. CONCLUSIONS Our results underline the relevance of AHRR and SFRP2 proteins in aryl-hydrocarbon receptor and Wnt-signalling, respectively, and might lead to establishing them as biomarkers in HGSOC.
Collapse
Affiliation(s)
- Nanna Monjé
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Mihnea P Dragomir
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Bruno V Sinn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Inga Hoffmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Anuar Makhmut
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany
| | - Tincy Simon
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Catarina A Kunze
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Jana Ihlow
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Wolfgang D Schmitt
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Jonathan Pohl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Iris Piwonski
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Sofya Marchenko
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Carlotta Keunecke
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Francesca Tiso
- Center of Functional Genomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Hagen Kulbe
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charitéplatz 1, 10117, Berlin, Germany
| | - Caroline Kreuzinger
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Dan Cacsire Castillo-Tong
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jalid Sehouli
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charitéplatz 1, 10117, Berlin, Germany
| | - Elena I Braicu
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charitéplatz 1, 10117, Berlin, Germany
| | - Carsten Denkert
- Institute of Pathology, University Hospital Gießen and Marburg, Marburg, Germany
| | - Silvia Darb-Esfahani
- Institute of Pathology, Berlin-Spandau, Stadtrandstraße 555, 13589, Berlin, Germany
| | - Kirsten Kübler
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center of Functional Genomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School Teaching Hospital, Charlestown, MA, USA
| | - David Capper
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fabian Coscia
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany
| | - Markus Morkel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - David Horst
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Christine Sers
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Eliane T Taube
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
5
|
Saida T, Shikama A, Mori K, Ishiguro T, Minaguchi T, Satoh T, Nakajima T. Comparing Characteristics of Pelvic High-grade Serous Carcinomas with and without Breast Cancer Gene Variants on MR Imaging. Magn Reson Med Sci 2024; 23:18-26. [PMID: 36372398 PMCID: PMC10838714 DOI: 10.2463/mrms.mp.2022-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/24/2022] [Indexed: 01/05/2024] Open
Abstract
PURPOSE To compare MRI findings of high-grade serous carcinoma (HGSC) with and without breast cancer (BRCA) gene variants to explore the feasibility of MRI as a genetic predictor. METHODS We retrospectively reviewed MRI data from 16 patients with BRCA variant-positive (11 patients of BRCA1 and 5 patients of BRCA2 variant-positive) and 32 patients with BRCA variant-negative HGSCs and evaluated tumor size, appearance, nature of solid components, apparent diffusion coefficient (ADC) value, time-intensity curve, several dynamic contrast-enhanced curve descriptors, and nature of peritoneal metastasis. Age, primary site, tumor stage, bilaterality, presence of lymph node metastasis, presence of peritoneal metastasis, and tumor markers were also compared between the groups with the Mann-Whitney U and chi-square tests. RESULTS The mean tumor size of BRCA variant-positive HGSCs was 9.6 cm, and that of variant-negative HGSCs was 6.8 cm, with no significant difference (P = 0.241). No significant difference was found between BRCA variant-positive and negative HGSCs in other evaluated factors, except for age (mean age, 53 years old; range, 32-78 years old for BRCA variant-positive and mean age, 61 years old; range, 44-80 years old for BRCA variant-negative, P = 0.033). Comparing BRCA1 variant-positive and BRCA2 variant-positive HGSCs, BRCA1 variant-positive HGSCs were larger (P = 0.040), had greater Max enhancement (P = 0.013), Area under the curve (P = 0.013), and CA125 (P = 0.038), and had a higher frequency of lymph node metastasis (P = 0.049), with significance. CONCLUSION There was no significant difference in the MRI findings between patients with HGSCs with and without BRCA variants. Although studied in small numbers, BRCA1 variant-positive HGSCs were larger and more enhanced than BRCA2 variant-positive HGSCs with higher CA125 and more frequent lymph node metastases, and may represent more aggressive features.
Collapse
Affiliation(s)
- Tsukasa Saida
- Department of Radiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ayumi Shikama
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kensaku Mori
- Department of Radiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshitaka Ishiguro
- Department of Radiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takeo Minaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toyomi Satoh
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takahito Nakajima
- Department of Radiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Liu C, Li Y, Zhu Y, Lu M. The Value of IOTA Simple Rules Combined With CEUS Scoring System in the Diagnosis of Benign and Malignant Ovarian Masses and Its Correlation With MVD and VEGF: A Preliminary Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:2983-2992. [PMID: 35481545 DOI: 10.1002/jum.15999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/23/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To investigate the diagnostic value of International Ovarian Tumor Analysis (IOTA) simple rules combined with contrast-enhanced ultrasound (CEUS) scoring system in the differential diagnosis of ovarian tumors, and the correlations of the scoring system with microvessel density (MVD) and vascular endothelial growth factor (VEGF). METHODS One hundred eighty-nine patients with ovarian tumors were examined by routine ultrasound and CEUS. The enhanced characteristics of CEUS were observed, and the masses were classified by IOTA simple rules. To compare the diagnostic value of IOTA simple rules combined with CEUS scoring system and IOTA simple rules in the diagnosis of ovarian tumors. Immunohistochemistry was used to detect the expression of MVD and VEGF in postoperative tissue samples. The correlations between the new scoring system with MVD and VEGF were analyzed. RESULTS The sensitivity (93.98%), specificity (94.34%), positive predictive value (92.86%), negative predictive value (95.24%), and accuracy (94.18%) of IOTA simple rules combined with CEUS scoring system in the diagnosis of ovarian tumors were higher than those of IOTA simple rules alone (all P < .05). The score system was significantly positively correlated with MVD and VEGF, and the r values were 0.77 and 0.63, respectively (P < .001). CONCLUSIONS IOTA simple rules combined with CEUS scoring system was helpful to improve the accuracy of ultrasound diagnosis of ovarian tumors, which was significantly correlated with MVD and VEGF. It could provide important reference information for treatment scheme formulation and prognosis evaluation.
Collapse
Affiliation(s)
- Chun Liu
- Department of Ultrasound, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Li
- Department of Ultrasound, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Zhu
- Department of Ultrasound, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Man Lu
- Department of Ultrasound, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Bound NT, Vandenberg CJ, Kartikasari AER, Plebanski M, Scott CL. Improving PARP inhibitor efficacy in high-grade serous ovarian carcinoma: A focus on the immune system. Front Genet 2022; 13:886170. [PMID: 36159999 PMCID: PMC9505691 DOI: 10.3389/fgene.2022.886170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is a genomically unstable malignancy responsible for over 70% of all deaths due to ovarian cancer. With roughly 50% of all HGSOC harboring defects in the homologous recombination (HR) DNA repair pathway (e.g., BRCA1/2 mutations), the introduction of poly ADP-ribose polymerase inhibitors (PARPi) has dramatically improved outcomes for women with HR defective HGSOC. By blocking the repair of single-stranded DNA damage in cancer cells already lacking high-fidelity HR pathways, PARPi causes the accumulation of double-stranded DNA breaks, leading to cell death. Thus, this synthetic lethality results in PARPi selectively targeting cancer cells, resulting in impressive efficacy. Despite this, resistance to PARPi commonly develops through diverse mechanisms, such as the acquisition of secondary BRCA1/2 mutations. Perhaps less well documented is that PARPi can impact both the tumour microenvironment and the immune response, through upregulation of the stimulator of interferon genes (STING) pathway, upregulation of immune checkpoints such as PD-L1, and by stimulating the production of pro-inflammatory cytokines. Whilst targeted immunotherapies have not yet found their place in the clinic for HGSOC, the evidence above, as well as ongoing studies exploring the synergistic effects of PARPi with immune agents, including immune checkpoint inhibitors, suggests potential for targeting the immune response in HGSOC. Additionally, combining PARPi with epigenetic-modulating drugs may improve PARPi efficacy, by inducing a BRCA-defective phenotype to sensitise resistant cancer cells to PARPi. Finally, invigorating an immune response during PARPi therapy may engage anti-cancer immune responses that potentiate efficacy and mitigate the development of PARPi resistance. Here, we will review the emerging PARPi literature with a focus on PARPi effects on the immune response in HGSOC, as well as the potential of epigenetic combination therapies. We highlight the potential of transforming HGSOC from a lethal to a chronic disease and increasing the likelihood of cure.
Collapse
Affiliation(s)
- Nirashaa T. Bound
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Cassandra J. Vandenberg
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Apriliana E. R. Kartikasari
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Magdalena Plebanski
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Clare L. Scott
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
| |
Collapse
|
8
|
When breaks get hot: inflammatory signaling in BRCA1/2-mutant cancers. Trends Cancer 2022; 8:174-189. [PMID: 35000881 DOI: 10.1016/j.trecan.2021.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Genomic instability and inflammation are intricately connected hallmark features of cancer. DNA repair defects due to BRCA1/2 mutation instigate immune signaling through the cGAS/STING pathway. The subsequent inflammatory signaling provides both tumor-suppressive as well as tumor-promoting traits. To prevent clearance by the immune system, genomically instable cancer cells need to adapt to escape immune surveillance. Currently, it is unclear how genomically unstable cancers, including BRCA1/2-mutant tumors, are rewired to escape immune clearance. Here, we summarize the mechanisms by which genomic instability triggers inflammatory signaling and describe adaptive mechanisms by which cancer cells can 'fly under the radar' of the immune system. Additionally, we discuss how therapeutic activation of the immune system may improve treatment of genomically instable cancers.
Collapse
|
9
|
Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, Fahr N, Desbuisson M, Grimm A, Zhang H, Chong C, Dagher J, Chee S, Tsianou T, Dorier J, Stevenson BJ, Iseli C, Ronet C, Bobisse S, Genolet R, Walton J, Bassani-Sternberg M, Kandalaft LE, Ren B, McNeish I, Swisher E, Harari A, Delorenzi M, Ciriello G, Irving M, Rusakiewicz S, Foukas PG, Martinon F, Dangaj Laniti D, Coukos G. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep 2021; 36:109412. [PMID: 34289354 PMCID: PMC8371260 DOI: 10.1016/j.celrep.2021.109412] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
In this study, we investigate mechanisms leading to inflammation and immunoreactivity in ovarian tumors with homologous recombination deficiency (HRD). BRCA1 loss is found to lead to transcriptional reprogramming in tumor cells and cell-intrinsic inflammation involving type I interferon (IFN) and stimulator of IFN genes (STING). BRCA1-mutated (BRCA1mut) tumors are thus T cell inflamed at baseline. Genetic deletion or methylation of DNA-sensing/IFN genes or CCL5 chemokine is identified as a potential mechanism to attenuate T cell inflammation. Alternatively, in BRCA1mut cancers retaining inflammation, STING upregulates VEGF-A, mediating immune resistance and tumor progression. Tumor-intrinsic STING elimination reduces neoangiogenesis, increases CD8+ T cell infiltration, and reverts therapeutic resistance to dual immune checkpoint blockade (ICB). VEGF-A blockade phenocopies genetic STING loss and synergizes with ICB and/or poly(ADP-ribose) polymerase (PARP) inhibitors to control the outgrowth of Trp53-/-Brca1-/- but not Brca1+/+ ovarian tumors in vivo, offering rational combinatorial therapies for HRD cancers.
Collapse
Affiliation(s)
- Marine Bruand
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marco Mina
- Swiss Institute of Bioinformatics, Lausanne, Switzerland; Department of Computational Biology, UNIL, Lausanne, Switzerland
| | - Eleonora Ghisoni
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Matteo Morotti
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Evripidis Lanitis
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Noémie Fahr
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Mathieu Desbuisson
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alizée Grimm
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Hualing Zhang
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland; Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chloe Chong
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Julien Dagher
- Institute of Pathology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Sora Chee
- Ludwig Institute for Cancer Research and University of California, La Jolla, CA, USA
| | - Theodora Tsianou
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Julien Dorier
- Swiss Institute of Bioinformatics, Lausanne, Switzerland; Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | | | | | - Catherine Ronet
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Josephine Walton
- Department of Surgery & Cancer, Ovarian Cancer Action Research Centre, Hammersmith Hospital, Imperial College London, London, UK
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Bing Ren
- Ludwig Institute for Cancer Research and University of California, La Jolla, CA, USA
| | - Iain McNeish
- Department of Surgery & Cancer, Ovarian Cancer Action Research Centre, Hammersmith Hospital, Imperial College London, London, UK
| | | | - Alexandre Harari
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Mauro Delorenzi
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Giovanni Ciriello
- Swiss Institute of Bioinformatics, Lausanne, Switzerland; Department of Computational Biology, UNIL, Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Sylvie Rusakiewicz
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Periklis G Foukas
- 2nd Department of Pathology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| | - George Coukos
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| |
Collapse
|
10
|
Penciu RC, Postolache I, Steriu L, Izvoranu S, Tica AA, Mocanu ID, Sârbu V, Deacu M, Tica I, Bălţătescu GI, Tica OS, Tica VI. Is there a relationship in-between ovarian endometriosis and ovarian cancer? Immunohistochemical profile of four cases with coexisting ovarian endometriosis and cancer. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:157-165. [PMID: 32747907 PMCID: PMC7728120 DOI: 10.47162/rjme.61.1.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Endometriosis (EMs) is a benign disease characterized by the presence of endometrial tissue outside the uterine cavity. EMs associated with ovarian cancer (OC) has a relative low incidence (5% to 10%), sometimes with evidence of a transition stage through atypical EMs (1.6% cases). We have assessed 135 consecutive patients with either EMs or OC and, out of them, our study reports on four cases of ovarian EMs and OC: two cases with endometrioid OC and two cases with high-grade serous OC (HGSOC). Cases with EMs and HGSOC are extremely rarely reported in the literature – we could find not more than 30 cases. The main objective of our research was to observe the possible similarities between EMs and OC. Secondly, we analyzed the differences between EMs associated with endometrioid OC and EMs associated with HGSOC. We evaluated them in terms of clinical status (age, stages of EMs and OC) and immunohistochemical (IHC) expression of estrogen receptor (ER), progesterone receptor (PR), Ki67, p53, p16, Wilms’ tumor 1 (WT1), cluster of differentiation (CD) 34 and CD10 immunomarkers – we could not find in the literature all these markers assessed, in the same time, to such samples. Our results indicated that there are no similarities between EMs and OC and no atypical EMs was identified in our cases. We recorded higher values of ER expression in EMs associated with HGSOC than in EMs associated with endometrioid OC. Higher values of ER expression were also recorded in OC than in endometriotic foci. There were no differences in proliferative rate of endometriotic foci associated with endometrioid OC, compared to EMs associated with HGSOC. An aberrant IHC expression for p53 protein and p16 protein was noted only in HGSOC. Also, a positive immunostaining for Wilms’ tumor 1 (WT1) was identified only in HGSOC. Higher values of microvessel density were recorded in OC but not in endometriotic foci. We concluded that there were no similarities between EMs and OC for the cases included in our study, but we noticed differences in terms of Ki67 index and also between hormonal receptors expression in EMs associated with HGSOC, comparing with EMs associated with endometrioid OCs. These results may represent a “brick” for future researches on the less understood EMs associated with type II of OCs, especially with HGSOC. Identifying the best marker, which can predict the risk of developing OC for the patients with EMs, may lead to discover new specific therapeutic agents and, therefore, a better, tailored, therapy.
Collapse
|
11
|
The Adler grade by Doppler ultrasound is associated with clinical pathology of cervical cancer: Implication for clinical management. PLoS One 2020; 15:e0236725. [PMID: 32777812 PMCID: PMC7417192 DOI: 10.1371/journal.pone.0236725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To analyze the relationship of Adler grade by transvaginal color Doppler flow imaging (TV-CDFI) and the clinical pathological parameters of patients with cervical cancer, and to identify the value of Adler grade in the diagnosis and treatment of cervical cancer. METHODS Patients with cervical cancer diagnosed pathologically in our hospital from January 1, 2019 to December 31, 2019 were included, All patients underwent TV-CDFI examination, and the images were divided into 0 to III grades according to the Adler grades, and the correlations between the Adler classification and clinical pathological parameters (clinical stage, mass size, pathological type, squamous cell carcinoma subtype, CA125, CA199) were analyzed. RESULTS A total of 162 patients with cervical cancer were included. With the increase of Adler severity, the clinical stage of cervical cancer increased accordingly. the cancer size differed significantly in patients with different Adler grade (p = 0.004); There were significant differences in the level of CA125, CA199 between the squamous cell carcinoma and adenocarcinoma (all p<0.05). the Adler grade was positively related with the clinical stage, pathological type and squamous cell carcinoma subtypes of cervical cancer (all p<0.05), no correlations were found among the Adler grade and the cancer size, CA125, CA199 (all p>0.05). The area under ROC curve of the cervical squamous cell carcinoma predicted by Adler grade based on FIGO results and pathological results was 0.811and 0.762 respectively (all p<0.05). CONCLUSIONS Adler grades are closely associated with the clinical pathology of cervical cancer, which may be a convenient and effective approach for the assisting assessment of cervical cancer.
Collapse
|
12
|
Guan J, Darb-Esfahani S, Richter R, Taube ET, Ruscito I, Mahner S, Woelber L, Prieske K, Concin N, Vergote I, Van Nieuwenhuysen E, Achimas-Cadariu P, Glajzer J, Woopen H, Stanske M, Kulbe H, Denkert C, Sehouli J, Braicu EI. Vascular endothelial growth factor receptor 2 (VEGFR2) correlates with long-term survival in patients with advanced high-grade serous ovarian cancer (HGSOC): a study from the Tumor Bank Ovarian Cancer (TOC) Consortium. J Cancer Res Clin Oncol 2019; 145:1063-1073. [PMID: 30810838 DOI: 10.1007/s00432-019-02877-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The impact of angiogenesis on long-term survival of high-grade serous ovarian cancer (HGSOC) patients remains unclear. This study investigated whether angiogenic markers correlated with 5-year progression-free survival (PFS) in a large cohort of matched advanced HGSOC tissue samples. METHODS Tumor samples from 124 primary HGSOC patients were retrospectively collected within the Tumor Bank Ovarian Cancer ( http://www.toc-network.de ). All patients were in advanced stages (FIGO stage III-IV). No patient had received anti-angiogenesis therapy. The cohort contains 62 long-term survivors and 62 controls matched by age and post-surgical tumor residuals. Long-term survivors were defined as patients with no relapse within 5 years after the end of first-line chemotherapy. Controls were patients who suffered from first relapse within 6-36 months after primary treatment. Samples were assessed for immunohistochemical expression of vascular endothelial growth factor (VEGF) A and VEGF receptor 2 (VEGFR2). Expression profiles of VEGFA and VEGFR2 were compared between the two groups. RESULTS Significant correlation between VEGFA and VEGFR2 expression was observed (p < 0.0001, Spearman coefficient 0.347). A high expression of VEGFR2 (VEGFR2high) was found more frequently in long-term survivors (77.4%, 48/62) than in controls (51.6%, 30/62, p = 0.001), independent of FIGO stage and VEGFA expression in multivariate analysis (p = 0.005). Also, VEGFR2high was found the most frequently in women with PFS ≥ 10 years (p = 0.001) among all 124 patients. However, no significant association was detected between VEGFA expression and 5-year PFS (p = 0.075). CONCLUSIONS VEGFR2 overexpression significantly correlated with long-term PFS in HGSOC patients, independent of age, FIGO stage, tumor residual and VEGFA expression.
Collapse
Affiliation(s)
- Jun Guan
- Department of Gynecology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin, Germany
| | - Silvia Darb-Esfahani
- Tumorbank Ovarian Cancer Network, Berlin, Germany
- Berlin Institute of Health, Institute of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rolf Richter
- Department of Gynecology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin, Germany
| | - Eliane T Taube
- Tumorbank Ovarian Cancer Network, Berlin, Germany
- Berlin Institute of Health, Institute of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ilary Ruscito
- Department of Gynecology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin, Germany
- Laboratory of Cell Therapy and Tumor Immunology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sven Mahner
- Tumorbank Ovarian Cancer Network, Berlin, Germany
- Department of Gynecology, University-Medical-Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Linn Woelber
- Tumorbank Ovarian Cancer Network, Berlin, Germany
- Department of Gynecology, University-Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Prieske
- Tumorbank Ovarian Cancer Network, Berlin, Germany
- Department of Gynecology, University-Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Concin
- Tumorbank Ovarian Cancer Network, Berlin, Germany
- Department of Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ignace Vergote
- Tumorbank Ovarian Cancer Network, Berlin, Germany
- Department of Gynecology and Obstetrics, University Hospital Leuven, Leuven, Belgium
| | - Els Van Nieuwenhuysen
- Tumorbank Ovarian Cancer Network, Berlin, Germany
- Department of Gynecology and Obstetrics, University Hospital Leuven, Leuven, Belgium
| | - Patriciu Achimas-Cadariu
- Tumorbank Ovarian Cancer Network, Berlin, Germany
- Department of Surgical and Gynecological Oncology, The Oncology Institute Cluj-Napoca, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Joanna Glajzer
- Department of Gynecology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin, Germany
| | - Hannah Woopen
- Department of Gynecology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin, Germany
| | - Mandy Stanske
- Department of Gynecology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hagen Kulbe
- Department of Gynecology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin, Germany
| | - Carsten Denkert
- Department of Gynecology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Tumorbank Ovarian Cancer Network, Berlin, Germany
| | - Elena Ioana Braicu
- Department of Gynecology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
- Tumorbank Ovarian Cancer Network, Berlin, Germany.
| |
Collapse
|
13
|
Nwani NG, Sima LE, Nieves-Neira W, Matei D. Targeting the Microenvironment in High Grade Serous Ovarian Cancer. Cancers (Basel) 2018; 10:E266. [PMID: 30103384 PMCID: PMC6115937 DOI: 10.3390/cancers10080266] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer⁻stroma interactions play a key role in cancer progression and response to standard chemotherapy. Here, we provide a summary of the mechanisms by which the major cellular components of the ovarian cancer (OC) tumor microenvironment (TME) including cancer-associated fibroblasts (CAFs), myeloid, immune, endothelial, and mesothelial cells potentiate cancer progression. High-grade serous ovarian cancer (HGSOC) is characterized by a pro-inflammatory and angiogenic signature. This profile is correlated with clinical outcomes and can be a target for therapy. Accumulation of malignant ascites in the peritoneal cavity allows for secreted factors to fuel paracrine and autocrine circuits that augment cancer cell proliferation and invasiveness. Adhesion of cancer cells to the mesothelial matrix promotes peritoneal tumor dissemination and represents another attractive target to prevent metastasis. The immunosuppressed tumor milieu of HGSOC is permissive for tumor growth and can be modulated therapeutically. Results of emerging preclinical and clinical trials testing TME-modulating therapeutics for the treatment of OC are highlighted.
Collapse
Affiliation(s)
- Nkechiyere G Nwani
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | - Livia E Sima
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | - Wilberto Nieves-Neira
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| |
Collapse
|