1
|
Wang T, Wang S, Li Z, Xie J, Jia Q, Hou J. Integrative machine learning model of RNA modifications predict prognosis and treatment response in patients with breast cancer. Cancer Cell Int 2025; 25:43. [PMID: 39948551 PMCID: PMC11827143 DOI: 10.1186/s12935-025-03651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Breast cancer, a highly heterogeneous and complex disease, remains the leading cause of cancer-related death among women worldwide. Despite advances in treatment modalities, effective prognostic models and therapeutic strategies are still urgently needed. METHODS We retrospectively analyzed 15 independent breast cancer cohorts to explore the role of RNA modifications in the prognosis of patients with breast cancer. By integrating nine types of RNA modifications, we developed a comprehensive machine learning-based RNA modification signature (CMRS). Furthermore, single-cell RNA sequencing data were analyzed to understand the biological mechanisms underlying CMRS. In addition, immune infiltration levels were evaluated via six different algorithms, and immune checkpoint inhibitor responsiveness was predicted. Moreover, the response of high-CMIS patients to chemotherapy was predicted via multiple datasets. Finally, immunohistochemistry was performed on tissue samples from breast cancer patients to validate protein expression levels. RESULTS Our analysis revealed five key RNA modification-related genes (ENO1, ARAF, WT1, GADD45A, and BIRC3) associated with breast cancer prognosis. The CMRS model demonstrated high predictive accuracy across multiple cohorts and was significantly correlated with patient survival outcomes. Multiomics analysis revealed that high CMRS was associated with increased tumor mutational burden and distinct mutational signatures, particularly in pathways related to TP53, MYC, and cell proliferation. Single-cell analysis highlighted the involvement of epithelial cells and MYC signaling in high CMRS activity. Cell‒cell communication analysis revealed reduced interaction strength in hig CMRS patients, indicating poor prognosis. Furthermore, low CMRS patients presented increased immune cell infiltration and improved responsiveness to immune checkpoint inhibitors, whereas high CMRS patients were identified as potential candidates for treatment with panobinostat and vincristine. CONCLUSION Our study elucidates the significant role of RNA modifications in breast cancer prognosis and treatment. The CMRS model serves as a sensitive biomarker for predicting patient survival and treatment responsiveness, offering a new avenue for personalized therapy in patients with breast cancer.
Collapse
Affiliation(s)
- Tao Wang
- Research Laboratory Center, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Shu Wang
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Zhuolin Li
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Jie Xie
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Qi Jia
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| | - Jing Hou
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
2
|
Whitmarsh T, Cope W, Carmona-Bozo J, Manavaki R, Sammut SJ, Woitek R, Provenzano E, Brown EL, Bohndiek SE, Gallagher FA, Caldas C, Gilbert FJ, Markowetz F. Quantifying the tumour vasculature environment from CD-31 immunohistochemistry images of breast cancer using deep learning based semantic segmentation. Breast Cancer Res 2025; 27:17. [PMID: 39905431 DOI: 10.1186/s13058-024-01950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Tumour vascular density assessed from CD-31 immunohistochemistry (IHC) images has previously been shown to have prognostic value in breast cancer. Current methods to measure vascular density, however, are time-consuming, suffer from high inter-observer variability and are limited in describing the complex tumour vasculature morphometry. METHODS We propose a method for automatically measuring a range of vascular parameters from CD-31 IHC images, which together provide a detailed description of the vasculature morphology. We first used a U-Net based convolutional neural network, trained and validated using 36 partially annotated whole slide images from 27 patients, to segment vessel structures and tumour regions from which the measurements are taken. The model also segments the vascular smooth muscle, benign epithelium, adipose tissue, stroma, lymphocyte clusters, nerves and CD-31 positive leukocytes, and we applied it to an additional 21 images from 15 patients. Using these segmentations, we investigated the relationship between the various tissue types and the vasculature and studied the relationship of various vascular parameters with clinical parameters. We also performed a 3D histology analysis on a separate tumour sample as a proof of principle, providing a more comprehensive visualization of vasculature morphology compared to the standard 2D cross-section of a tissue sample. RESULTS Using two-way cross-validation, we show that vessels were accurately segmented, with Dice scores of 0.875 and 0.856, and were accurately identified, with F1 scores of 0.777 and 0.748. All vascular parameters exhibit strong ( r > 0.7 ) and significant (p<0.001) correlations with measurements taken from the manual ground truth vessel segmentations. A significant relationship between the major/minor axis ratio, a measure of elongation, and the tumour grade was found. CONCLUSION Our proposed method shows promise as a tool for studying the tumour vasculature and its relationship with surrounding cells and tissue types. Furthermore, the correlation with tumour grade highlights the clinical relevance of our approach. These findings suggest that our method could have substantial implications for improving prognostic assessments and personalizing therapeutic strategies in breast cancer treatment.
Collapse
Affiliation(s)
- Tristan Whitmarsh
- Institute of Astronomy, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Wei Cope
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Julia Carmona-Bozo
- School of Medicine, University of California San Francisco, San Francisco, US
| | - Roido Manavaki
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Stephen-John Sammut
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK
- Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Danube Private University, Krems, Austria
| | - Elena Provenzano
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emma L Brown
- Cancer Research UK Beatson Institute, University of Glasgow, Glasgow, UK
| | - Sarah E Bohndiek
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Carlos Caldas
- Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Ben Haj Othmen H, Othman H, Khamessi O, Bettaieb I, Gara S, Kharrat M. Overexpression of WT1 in all molecular subtypes of breast cancer and its impact on survival: exploring oncogenic and tumor suppressor roles of distinct WT1 isoforms. Mol Biol Rep 2024; 51:544. [PMID: 38642153 DOI: 10.1007/s11033-024-09450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/15/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Breast cancer is a highly heterogeneous solid tumor, posing challenges in developing targeted therapies effective for all mammary carcinoma subtypes. WT1 emerges as a promising target for breast cancer therapy due to its potential oncogenic role in various cancer types. Previous works have yielded inconsistent results. Therefore, further studies are needed to clarify the behavior of this complex gene in breast cancer. METHODS AND RESULTS In this study, we examined WT1 expression in both Formalin Fixed Paraffin Embedded breast tumors (n = 41) and healthy adjacent tissues (n = 41) samples from newly diagnosed cases of ductal invasive breast cancer. The fold change in gene expression between the tumor and healthy tissue was determined by calculating 2-∆∆Ct. Disease-free survival analysis was computed using the Kaplan-Meier method. To identify the expression levels of different WT1 isoforms, we explored the ISOexpresso database. Relative quantification of the WT1 gene revealed an overexpression of WT1 in most cases. The percentage of patients surviving free of disease at 8 years of follow-up was lower in the group overexpressing WT1 compared to the group with down-regulated WT1. CONCLUSIONS Interestingly, this overexpression was observed in all molecular subtypes of invasive breast cancer, underscoring the significance of WT1 as a potential target in all these subtypes. The observed WT1 down-expression in a few cases of invasive breast cancer, associated with better survival outcomes, may correspond to the down-regulation of a particular WT1-KTS (-) isoform: the WT1 A isoform (EX5-/KTS-). The co-expression of this WT1 oncogenic isoform with a regulated WT1- tumor suppressor isoform, such as the major WT1 F isoform (EX5-/KTS +), could also explain such survival outcomes. Due to its capacity to adopt dual roles, it becomes imperative to conduct individual molecular expression profiling of the WT1 gene. Such an approach holds great promise in the development of personalized treatment strategies for breast cancer.
Collapse
Affiliation(s)
- Hind Ben Haj Othmen
- Human Genetics Laboratory LR99ES10, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007, Tunis, Tunisia.
| | - Houcemeddine Othman
- Laboratory of Cytogenetics, Molecular Genetics and Biology of Human Reproduction, University Hospital Farhat Hached, Sousse, Tunisia
| | - Oussema Khamessi
- Biotechnology Institut of Sidi Thabet, University of Manouba, Ariana BP-66, 2010, Manouba, Tunisia
| | - Ilhem Bettaieb
- Laboratory of Immunohistocytology, Salah Azaiez Cancer Institute, 1006, Tunis, Tunisia
| | - Sonia Gara
- Human Genetics Laboratory LR99ES10, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007, Tunis, Tunisia
- Laboratory of Clinical Biochemistry, Salah Azaiez Cancer Institute, 1006, Tunis, Tunisia
| | - Maher Kharrat
- Human Genetics Laboratory LR99ES10, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007, Tunis, Tunisia
| |
Collapse
|
4
|
Ravichandran A, Monkman J, Mehdi AM, Blick T, Snell C, Kulasinghe A, Bray LJ. The in situ transcriptomic landscape of breast tumour-associated and normal adjacent endothelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166985. [PMID: 38061601 DOI: 10.1016/j.bbadis.2023.166985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS Triple Negative Breast Cancer (TNBC) is associated with increased angiogenesis, which is known to aid tumour growth and metastasis. Anti-angiogenic therapies that have been developed to target this feature have mostly generated disappointing clinical results. Further research into targeted approaches is limited by a lack of understanding of the in situ molecular profile of tumour-associated vasculature. In this study, we aimed to understand the differences in the molecular profiles of tumour endothelial cells vs normal-adjacent endothelial cells in TNBC tissues. METHOD We have applied unbiased whole transcriptome spatial profiling of in situ gene expressions of endothelial cells localized in full-face patient TNBC tissues (n = 4) and normal-adjacent regions of the same patient breast tissues. RESULTS Our comparative analysis revealed that 2412 genes were differentially expressed (padj < 0.05) between the tumour endothelial cells and normal-adjacent endothelial cells. Pathway enrichment showed the enrichment of gene sets related to cell-cell, cell-ECM adhesion, chromatin organization and remodeling, and protein-DNA complex subunit organization. CONCLUSION Overall, the results revealed unique molecular profiles and signalling pathways of tumour-associated vasculature, which is a critical step towards larger cohort studies investigating potential targets for TNBC prognosis and anti-angiogenic treatments.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.
| | - James Monkman
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ahmed M Mehdi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; Queensland Cyber Infrastructure Foundation Ltd, Facility for Advanced Bioinformatics, Brisbane, QLD 4072, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Cameron Snell
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Mater Pathology, Mater Hospital Brisbane, Mater Health Services, Brisbane, QLD 4101, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Laura J Bray
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Centre for the Personalised Analysis of Cancers, Queensland University of Technology, Translational Research Institute, QLD 4102, Australia; Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| |
Collapse
|
5
|
Morales AE, Gumenick R, Genovese CM, Jang YY, Ouedraogo A, Ibáñez de Garayo M, Pannellini T, Patel S, Bott ME, Alvarez J, Mun SS, Totonchy J, Gautam A, Delgado de la Mora J, Chang S, Wirth D, Horenstein M, Dao T, Scheinberg DA, Rubinstein PG, Semeere A, Martin J, Godfrey CC, Moser CB, Matining RM, Campbell TB, Borok MZ, Krown SE, Cesarman E. Wilms' tumor 1 (WT1) antigen is overexpressed in Kaposi Sarcoma and is regulated by KSHV vFLIP. PLoS Pathog 2024; 20:e1011881. [PMID: 38190392 PMCID: PMC10898863 DOI: 10.1371/journal.ppat.1011881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/27/2024] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
In people living with HIV, Kaposi Sarcoma (KS), a vascular neoplasm caused by KS herpesvirus (KSHV/HHV-8), remains one of the most common malignancies worldwide. Individuals living with HIV, receiving otherwise effective antiretroviral therapy, may present with extensive disease requiring chemotherapy. Hence, new therapeutic approaches are needed. The Wilms' tumor 1 (WT1) protein is overexpressed and associated with poor prognosis in several hematologic and solid malignancies and has shown promise as an immunotherapeutic target. We found that WT1 was overexpressed in >90% of a total 333 KS biopsies, as determined by immunohistochemistry and image analysis. Our largest cohort from ACTG, consisting of 294 cases was further analyzed demonstrating higher WT1 expression was associated with more advanced histopathologic subtypes. There was a positive correlation between the proportion of infected cells within KS tissues, assessed by expression of the KSHV-encoded latency-associated nuclear antigen (LANA), and WT1 positivity. Areas with high WT1 expression showed sparse T-cell infiltrates, consistent with an immune evasive tumor microenvironment. We show that major oncogenic isoforms of WT1 are overexpressed in primary KS tissue and observed WT1 upregulation upon de novo infection of endothelial cells with KSHV. KSHV latent viral FLICE-inhibitory protein (vFLIP) upregulated total and major isoforms of WT1, but upregulation was not seen after expression of mutant vFLIP that is unable to bind IKKƴ and induce NFκB. siRNA targeting of WT1 in latent KSHV infection resulted in decreased total cell number and pAKT, BCL2 and LANA protein expression. Finally, we show that ESK-1, a T cell receptor-like monoclonal antibody that recognizes WT1 peptides presented on MHC HLA-A0201, demonstrates increased binding to endothelial cells after KSHV infection or induction of vFLIP expression. We propose that oncogenic isoforms of WT1 are upregulated by KSHV to promote tumorigenesis and immunotherapy directed against WT1 may be an approach for KS treatment.
Collapse
Affiliation(s)
- Ayana E. Morales
- Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Ruby Gumenick
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Caitlyn M. Genovese
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Yun Yeong Jang
- Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Ariene Ouedraogo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Maite Ibáñez de Garayo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Sanjay Patel
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Matthew E. Bott
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Julio Alvarez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Sung Soo Mun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Jennifer Totonchy
- School of Pharmacy, Chapman University, Irvine, California, United States of America
| | - Archana Gautam
- Department of Allergy and Immunology, Icahn School of Medicine, New York, New York, United States of America
| | - Jesus Delgado de la Mora
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Stephanie Chang
- Cornell University, Ithaca, New York, United States of America
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Marcelo Horenstein
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - David A. Scheinberg
- Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Paul G. Rubinstein
- Section of Hematology/Oncology, John H. Stroger Jr Hospital of Cook County (Cook County Hospital), Ruth M. Rothstein Core Center, University of Illinois, Chicago, Illinois, United States of America
| | - Aggrey Semeere
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, United States of America
| | - Catherine C. Godfrey
- Office of the Global AIDS Coordinator, Department of State, Washington, DC, United States of America
| | - Carlee B. Moser
- Center for Biostatistics in AIDS Research, Harvard T H Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Roy M. Matining
- Center for Biostatistics in AIDS Research, Harvard T H Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Thomas B. Campbell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Margaret Z. Borok
- Department of Internal Medicine, University of Zimbabwe, Harare, Zimbabwe
| | - Susan E. Krown
- Memorial Sloan Kettering Cancer Center (emerita), New York, New York, United States of America
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
6
|
Wang X, Zhao J, Zhang Y, Liu Y, Wang J, Shi R, Yuan J, Meng K. Molecular mechanism of Wilms' tumor (Wt1) (+/-KTS) variants promoting proliferation and migration of ovarian epithelial cells by bioinformatics analysis. J Ovarian Res 2023; 16:46. [PMID: 36829196 PMCID: PMC9951437 DOI: 10.1186/s13048-023-01124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a gynecological disease with the highest mortality. With the lack of understanding of its pathogenesis, no accurate early diagnosis and screening method has been established for EOC. Studies revealed the multi-faceted function of Wilms' tumor (Wt1) genes in cancer, which may be related to the existence of multiple alternative splices. Our results show that Wt1 (+KTS) or Wt1 (-KTS) overexpression can significantly promote the proliferation and migration of human ovarian epithelial cells HOSEpiC, and Wt1 (+KTS) effects were more evident. To explore the Wt1 (+/-KTS) variant mechanism in HOSEpiC proliferation and migration and ovarian cancer (OC) occurrence and development, this study explored the differential regulation of Wt1 (+/-KTS) in HOSEpiC proliferation and migration by transcriptome sequencing. OC-related hub genes were screened by bioinformatics analysis to further explore the differential molecular mechanism of Wt1 (+/-KTS) in the occurrence of OC. Finally, we found that the regulation of Wt1 (+/-KTS) variants on the proliferation and migration of HOSEpiC may act through different genes and signaling pathways and screened out key genes and differentially regulated genes that regulate the malignant transformation of ovarian epithelial cells. The implementation of this study will provide new clues for the early diagnosis and precise treatment of OC.
Collapse
Affiliation(s)
- Xiaomei Wang
- grid.449428.70000 0004 1797 7280College of Basic Medicine, Jining Medical University, Jining, China
| | - Jingyu Zhao
- grid.449428.70000 0004 1797 7280Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China ,grid.449428.70000 0004 1797 7280College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- grid.449428.70000 0004 1797 7280Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China ,grid.449428.70000 0004 1797 7280College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuxin Liu
- grid.449428.70000 0004 1797 7280Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China ,grid.449428.70000 0004 1797 7280College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Jinzheng Wang
- grid.449428.70000 0004 1797 7280Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China ,grid.449428.70000 0004 1797 7280College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Ruoxi Shi
- grid.449428.70000 0004 1797 7280Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China ,grid.449428.70000 0004 1797 7280College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China. .,Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China. .,Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
7
|
Nanobody-based CAR T cells targeting intracellular tumor antigens. Biomed Pharmacother 2022; 156:113919. [DOI: 10.1016/j.biopha.2022.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
|
8
|
Lee WC, Chiu CH, Chu TH, Chien YS. WT1: The Hinge Between Anemia Correction and Cancer Development in Chronic Kidney Disease. Front Cell Dev Biol 2022; 10:876723. [PMID: 35465313 PMCID: PMC9019781 DOI: 10.3389/fcell.2022.876723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) emerge as promising agents to treat anemia in chronic kidney disease (CKD) but the major concern is their correlated risk of cancer development and progression. The Wilms’ tumor gene, WT1, is transcriptionally regulated by HIF and is known to play a crucial role in tumorigenesis and invasiveness of certain types of cancers. From the mechanism of action of HIF–PHIs, to cancer hypoxia and the biological significance of WT1, this review will discuss the link between HIF, WT1, anemia correction, and cancer. We aimed to reveal the research gaps and offer a focused strategy to monitor the development and progression of specific types of cancer when using HIF–PHIs to treat anemia in CKD patients. In addition, to facilitate the long-term use of HIF–PHIs in anemic CKD patients, we will discuss the strategy of WT1 inhibition to reduce the development and progression of cancer.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Hua Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yu-Shu Chien
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- *Correspondence: Yu-Shu Chien,
| |
Collapse
|
9
|
Overexpression of Wilms tumor 1 promotes IL-1β expression by upregulating histone acetylation in keratinocytes. Int Immunopharmacol 2021; 96:107793. [PMID: 34162155 DOI: 10.1016/j.intimp.2021.107793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022]
Abstract
Psoriasis is a common inflammatory skin disease. Infiltration of inflammatory cells and excessive proliferation of keratinocytes are the histopathological markers of psoriasis. The transcription factor Wilms Tumor 1 (WT1) is overexpressed in several tumor types, and plays an important part in the proliferation and apoptosis of cells. Studies have found that, compared with normal skin, WT1expression in the skin lesions of patients with psoriasis are increased significantly. Knockdown of WT1 inhibited the proliferation of a human epidermal keratinocyte cell line (HaCaT cells) and promoted their apoptosis, whereas WT1 overexpression exhibited the opposite effect. WT1 was overexpressed or inhibited in HaCaT cells by transfection with the WT1 plasmid or WT1 small interferring RNA (siRNA) using Lipofectamine 2000. Transcriptome sequencing and bioinformatics analysis revealed significant differences in IL-1β expression between the experimental group and control group. Real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assays showed that expression of IL-1β and WT1 were consistent. Subsequently, IL-1β was demonstrated to be a target of WT1 by chromatin immunoprecipitation (ChIP)-sequencing and luciferase reporter assay. ChIP-qPCR showed that WT1 regulated IL-1β expression by altering acetylation. Expression of WT1 mRNA was positively correlated with expression of IL-1β mRNA in psoriatic skin lesions. Our study suggested that WT1 likely promotes psoriasis development by regulating its target gene IL-1β, which shows high expression in psoriatic lesions and is involved in psoriasis development. These findings provide a new target for psoriasis treatment.
Collapse
|
10
|
Ren C, Tang X, Lan H. Comprehensive analysis based on DNA methylation and RNA-seq reveals hypermethylation of the up-regulated WT1 gene with potential mechanisms in PAM50 subtypes of breast cancer. PeerJ 2021; 9:e11377. [PMID: 33987034 PMCID: PMC8103922 DOI: 10.7717/peerj.11377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background Breast cancer (BC), one of the most widespread cancers worldwide, caused the deaths of more than 600,000 women in 2018, accounting for about 15% of all cancer-associated deaths in women that year. In this study, we aimed to discover potential prognostic biomarkers and explore their molecular mechanisms in different BC subtypes using DNA methylation and RNA-seq. Methods We downloaded the DNA methylation datasets and the RNA expression profiles of primary tissues of the four BC molecular subtypes (luminal A, luminal B, basal-like, and HER2-enriched), as well as the survival information from The Cancer Genome Atlas (TCGA). The highly expressed and hypermethylated genes across all the four subtypes were screened. We examined the methylation sites and the downstream co-expressed genes of the selected genes and validated their prognostic value using a different dataset (GSE20685). For selected transcription factors, the downstream genes were predicted based on the Gene Transcription Regulation Database (GTRD). The tumor microenvironment was also evaluated based on the TCGA dataset. Results We found that Wilms tumor gene 1 (WT1), a transcription factor, was highly expressed and hypermethylated in all the four BC subtypes. All the WT1 methylation sites exhibited hypermethylation. The methylation levels of the TSS200 and 1stExon regions were negatively correlated with WT1 expression in two BC subtypes, while that of the gene body region was positively associated with WT1 expression in three BC subtypes. Patients with low WT1 expression had better overall survival (OS). Five genes including COL11A1, GFAP, FGF5, CD300LG, and IGFL2 were predicted as the downstream genes of WT1. Those five genes were dysregulated in the four BC subtypes. Patients with a favorable 6-gene signature (low expression of WT1 and its five predicted downstream genes) exhibited better OS than that with an unfavorable 6-gene signature. We also found a correlation between WT1 and tamoxifen using STITCH. Higher infiltration rates of CD8 T cells, plasma cells, and monocytes were found in the lower quartile WT1 group and the favorable 6-gene signature group. In conclusion, we demonstrated that WT1 is hypermethylated and up-regulated in the four BC molecular subtypes and a 6-gene signature may predict BC prognosis.
Collapse
Affiliation(s)
- Chongyang Ren
- Department of Breast Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xiaojiang Tang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Haitao Lan
- Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
12
|
Zhang Y, Yan WT, Yang ZY, Li YL, Tan XN, Jiang J, Zhang Y, Qi XW. The role of WT1 in breast cancer: clinical implications, biological effects and molecular mechanism. Int J Biol Sci 2020; 16:1474-1480. [PMID: 32210734 PMCID: PMC7085227 DOI: 10.7150/ijbs.39958] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Although Wilms' tumor gene 1 (WT1) was first cloned and identified as a tumor suppressor gene in nephroblastoma, subsequent studies have demonstrated that it can also play an oncogenic role in leukemia and various solid tumors. WT1 exerts biological functions with high tissue- and cell-specificity. This article reviews the relationship between WT1 and breast cancer from two aspects: (1) clinical application of WT1, including the relationship between expression of WT1 and prognosis of breast cancer patients, and its effectiveness as a target for comprehensive therapy of breast cancer; (2) the biological effects and molecular mechanisms of WT1 in the development and progression of breast cancer, including proliferation, apoptosis, invasion, and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Ye Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Wen-Ting Yan
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ze-Yu Yang
- Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400013, China
| | - Yan-Ling Li
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xuan-Ni Tan
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Jiang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| |
Collapse
|
13
|
Li W, Deng G, Zhang J, Hu E, He Y, Lv J, Sun X, Wang K, Chen L. Identification of breast cancer risk modules via an integrated strategy. Aging (Albany NY) 2019; 11:12131-12146. [PMID: 31860871 PMCID: PMC6949069 DOI: 10.18632/aging.102546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common malignant cancers among females worldwide. This complex disease is not caused by a single gene, but resulted from multi-gene interactions, which could be represented by biological networks. Network modules are composed of genes with significant similarities in terms of expression, function and disease association. Therefore, the identification of disease risk modules could contribute to understanding the molecular mechanisms underlying breast cancer. In this paper, an integrated disease risk module identification strategy was proposed according to a multi-objective programming model for two similarity criteria as well as significance of permutation tests in Markov random field module score, function consistency score and Pearson correlation coefficient difference score. Three breast cancer risk modules were identified from a breast cancer-related interaction network. Genes in these risk modules were confirmed to play critical roles in breast cancer by literature review. These risk modules were enriched in breast cancer-related pathways or functions and could distinguish between breast tumor and normal samples with high accuracy for not only the microarray dataset used for breast cancer risk module identification, but also another two independent datasets. Our integrated strategy could be extended to other complex diseases to identify their risk modules and reveal their pathogenesis.
Collapse
Affiliation(s)
- Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Gui Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ji Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Erqiang Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|