1
|
He C, Wang Z, Yu J, Mao S, Xiang X. Current Drug Resistance Mechanisms and Treatment Options in Gastrointestinal Stromal Tumors: Summary and Update. Curr Treat Options Oncol 2024; 25:1390-1405. [PMID: 39441520 PMCID: PMC11541409 DOI: 10.1007/s11864-024-01272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
OPINION STATEMENT Gastrointestinal stromal tumor (GIST) is characterized by well-defined oncogenes. Despite the significant improvement in treatment outcomes with adjuvant imatinib therapy for patients, drug resistance remains a major challenge for GIST therapy. This review focuses on the mechanisms contributing to drug resistance phenotype in GIST, such as primary imatinib-resistant mutants, secondary mutations, non-covalent binding of TKI to its target, tumor heterogeneity, re-activation of pro-survival/proliferation pathways through non-KIT/PDGFRA kinases, and loss of therapeutic targets in wild-type GIST. Corresponding suggestions are proposed to overcome drug-resistance phenotype of GIST. This review also summarizes the suitability of currently approved TKIs on different KIT/PDGFRA mutations and updates related clinical trials. Recent potent drugs and emerging strategies against advanced GISTs in clinical trials are presented. Additionally, metabolic intervention offers a new avenue for clinical management in GIST. A landscape of metabolism in GIST and metabolic changes under imatinib treatment are summarized based on currently published data. The OXPHOS pathway is a promising therapeutic target in combination with TKI against sensitive KIT/PDGFRA mutants. Comprehensive understanding of the above resistance mechanisms, experimental drugs/strategies and metabolic changes is critical to implement the proper therapy strategy and improve the clinical therapy outcomes for GIST.
Collapse
Affiliation(s)
- Chunxiao He
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Zilong Wang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shuang Mao
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Rastogi S, Joshi A, Sato N, Lee S, Lee MJ, Trepel JB, Neckers L. An update on the status of HSP90 inhibitors in cancer clinical trials. Cell Stress Chaperones 2024; 29:519-539. [PMID: 38878853 PMCID: PMC11260857 DOI: 10.1016/j.cstres.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
The evolutionary conserved molecular chaperone heat shock protein 90 (HSP90) plays an indispensable role in tumorigenesis by stabilizing client oncoproteins. Although the functionality of HSP90 is tightly regulated, cancer cells exhibit a unique dependence on this chaperone, leading to its overexpression, which has been associated with poor prognosis in certain malignancies. While various strategies targeting heat shock proteins (HSPs) involved in carcinogenesis have been explored, only inhibition of HSP90 has consistently and effectively resulted in proteasomal degradation of its client proteins. To date, a total of 22 HSP90 inhibitors (HSP90i) have been tested in 186 cancer clinical trials, as reported by clinicaltrials.gov. Among these trials, 60 % have been completed, 10 % are currently active, and 30 % have been suspended, terminated, or withdrawn. HSP90 inhibitors (HSP90i) have been used as single agents or in combination with other drugs for the treatment of various cancer types in clinical trials. Notably, improved clinical outcomes have been observed when HSP90i are used in combination therapies, as they exhibit a synergistic antitumor effect. However, as single agents, HSP90i have shown limited clinical activity due to drug-related toxicity or therapy resistance. Recently, active trials conducted in Japan evaluating TAS-116 (pimitespib) have demonstrated promising results with low toxicity as monotherapy and in combination with the immune checkpoint inhibitor nivolumab. Exploratory biomarker analyses performed in various trials have demonstrated target engagement that suggests the potential for identifying patient populations that may respond favorably to the therapy. In this review, we discuss the advances made in the past 5 years regarding HSP90i and their implications in anticancer therapeutics. Our focus lies in evaluating drug efficacy, prognosis forecast, pharmacodynamic biomarkers, and clinical outcomes reported in published trials. Through this comprehensive review, we aim to shed light on the progress and potential of HSP90i as promising therapeutic agents in cancer treatment.
Collapse
Affiliation(s)
- Shraddha Rastogi
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Abhinav Joshi
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Nahoko Sato
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Liu Y, Li C, Liu H, Tan S. Combination therapy involving HSP90 inhibitors for combating cancer: an overview of clinical and preclinical progress. Arch Pharm Res 2024; 47:442-464. [PMID: 38632167 DOI: 10.1007/s12272-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
The molecular chaperone heat shock protein 90 (HSP90) regulates multiple crucial signalling pathways in cancer by driving the maturation of key signalling components, thereby playing a crucial role in tumorigenesis and drug resistance in cancer. Inhibition of HSP90 results in metastable conformational collapse of its client proteins and their proteasomal degradation. Considerable efforts have been devoted to the development of small-molecule inhibitors targeting HSP90, and more than 20 inhibitors have been evaluated in clinical trials for cancer therapy. However, owing to disadvantages such as organ toxicity and drug resistance, only one HSP90 inhibitor has been approved for use in clinical settings. In recent years, HSP90 inhibitors used in combination with other anti-cancer therapies have shown remarkable potential in the treatment of cancer. HSP90 inhibitors work synergistically with various anti-cancer therapies, including chemotherapy, targeted therapy, radiation therapy and immunotherapy. HSP90 inhibitors can improve the pharmacological effects of the above-mentioned therapies and reduce treatment resistance. This review provides an overview of the use of combination therapy with HSP90 inhibitors and other anti-cancer therapies in clinical and preclinical studies reported in the past decade and summarises design strategies and prospects for these combination therapies. Altogether, this review provides a theoretical basis for further research and application of these combination therapies in the treatment of cancer.
Collapse
Affiliation(s)
- Yajun Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| | - Chenyao Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dagong Road 2, Panjin, 124221, China
| | - Hongwei Liu
- Department of Head and Neck Surgery, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China.
- Affiliated Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| |
Collapse
|
4
|
Huang Z, Chen X, Wang Y, Yuan J, Li J, Hang W, Meng H. SLC7A11 inhibits ferroptosis and downregulates PD-L1 levels in lung adenocarcinoma. Front Immunol 2024; 15:1372215. [PMID: 38655266 PMCID: PMC11035808 DOI: 10.3389/fimmu.2024.1372215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) is a prevalent form of lung cancer originating from lung glandular cells with low survival rates despite recent therapeutic advances due to its diverse and complex nature. Recent evidence suggests a link between ferroptosis and the effectiveness of anti-PD-L1 therapy, with potential synergistic effects. Methods Our study comprehensively analyzed the expression patterns of ferroptosis regulators in LUAD and their association with prognosis and PD-L1 expression. Furthermore, we identified two distinct subtypes of LUAD through consensus clustering of ferroptosis regulators, revealing significant tumor heterogeneity, divergent PD-L1 expression, and varying prognoses between the subtypes. Results Among the selected ferroptosis regulators, SLC7A11 emerged as an independent prognostic marker for LUAD patients and exhibited a negative correlation with PD-L1 expression. Subsequent investigations revealed high expression of SLC7A11 in the LUAD population. In vitro experiments demonstrated that overexpression of SLC7A11 led to reduced PD-L1 expression and inhibited ferroptosis in A549 cells, underscoring the significant role of SLC7A11 in LUAD. Additionally, pan-cancer analyses indicated an association between SLC7A11 and the expression of immune checkpoint genes across multiple cancer types with poor prognoses. Discussion From a clinical standpoint, these findings offer a foundation for identifying and optimizing potential combination strategies to enhance the therapeutic effectiveness of immune checkpoint inhibitors and improve the prognosis of patients with LUAD.
Collapse
Affiliation(s)
- Zhenyao Huang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xia Chen
- Department of Respiratory Medicine, Xuyi People’s Hospital, Huai’an, Jiangsu, China
| | - Yun Wang
- Department of Dermatology, the Affiliated Huai'an Hospital of Xuzhou Medical University, the Second People's Hospital of Huai’an, Huai’an, China
| | - Jiali Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jing Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Wenlu Hang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hao Meng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Zhu Y, Dai Z. HSP90: A promising target for NSCLC treatments. Eur J Pharmacol 2024; 967:176387. [PMID: 38311278 DOI: 10.1016/j.ejphar.2024.176387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The emergence of targeted therapies and immunotherapies has improved the overall survival of patients with nonsmall cell lung cancer (NSCLC), but the 5-year survival rate remains low. New drugs are needed to overcome this dilemma. Moreover, the significant correlation between various client proteins of heat-shock protein (HSP) 90 and tumor occurrence, progression, and drug resistance suggests that HSP90 is a potential therapeutic target for NSCLC. However, the outcomes of clinical trials for HSP90 inhibitors have been disappointing, indicating significant toxicity of these drugs and that further screening of the beneficiary population is required. NSCLC patients with oncogenic-driven gene mutations or those at advanced stages who are resistant to multi-line treatments may benefit from HSP90 inhibitors. Enhancing the therapeutic efficacy and reducing the toxicity of HSP90 inhibitors can be achieved via the optimization of their drug structure, using them in combination therapies with low-dose HSP90 inhibitors and other drugs, and via targeted administration to tumor lesions. Here, we provide a review of the recent research on the role of HSP90 in NSCLC and summarize relevant studies of HSP90 inhibitors in NSCLC.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning Province, China
| | - Zhaoxia Dai
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning Province, China.
| |
Collapse
|
6
|
Doi T, Yamamoto N, Ohkubo S. Pimitespib for the treatment of advanced gastrointestinal stromal tumors and other tumors. Future Oncol 2024; 20:507-519. [PMID: 38050698 DOI: 10.2217/fon-2022-1172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
Pimitespib (TAS-116) is the first heat shock protein 90 (HSP90) inhibitor approved in Japan, and it is indicated for the treatment of gastrointestinal stromal tumors (GIST) that have progressed after treatment with imatinib, sunitinib and regorafenib. This review describes the preclinical and clinical research with pimitespib, including its mechanism of action, pharmacokinetics, clinical antitumour activity and safety. In a phase III study, pimitespib significantly prolonged progression-free survival compared with placebo (median 2.8 vs 1.4 months; hazard ratio 0.51; 95% CI 0.30-0.87; p = 0.006). Common treatment-related adverse events were diarrhoea, decreased appetite, increase in serum creatinine, malaise, nausea and eye disorders. The efficacy and safety of pimitespib are being investigated in other tumour types and in combination with other anticancer therapies.
Collapse
Affiliation(s)
- Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Centre Hospital East, Kashiwa, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Centre Hospital, Tokyo, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Cicala CM, Olivares-Rivas I, Aguirre-Carrillo JA, Serrano C. KIT/PDGFRA inhibitors for the treatment of gastrointestinal stromal tumors: getting to the gist of the problem. Expert Opin Investig Drugs 2024; 33:159-170. [PMID: 38344849 DOI: 10.1080/13543784.2024.2318317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Approximately 90% of gastrointestinal stromal tumors (GISTs) are driven by activating mutations in receptor tyrosine-kinases KIT or PDGFRA. Despite the outstanding results of first-line imatinib in advanced GIST, resistance ultimately occurs mainly through secondary mutations in KIT/PDGFRA. Other tyrosine-kinase inhibitors (TKIs) with a broader spectrum of activity against these mutations are approved after imatinib failure. However, response rates and progression-free survival are drastically lower compared to imatinib. Notably, imatinib also triggers early tolerance adaptation mechanisms, which precede the occurrence of secondary mutations. AREAS COVERED In this review, we outline the current landscape of KIT inhibitors, discuss the novel agents, and present additional biological pathways that may be therapeutically exploitable. EXPERT OPINION The development of broad-spectrum and highly selective TKIs able to induce a sustained KIT/PDGFRA inhibition is the pillar of preclinical and clinical investigation in GIST. However, it is now recognized that the situation is more intricate, with various factors interacting with KIT and PDGFRA, playing a crucial role in the response and resistance to treatments. Future strategies in the management of advanced GIST should integrate driver inhibition with the blockade of other molecules to enhance cell death and establish enduring responses in patients.
Collapse
Affiliation(s)
- Carlo María Cicala
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Iván Olivares-Rivas
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - César Serrano
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
8
|
Mattoo S, Gupta A, Chauhan M, Agrawal A, Pore SK. Prospects and challenges of noncoding-RNA-mediated inhibition of heat shock protein 90 for cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195006. [PMID: 38218528 DOI: 10.1016/j.bbagrm.2024.195006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Heat Shock Protein 90 (HSP90) is a potential drug target for cancer therapy as it is often dysregulated in several cancers, including lung, breast, pancreatic, and prostate cancers. In cancer, HSP90 fails to maintain the structural and functional integrity of its several client proteins which are involved in the hallmarks of cancer such as cell proliferation, invasion, migration, angiogenesis, and apoptosis. Several small molecule inhibitors of HSP90 have been shown to exhibit anticancer effects in vitro and in vivo animal models. However, a few of them are currently under clinical studies. The status and potential limitations of these inhibitors are discussed here. Studies demonstrate that several noncoding RNAs (ncRNAs) such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) regulate HSP90 and its client proteins to modulate cellular processes to exhibit oncogenic or tumor suppressing properties. Over the last decade, miRNAs and lncRNAs have drawn significant interest from the scientific community as therapeutic agents or targets for clinical applications. Here, we discuss the detailed mechanistic regulation of HSP90 and its client proteins by ncRNAs. Moreover, we highlight the significance of these ncRNAs as potential therapeutic agents/targets, and the challenges associated with ncRNA-based therapies. This article aims to provide a holistic view on HSP90-regulating ncRNAs for the development of novel therapeutic strategies to combat cancer.
Collapse
Affiliation(s)
- Shria Mattoo
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Abha Gupta
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Manvee Chauhan
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Akshi Agrawal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201311, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India.
| |
Collapse
|
9
|
Zhou S, Abdihamid O, Tan F, Zhou H, Liu H, Li Z, Xiao S, Li B. KIT mutations and expression: current knowledge and new insights for overcoming IM resistance in GIST. Cell Commun Signal 2024; 22:153. [PMID: 38414063 PMCID: PMC10898159 DOI: 10.1186/s12964-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/25/2023] [Indexed: 02/29/2024] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common sarcoma located in gastrointestinal tract and derived from the interstitial cell of Cajal (ICC) lineage. Both ICC and GIST cells highly rely on KIT signal pathway. Clinically, about 80-90% of treatment-naive GIST patients harbor primary KIT mutations, and special KIT-targeted TKI, imatinib (IM) showing dramatic efficacy but resistance invariably occur, 90% of them was due to the second resistance mutations emerging within the KIT gene. Although there are multiple variants of KIT mutant which did not show complete uniform biologic characteristics, most of them have high KIT expression level. Notably, the high expression level of KIT gene is not correlated to its gene amplification. Recently, accumulating evidences strongly indicated that the gene coding, epigenetic regulation, and pre- or post- protein translation of KIT mutants in GIST were quite different from that of wild type (WT) KIT. In this review, we elucidate the biologic mechanism of KIT variants and update the underlying mechanism of the expression of KIT gene, which are exclusively regulated in GIST, providing a promising yet evidence-based therapeutic landscape and possible target for the conquer of IM resistance. Video Abstract.
Collapse
Affiliation(s)
- Shishan Zhou
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87
| | - Omar Abdihamid
- Garissa Cancer Center, Garissa County Referral Hospital, Kismayu road, Garissa town, P.O BOX, 29-70100, Kenya
| | - Fengbo Tan
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Haiyan Zhou
- Division of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heli Liu
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Zhi Li
- Center for Molecular Medicine of Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, Hunan, China, 410008
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, 410008, MA, USA
| | - Bin Li
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87#.
| |
Collapse
|
10
|
Heinrich MC, Zhang X, Jones RL, George S, Serrano C, Deng Y, Bauer S, Cai S, Wu X, Zhou Y, Tao K, Zheng Z, Zhang J, Cui Y, Cao H, Wang M, Hu J, Yang J, Li J, Shen L. Clinical Benefit of Avapritinib in KIT-Mutant Gastrointestinal Stromal Tumors: A Post Hoc Analysis of the Phase I NAVIGATOR and Phase I/II CS3007-001 Studies. Clin Cancer Res 2024; 30:719-728. [PMID: 38032349 DOI: 10.1158/1078-0432.ccr-23-1861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE The efficacy of the selective KIT/PDGFRA inhibitor avapritinib (300 mg once daily) was explored in patients with non-PDGFRA-mutant gastrointestinal stromal tumors (GISTs) from the phase I NAVIGATOR and phase I/II CS3007-001 trials. PATIENTS AND METHODS Adults with unresectable/metastatic, KIT-only-mutant GISTs and progression following ≥1 tyrosine kinase inhibitors (TKIs) were included in this post hoc analysis. Baseline mutational status was identified in tumor and plasma. Primary endpoints were objective response rate (ORR) and progression-free survival (PFS) by blinded independent radiology review per modified RECIST v1.1 in patients harboring KIT activation-loop mutations (KIT exons 17 or 18) without ATP binding-pocket mutations (KIT exons 13 or 14; ALposABPneg), and other KIT mutations (OTHERS). RESULTS Sixty KIT ALposABPneg and 100 KIT OTHERS predominantly heavily pretreated patients (61.3% with ≥3 prior TKIs) were included. ORR was significantly higher in KIT ALposABPneg than KIT OTHERS patients (unadjusted: 26.7% vs. 12.0%; P = 0.0852; adjusted: 31.4% vs. 12.1%; P = 0.0047). Median PFS (mPFS) was significantly longer in KIT ALposABPneg patients compared with KIT OTHERS patients (unadjusted: 9.1 vs. 3.5 months; P = 0.0002; adjusted: 9.1 vs. 3.4 months; P < 0.0001), and longer in second- versus later-line settings (19.3 vs. 5.6-10.6 months). Benefit with avapritinib was observed in patients with KIT exon 9 mutations in the ≥4 line settings (mPFS: 5.6 and 3.7 months for 4 line and >4 line, respectively). CONCLUSIONS Avapritinib showed greater antitumor activity in patients with GISTs harboring KIT ALposABPneg mutations versus KIT OTHERS, and may be considered in the former subpopulation. Patients with KIT exon 9 mutations may also benefit in ≥4 line settings.
Collapse
Affiliation(s)
- Michael C Heinrich
- Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, Oregon
| | - Xinhua Zhang
- Center for Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Robin L Jones
- Royal Marsden Hospital and Institute of Cancer Research, Chelsea, London, United Kingdom
| | - Suzanne George
- Sarcoma Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - César Serrano
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Yanhong Deng
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sebastian Bauer
- Department of Medical Oncology, West German Cancer Center, Essen, Germany
| | - Shirong Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Wu
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Yongjian Zhou
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Kaixiong Tao
- Department of Gastroenterology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichao Zheng
- Department of Gastrosurgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Jun Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuehong Cui
- Department of Medical Oncology, Fudan University Zhongshan Hospital, Shanghai, China
| | - Hui Cao
- Department of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meining Wang
- Medical Affairs, CStone Pharmaceuticals (Suzhou), Suzhou, China
| | - Jin Hu
- Clinical Department, CStone Pharmaceuticals (Suzhou), Suzhou, China
| | - Jason Yang
- Clinical Department, CStone Pharmaceuticals (Suzhou), Suzhou, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Laboratory of Carcinogenesis and Translational Research of the Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Laboratory of Carcinogenesis and Translational Research of the Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
11
|
Martins M, Vieira J, Pereira-Leite C, Saraiva N, Fernandes AS. The Golgi Apparatus as an Anticancer Therapeutic Target. BIOLOGY 2023; 13:1. [PMID: 38275722 PMCID: PMC10813373 DOI: 10.3390/biology13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Although the discovery of the Golgi apparatus (GA) was made over 125 years ago, only a very limited number of therapeutic approaches have been developed to target this complex organelle. The GA serves as a modification and transport center for proteins and lipids and also has more recently emerged as an important store for some ions. The dysregulation of GA functions is implicated in many cellular processes associated with cancer and some GA proteins are indeed described as cancer biomarkers. This dysregulation can affect protein modification, localization, and secretion, but also cellular metabolism, redox status, extracellular pH, and the extracellular matrix structure. Consequently, it can directly or indirectly affect cancer progression. For these reasons, the GA is an appealing anticancer pharmacological target. Despite this, no anticancer drug specifically targeting the GA has reached the clinic and few have entered the clinical trial stage. Advances in nanodelivery approaches may help change this scenario by specifically targeting tumor cells and/or the GA through passive, active, or physical strategies. This article aims to examine the currently available anticancer GA-targeted drugs and the nanodelivery strategies explored for their administration. The potential benefits and challenges of modulating and specifically targeting the GA function in the context of cancer therapy are discussed.
Collapse
Affiliation(s)
- Marta Martins
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - João Vieira
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Catarina Pereira-Leite
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Saraiva
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
| | - Ana Sofia Fernandes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
| |
Collapse
|
12
|
Kwon Y, Kim J, Cho SY, Kang YJ, Lee J, Kwon J, Rhee H, Bauer S, Kim HS, Lee E, Kim HS, Jung JH, Kim H, Kim WK. Identification of novel pathogenic roles of BLZF1/ATF6 in tumorigenesis of gastrointestinal stromal tumor showing Golgi-localized mutant KIT. Cell Death Differ 2023; 30:2309-2321. [PMID: 37704840 PMCID: PMC10589262 DOI: 10.1038/s41418-023-01220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) frequently show KIT mutations, accompanied by overexpression and aberrant localization of mutant KIT (MT-KIT). As previously established by multiple studies, including ours, we confirmed that MT-KIT initiates downstream signaling in the Golgi complex. Basic leucine zipper nuclear factor 1 (BLZF1) was identified as a novel MT-KIT-binding partner that tethers MT-KIT to the Golgi complex. Sustained activation of activated transcription factor 6 (ATF6), which belongs to the unfolded protein response (UPR) family, alleviates endoplasmic reticulum (ER) stress by upregulating chaperone expression, including heat shock protein 90 (HSP90), which assists in MT-KIT folding. BLZF1 knockdown and ATF6 inhibition suppressed both imatinib-sensitive and -resistant GIST in vitro. ATF6 inhibitors further showed potent antitumor effects in GIST xenografts, and the effect was enhanced with ER stress-inducing drugs. ATF6 activation was frequently observed in 67% of patients with GIST (n = 42), and was significantly associated with poorer relapse-free survival (P = 0.033). Overall, GIST bypasses ER quality control (QC) and ER stress-mediated cell death via UPR activation and uses the QC-free Golgi to initiate signaling.
Collapse
Affiliation(s)
- Yujin Kwon
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Jiyoon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Su-Yeon Cho
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Yoon Jin Kang
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
- Department of Marine Life Sciences, College of Life Science, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Jongsoo Lee
- Department of Urology, Urologic Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jaeyoung Kwon
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
| | - Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sebastian Bauer
- Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Germany and German Cancer Consortium (DKTK), Essen, 45141, Germany
| | - Hyung-Sik Kim
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jae Hung Jung
- Department of Urology, Yonsei University Wonju College of Medicine/Center of Evidence Based Medicine Institute of Convergence Science, Wonju, 26426, South Korea
| | - Hoguen Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Won Kyu Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea.
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, South Korea.
| |
Collapse
|
13
|
Obata Y, Kurokawa K, Tojima T, Natsume M, Shiina I, Takahashi T, Abe R, Nakano A, Nishida T. Golgi retention and oncogenic KIT signaling via PLCγ2-PKD2-PI4KIIIβ activation in gastrointestinal stromal tumor cells. Cell Rep 2023; 42:113035. [PMID: 37616163 DOI: 10.1016/j.celrep.2023.113035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Most gastrointestinal stromal tumors (GISTs) develop due to gain-of-function mutations in the tyrosine kinase gene, KIT. We recently showed that mutant KIT mislocalizes to the Golgi area and initiates uncontrolled signaling. However, the molecular mechanisms underlying its Golgi retention remain unknown. Here, we show that protein kinase D2 (PKD2) is activated by the mutant, which causes Golgi retention of KIT. In PKD2-inhibited cells, KIT migrates from the Golgi region to lysosomes and subsequently undergoes degradation. Importantly, delocalized KIT cannot trigger downstream activation. In the Golgi/trans-Golgi network (TGN), KIT activates the PKD2-phosphatidylinositol 4-kinase IIIβ (PKD2-PI4KIIIβ) pathway through phospholipase Cγ2 (PLCγ2) to generate a PI4P-rich membrane domain, where the AP1-GGA1 complex is aberrantly recruited. Disruption of any factors in this cascade results in the release of KIT from the Golgi/TGN. Our findings show the molecular mechanisms underlying KIT mislocalization and provide evidence for a strategy for inhibition of oncogenic signaling.
Collapse
Affiliation(s)
- Yuuki Obata
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Miyuki Natsume
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Abe
- Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
14
|
Venkataraman V, George S, Cote GM. Molecular Advances in the Treatment of Advanced Gastrointestinal Stromal Tumor. Oncologist 2023:oyad167. [PMID: 37315115 PMCID: PMC10400151 DOI: 10.1093/oncolo/oyad167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Most gastrointestinal stromal tumors (GIST) are driven by activating mutations in Proto-oncogene c-KIT (KIT) or PDGFRA receptor tyrosine kinases (RTK). The emergence of effective therapies targeting these mutations has revolutionized the management of advanced GIST. However, following initiation of first-line imatinib, a tyrosine kinase inhibitor (TKI), nearly all patients will develop resistance within 2 years through the emergence of secondary resistance mutations in KIT, typically in the Adenosine Triphosphate (ATP)-binding site or activation loop of the kinase domain. Moreover, some patients have de novo resistance to imatinib, such as those with mutations in PDGFRA exon 18 or those without KIT or PDGFRA mutation. To target resistance, research efforts are primarily focused on developing next-generation inhibitors of KIT and/or PDGFRA, which can inhibit alternate receptor conformations or unique mutations, and compounds that impact complimentary pathogenic processes or epigenetic events. Here, we review the literature on the medical management of high-risk localized and advanced GIST and provide an update on clinical trial approaches to this disease.
Collapse
Affiliation(s)
- Vinayak Venkataraman
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
- Mass General Hospital Cancer Center, Center for Sarcoma and Connective Tissue Oncology, Boston, MA, USA
| | - Suzanne George
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
| | - Gregory M Cote
- Mass General Hospital Cancer Center, Center for Sarcoma and Connective Tissue Oncology, Boston, MA, USA
| |
Collapse
|
15
|
Naito Y, Nishida T, Doi T. Current status of and future prospects for the treatment of unresectable or metastatic gastrointestinal stromal tumours. Gastric Cancer 2023; 26:339-351. [PMID: 36913072 PMCID: PMC10115693 DOI: 10.1007/s10120-023-01381-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Gastrointestinal stromal tumours (GISTs) are soft-tissue sarcomas of the gastrointestinal tract. Surgery is the standard treatment for localised disease, but the risk of relapse and progression to more advanced disease is substantial. Following the discovery of the molecular mechanisms underlying GISTs, targeted therapies for advanced GIST were developed, with the first being the tyrosine kinase inhibitor (TKI) imatinib. Imatinib is recommended in international guidelines as first-line therapy to reduce the risk of GIST relapse in high-risk patients, and for locally advanced, inoperable and metastatic disease. Unfortunately, imatinib resistance frequently occurs and, therefore, second-line (sunitinib) and third-line (regorafenib) TKIs have been developed. Treatment options are limited for patients with GIST that has progressed despite these therapies. A number of other TKIs for advanced/metastatic GIST have been approved in some countries. Ripretinib is approved as fourth-line treatment of GIST and avapritinib is approved for GIST harbouring specific genetic mutations, while larotrectinib and entrectinib are approved for solid tumours (including GIST) with specific genetic mutations. In Japan, pimitespib, a heat shock protein 90 (HSP90) inhibitor, is now available as a fourth-line therapy for GIST. Clinical studies of pimitespib have indicated that it has good efficacy and tolerability, importantly not displaying the ocular toxicity of previously developed HSP90 inhibitors. Additional approaches for advanced GIST have been investigated, including alternative uses of currently available TKIs (such as combination therapy), novel TKIs, antibody-drug conjugates, and immunotherapies. Given the poor prognosis of advanced GIST, the development of new therapies remains an important goal.
Collapse
Affiliation(s)
- Yoichi Naito
- Department of General Internal Medicine, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan.
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Toshirou Nishida
- Department of Surgery, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
- National Cancer Center Hospital, Tsukiji, Tokyo, Japan
| | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
16
|
Teranishi R, Takahashi T, Kurokawa Y, Saito T, Yamamoto K, Yamashita K, Tanaka K, Makino T, Nakajima K, Eguchi H, Doki Y. Long-term response to pimitespib in postoperative recurrent gastrointestinal stromal tumors with PDGFRA D842V mutation: a case report. Surg Case Rep 2023; 9:54. [PMID: 37027098 PMCID: PMC10082137 DOI: 10.1186/s40792-023-01637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Exon 18 D842V, which is a point mutation from aspartic acid to valine at codon 842, is the most frequent mutation in Platelet-Derived Growth Factor Receptor alpha (PDGFRA)-mutated gastrointestinal stromal tumor (GIST). In the Japanese GIST guidelines, no standard systematic therapy is available for this type of GIST, which is refractory after recurrence. Recently, pimitespib (PIMI), a novel heat shock protein 90 (HSP90) inhibitor, was approved for the treatment of advanced GIST in a phase III study. This report presents a case of a long-term response to PIMI in GIST with PDGFRA D842V mutation. CASE PRESENTATION A 55-year-old woman was diagnosed with primary GIST of the stomach and underwent partial gastrectomy. Eight years after the operation, recurrent GISTs were identified as multiple recurrent peritoneal GISTs in the upper right abdomen and pelvic cavity. We administered tyrosine kinase inhibitors, but they achieved poor effects. After failure of the standard treatment, PIMI was administered and achieved a partial response in the patient. The highest reduction rate was 32.7%. After PIMI failed, we performed multiplex gene panel testing, which revealed the PDGFRA D842V mutation. CONCLUSIONS We report the first case of long-term response to PIMI in PDGFRA D842V mutant GIST. Pimitespib may be effective for treating GIST harboring this mutation by inhibiting HSP90.
Collapse
Affiliation(s)
- Ryugo Teranishi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuyoshi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2-E2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
17
|
Catalano F, Cremante M, Dalmasso B, Pirrone C, Lagodin D’Amato A, Grassi M, Comandini D. Molecular Tailored Therapeutic Options for Advanced Gastrointestinal Stromal Tumors (GISTs): Current Practice and Future Perspectives. Cancers (Basel) 2023; 15:cancers15072074. [PMID: 37046734 PMCID: PMC10093725 DOI: 10.3390/cancers15072074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are one of the most common mesenchymal tumors characterized by different molecular alterations that lead to specific clinical presentations and behaviors. In the last twenty years, thanks to the discovery of these mutations, several new treatment options have emerged. This review provides an extensive overview of GISTs’ molecular pathways and their respective tailored therapeutic strategies. Furthermore, current treatment strategies under investigation and future perspectives are analyzed and discussed.
Collapse
Affiliation(s)
- Fabio Catalano
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Bruna Dalmasso
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Chiara Pirrone
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Massimiliano Grassi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Danila Comandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
18
|
Kagawa Y, Hayashida T, Liu J, Mori S, Izumi H, Kumagai S, Udagawa H, Hattori N, Goto K, Kobayashi SS. The EGFR C797S Mutation Confers Resistance to a Novel EGFR Inhibitor CLN-081 to EGFR Exon 20 Insertion Mutations. JTO Clin Res Rep 2023; 4:100462. [PMID: 36915628 PMCID: PMC10006853 DOI: 10.1016/j.jtocrr.2023.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction EGFR exon 20 insertion mutations account for 5% to 10% of EGFR-mutated NSCLC. CLN-081 (formerly known as TAS6417), a novel covalent EGFR tyrosine kinase inhibitor, exhibits pan-mutation selective efficacy, including exon 20 insertions, in the clinical setting. Nevertheless, some patients may not respond to CLN-081 and resistance to CLN-081 may emerge over time in others. Methods We exposed Ba/F3 cells transduced with EGFR exon 20 insertions (Y764_V765 insHH or A767_S768insSVD) to increasing concentrations of CLN-081 to generate resistant cells and then subjected their complementary DNA to sequencing to identify acquired mutations. We then evaluated effects of small molecules on engineered Ba/F3 cells on the basis of proliferation assays, Western blotting, and xenograft models. Results All CLN-081 resistant clones harbored the EGFR C797S mutation. Ba/F3 cells with C797S (Ba/F3-C797S) were resistant to EGFR tyrosine kinase inhibitors targeting EGFR exon 20 insertion mutations, including CLN-081. Pimitespib, a selective heat shock protein 90 inhibitor, induced apoptosis in Ba/F3-C797S cells in vitro and inhibited growth of Ba/F3-C797S tumors in vivo. Ba/F3 cells with A763_Y764insFQEA-C797S remained sensitive to erlotinib. Conclusions We conclude that the EGFR C797S mutation confers resistance to CLN-081. Our preclinical data suggest a potential small molecule to overcome CLN-081 resistance, which may benefit patients with lung cancer with EGFR exon 20 insertions.
Collapse
Affiliation(s)
- Yosuke Kagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan.,Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takuma Hayashida
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Jie Liu
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shunta Mori
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shogo Kumagai
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hibiki Udagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan.,Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Susumu S Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Teranishi R, Takahashi T, Obata Y, Nishida T, Ohkubo S, Kazuno H, Saito Y, Serada S, Fujimoto M, Kurokawa Y, Saito T, Yamamoto K, Yamashita K, Tanaka K, Makino T, Nakajima K, Hirota S, Naka T, Eguchi H, Doki Y. Combination of pimitespib (TAS-116) with sunitinib is an effective therapy for imatinib-resistant gastrointestinal stromal tumors. Int J Cancer 2023; 152:2580-2593. [PMID: 36752576 DOI: 10.1002/ijc.34461] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Abstract
Despite the effectiveness of imatinib, most gastrointestinal stromal tumors (GISTs) develop resistance to the treatment, mainly due to the reactivation of KIT tyrosine kinase activity. Sunitinib, which inhibits the phosphorylation of KIT and vascular endothelial growth factor (VEGF) receptor, has been established as second-line therapy for GISTs. The recently-developed heat shock protein 90 (HSP90) inhibitor pimitespib (PIM; TAS-116) demonstrated clinical benefits in some clinical trials; however, the effects were limited. The aim of our study was therefore to clarify the effectiveness and mechanism of the combination of PIM with sunitinib for imatinib-resistant GISTs. We evaluated the efficacy and mechanism of the combination of PIM with sunitinib against imatinib-resistant GIST using imatinib-resistant GIST cell lines and murine xenograft models. In vitro analysis demonstrated that PIM and sunitinib combination therapy strongly inhibited growth and induced apoptosis in imatinib-resistant GIST cell lines by inhibiting KIT signaling and decreasing auto-phosphorylated KIT in the Golgi apparatus. In addition, PIM and sunitinib combination therapy enhanced antitumor responses in the murine xenograft models compared to individual therapies. Further analysis of the xenograft models showed that the combination therapy not only downregulated the KIT signaling pathway but also decreased the tumor microvessel density. Furthermore, we found that PIM suppressed VEGF expression in GIST cells by suppressing protein kinase D2 and hypoxia-inducible factor-1 alpha, which are both HSP90 client proteins. In conclusion, the combination of PIM and sunitinib is effective against imatinib-resistant GIST via the downregulation of KIT signaling and angiogenic signaling pathways.
Collapse
Affiliation(s)
- Ryugo Teranishi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Yuuki Obata
- National Cancer Center Research Institute, Laboratory of Intracellular Traffic and Oncology, Tsukiji, Japan
| | - Toshirou Nishida
- Department of Surgery, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | - Hiromi Kazuno
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | - Yurina Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Satoshi Serada
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Minoru Fujimoto
- Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Kazuyoshi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tetsuji Naka
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University School of Medicine, Yahaba, Japan.,Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| |
Collapse
|
20
|
Solopov PA, Colunga Biancatelli RML, Dimitropolou C, Day T, Catravas JD. Optimizing antidotal treatment with the oral HSP90 inhibitor TAS-116 against hydrochloric acid-induced pulmonary fibrosis in mice. Front Pharmacol 2022; 13:1034464. [PMID: 36419627 PMCID: PMC9676235 DOI: 10.3389/fphar.2022.1034464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 06/30/2024] Open
Abstract
Exposure to high concentrations of hydrochloric acid (HCl) can lead to severe acute and chronic lung injury. In the aftermath of accidental spills, victims may be treated for the acute symptoms, but the chronic injury is often overlooked. We have developed a mouse model of acute and chronic lung injury, in which the peak of acute lung injury occurs on the day 4 after HCl exposure. We have also demonstrated that HSP90 inhibitors are effective antidotes when administered starting 24 h after HCl. In this study we examined the hypothesis that the novel oral HSP90 inhibitor TAS-116 can effectively ameliorate HCl-induced lung injury even when treatment starts at the peak of the acute injury, as late as 96 h after HCl. C57BI/6J mice were intratracheally instilled with 0.1N HCl. After 24 or 96 h, TAS-116 treatment began (3.5, 7 or 14 mg/kg, 5 times per week, p. o.) for either 2,3 or 4 or weeks. TAS-116 moderated the HCl-induced alveolar inflammation, as reflected in the reduction of white blood cells and total protein content in bronchoalveolar lavage fluid (BALF), overexpression of NLRP3 inflammasome, and inhibited the activation of pro-fibrotic pathways. Furthermore, TAS-116 normalized lung mechanics and decreased the deposition of extracellular matrix proteins in the lungs of mice exposed to HCl. Delayed and shortened treatment with TAS-116, successfully blocked the adverse chronic effects associated with acute exposure to HCl.
Collapse
Affiliation(s)
- Pavel A. Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | | | - Christiana Dimitropolou
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Tierney Day
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
- School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
21
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
22
|
Hu X, Wang Z, Su P, Zhang Q, Kou Y. Advances in the research of the mechanism of secondary resistance to imatinib in gastrointestinal stromal tumors. Front Oncol 2022; 12:933248. [PMID: 36147927 PMCID: PMC9485670 DOI: 10.3389/fonc.2022.933248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. At present, surgery is the first-line treatment for primary resectable GISTs; however, the recurrence rate is high. Imatinib mesylate (IM) is an effective first-line drug used for the treatment of unresectable or metastatic recurrent GISTs. More than 80% of patients with GISTs show significantly improved 5-year survival after treatment; however, approximately 50% of patients develop drug resistance after 2 years of IM treatment. Therefore, an in-depth research is urgently needed to reveal the mechanisms of secondary resistance to IM in patients with GISTs and to develop new therapeutic targets and regimens to improve their long-term prognoses. In this review, research on the mechanisms of secondary resistance to IM conducted in the last 5 years is discussed and summarized from the aspects of abnormal energy metabolism, gene mutations, non-coding RNA, and key proteins. Studies have shown that different drug-resistance mechanism networks are closely linked and interconnected. However, the influence of these drug-resistance mechanisms has not been compared. The combined inhibition of drug-resistance mechanisms with IM therapy and the combined inhibition of multiple drug-resistance mechanisms are expected to become new therapeutic options in the treatment of GISTs. In addition, implementing individualized therapies based on the identification of resistance mechanisms will provide new adjuvant treatment options for patients with IM-resistant GISTs, thereby delaying the progression of GISTs. Previous studies provide theoretical support for solving the problems of drug-resistance mechanisms. However, most studies on drug-resistance mechanisms are still in the research stage. Further clinical studies are needed to confirm the safety and efficacy of the inhibition of drug-resistance mechanisms as a potential therapeutic target.
Collapse
Affiliation(s)
- Xiangchen Hu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Su
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youwei Kou
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Youwei Kou,
| |
Collapse
|
23
|
Lv L, Huang RH, Li J, Xu J, Gao W. Impact of NSCLC metabolic remodeling on immunotherapy effectiveness. Biomark Res 2022; 10:66. [PMID: 36038935 PMCID: PMC9425942 DOI: 10.1186/s40364-022-00412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
It is known that metabolic reprogramming (MR) contributes to tumorigenesis through the activation of processes that support survival of cells, proliferation, and grow in the tumor microenvironment. In order to keep the tumor proliferating at a high rate, metabolic pathways must be upregulated, and tumor metabolism must be adapted to meet this requirement. Additionally, immune cells engage in metabolic remodeling to maintain body and self-health. With the advent of immunotherapy, the fate of individuals suffering from non-small cell lung cancer (NSCLC) has been transformed dramatically. MR may have a profound influence on their prognosis. The aim of this review is to summarize current research advancements in metabolic reprogramming and their impact on immunotherapy in NSCLC. Moreover, we talk about promising approaches targeting and manipulating metabolic pathways to improve cancer immunotherapy’s effectiveness in NSCLC.
Collapse
Affiliation(s)
- Lulu Lv
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ruo Han Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiale Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
24
|
Wang N, Yang Y, Jin D, Zhang Z, Shen K, Yang J, Chen H, Zhao X, Yang L, Lu H. PARP inhibitor resistance in breast and gynecological cancer: Resistance mechanisms and combination therapy strategies. Front Pharmacol 2022; 13:967633. [PMID: 36091750 PMCID: PMC9455597 DOI: 10.3389/fphar.2022.967633] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer and gynecological tumors seriously endanger women’s physical and mental health, fertility, and quality of life. Due to standardized surgical treatment, chemotherapy, and radiotherapy, the prognosis and overall survival of cancer patients have improved compared to earlier, but the management of advanced disease still faces great challenges. Recently, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) have been clinically approved for breast and gynecological cancer patients, significantly improving their quality of life, especially of patients with BRCA1/2 mutations. However, drug resistance faced by PARPi therapy has hindered its clinical promotion. Therefore, developing new drug strategies to resensitize cancers affecting women to PARPi therapy is the direction of our future research. Currently, the effects of PARPi in combination with other drugs to overcome drug resistance are being studied. In this article, we review the mechanisms of PARPi resistance and summarize the current combination of clinical trials that can improve its resistance, with a view to identify the best clinical treatment to save the lives of patients.
Collapse
Affiliation(s)
- Nannan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dongdong Jin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
| | - Zhenan Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyue Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
- *Correspondence: Li Yang, ; Huaiwu Lu,
| | - Huaiwu Lu
- Department of Gynaecological Oncology, Sun Yat Sen Memorial Hospital, Guangzhou, China
- *Correspondence: Li Yang, ; Huaiwu Lu,
| |
Collapse
|
25
|
|
26
|
Kurokawa Y, Honma Y, Sawaki A, Naito Y, Iwagami S, Komatsu Y, Takahashi T, Nishida T, Doi T. Pimitespib in patients with advanced gastrointestinal stromal tumor (CHAPTER-GIST-301): a randomized, double-blind, placebo-controlled phase 3 trial. Ann Oncol 2022; 33:959-967. [PMID: 35688358 DOI: 10.1016/j.annonc.2022.05.518] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/06/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Prognosis of advanced gastrointestinal stromal tumors (GIST) refractory to tyrosine kinase inhibitors (TKIs) is poor. This randomized, placebo-controlled, phase 3 trial evaluated the efficacy and safety of pimitespib, a novel heat shock protein 90 inhibitor, in advanced GIST refractory to standard TKIs. PATIENTS AND METHODS Patients with histologically confirmed GIST refractory to imatinib, sunitinib, and regorafenib were randomized 2:1 to oral pimitespib 160 mg/day or placebo for five consecutive days per week in 21-day cycles. Following disease progression by blinded central radiological review (BCRR), crossover to open-label pimitespib was permitted. The primary endpoint was progression-free survival (PFS) by BCRR in the full analysis set. Secondary endpoints included overall survival (OS) adjusted using the rank preserving structural failure time method to reduce the expected confounding impact of crossover. RESULTS From Oct 31, 2018 to Apr 30, 2020, 86 patients were randomized to pimitespib (n=58) or placebo (n=28). Median PFS was 2.8 months (95% CI 1.6-2.9) with pimitespib versus 1.4 months (0.9-1.8) with placebo (hazard ratio [HR] 0.51 [95% CI 0.30-0.87]; one-sided p=0.006). Pimitespib showed an improvement in crossover-adjusted OS compared with placebo (HR 0.42 [0.21-0.85], one-sided p=0.007). Seventeen (60.7%) patients receiving placebo crossed-over to pimitespib; median PFS after crossover was 2.7 (95% CI 0.7-4.1) months. The most common (≥30%) treatment-related adverse events (AEs) with pimitespib were diarrhea (74.1%) and decreased appetite (31.0%); the most common (≥10%) grade ≥3 treatment-related AE was diarrhea (13.8%). Treatment-related AEs leading to pimitespib discontinuation occurred in 3 (5.2%) patients. CONCLUSION Pimitespib significantly improved PFS and crossover-adjusted OS compared with placebo and had an acceptable safety profile in patients with advanced GIST refractory to standard TKIs.
Collapse
Affiliation(s)
- Y Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan;.
| | - Y Honma
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - A Sawaki
- Department of Medical Oncology, Fujita Health University Hospital, Aichi, Japan
| | - Y Naito
- Department of General Internal Medicine/Medical Oncology/Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - S Iwagami
- Department of Gastroenterological Surgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Y Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | - T Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - T Nishida
- Department of Surgery, National Cancer Center Hospital, Tokyo, Japan;; Department of Surgery, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
| | - T Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital Kashiwa, Japan
| |
Collapse
|
27
|
Katagiri S, Chi S, Minami Y, Fukushima K, Shibayama H, Hosono N, Yamauchi T, Morishita T, Kondo T, Yanada M, Yamamoto K, Kuroda J, Usuki K, Akahane D, Gotoh A. Mutated KIT Tyrosine Kinase as a Novel Molecular Target in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms23094694. [PMID: 35563085 PMCID: PMC9103326 DOI: 10.3390/ijms23094694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
KIT is a type-III receptor tyrosine kinase that contributes to cell signaling in various cells. Since KIT is activated by overexpression or mutation and plays an important role in the development of some cancers, such as gastrointestinal stromal tumors and mast cell disease, molecular therapies targeting KIT mutations are being developed. In acute myeloid leukemia (AML), genome profiling via next-generation sequencing has shown that several genes that are mutated in patients with AML impact patients’ prognosis. Moreover, it was suggested that precision-medicine-based treatment using genomic data will improve treatment outcomes for AML patients. This paper presents (1) previous studies regarding the role of KIT mutations in AML, (2) the data in AML with KIT mutations from the HM-SCREEN-Japan-01 study, a genome profiling study for patients newly diagnosed with AML who are unsuitable for the standard first-line treatment (unfit) or have relapsed/refractory AML, and (3) new therapies targeting KIT mutations, such as tyrosine kinase inhibitors and heat shock protein 90 inhibitors. In this era when genome profiling via next-generation sequencing is becoming more common, KIT mutations are attractive novel molecular targets in AML.
Collapse
Affiliation(s)
- Seiichiro Katagiri
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba 277-8577, Japan;
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba 277-8577, Japan;
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.F.); (H.S.)
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.F.); (H.S.)
| | - Naoko Hosono
- Department of Hematology and Oncology, University of Fukui Hospital, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; (N.H.); (T.Y.)
| | - Takahiro Yamauchi
- Department of Hematology and Oncology, University of Fukui Hospital, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan; (N.H.); (T.Y.)
| | - Takanobu Morishita
- Division of Hematology, Japanese Red Cross Nagoya First Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya-shi, Aichi 453-8511, Japan;
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, 2-1 S4 W25 Chuo-ku, Sapporo, Hokkaido 064-0804, Japan;
| | - Masamitsu Yanada
- Department of Hematology and Cell Therapy, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (M.Y.); (K.Y.)
| | - Kazuhito Yamamoto
- Department of Hematology and Cell Therapy, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (M.Y.); (K.Y.)
| | - Junya Kuroda
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi-hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan;
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.K.); (D.A.); (A.G.)
| |
Collapse
|
28
|
Gao F, Wang J, Li C, Xie C, Su M, Zou C, Xie X, Zhao D. Risk-Related Genes and Associated Signaling Pathways of Gastrointestinal Stromal Tumors. Int J Gen Med 2022; 15:3839-3849. [PMID: 35431569 PMCID: PMC9005359 DOI: 10.2147/ijgm.s357224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Purpose Knowledge on the potential association between differential gene expression and risk of gastrointestinal stromal tumors (GISTs) is currently limited. We used bioinformatics tools to identify differentially expressed genes in GIST samples and the related signaling pathways of these genes. Patients and Methods The GSE136755 dataset was obtained from the GEO database and differentially expressed genes (CENPA, CDK1, TPX2, CCNB1, CCNA2, BUB1, AURKA, KIF11, NDC80) were screened using String and Cytoscape bioinformatics tools. Then, three groups of eight patients at high, intermediate and low risk of GIST were selected from patients diagnosed with GIST by immunohistochemistry in our hospital from October 2020 to March 2021. Differential expression of CDK1 and BUB1 was verified by comparing the amount of expressed p21-Activated kinase 4 (PAK4) protein in pathological sections. Results SPSS26.0 analysis showed that the expression level of PAK4 in GISTs was significantly higher than in normal tissues and paratumoral tissues and there was significant difference among the three groups of patients (P < 0.01). PAK4 levels in paratumoral and normal tissues were negligible with no significant difference between the tissues. Conclusion CENPA, CDK1, TPX2, CCNB1, CCNA2, BUB1, AURKA, KIF11 and NDC80 gene expression can be used as biomarkers to assess the risk of gastrointestinal stromal tumors whereby expression increases gradually with the increased risk of GIST formation. The genes encode proteins that regulate the division, proliferation and apoptosis of gastrointestinal stromal tumors mainly through PI3K/AKT, MARK, P53, WNT and other signaling pathways.
Collapse
Affiliation(s)
- Fulai Gao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
- Department of Gastroenterology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, People’s Republic of China
| | - Jiaqi Wang
- Basic Medical College, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Changjuan Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Changshun Xie
- Department of Gastroenterology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, People’s Republic of China
| | - Miao Su
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Chunyan Zou
- Department of Gastroenterology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, People’s Republic of China
| | - Xiaoli Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Dongqiang Zhao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
- Correspondence: Dongqiang Zhao, Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 215, He Ping West Road, Xinhua District, Shijiazhuang, 050000, People’s Republic of China, Tel +86 0311 66636179, Email
| |
Collapse
|
29
|
FLT3-ITD transduces autonomous growth signals during its biosynthetic trafficking in acute myelogenous leukemia cells. Sci Rep 2021; 11:22678. [PMID: 34811450 PMCID: PMC8608843 DOI: 10.1038/s41598-021-02221-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) in hematopoietic cells binds to its ligand at the plasma membrane (PM), then transduces growth signals. FLT3 gene alterations that lead the kinase to assume its permanently active form, such as internal tandem duplication (ITD) and D835Y substitution, are found in 30–40% of acute myelogenous leukemia (AML) patients. Thus, drugs for molecular targeting of FLT3 mutants have been developed for the treatment of AML. Several groups have reported that compared with wild-type FLT3 (FLT3-wt), FLT3 mutants are retained in organelles, resulting in low levels of PM localization of the receptor. However, the precise subcellular localization of mutant FLT3 remains unclear, and the relationship between oncogenic signaling and the mislocalization is not completely understood. In this study, we show that in cell lines established from leukemia patients, endogenous FLT3-ITD but not FLT3-wt clearly accumulates in the perinuclear region. Our co-immunofluorescence assays demonstrate that Golgi markers are co-localized with the perinuclear region, indicating that FLT3-ITD mainly localizes to the Golgi region in AML cells. FLT3-ITD biosynthetically traffics to the Golgi apparatus and remains there in a manner dependent on its tyrosine kinase activity. Tyrosine kinase inhibitors, such as quizartinib (AC220) and midostaurin (PKC412), markedly decrease FLT3-ITD retention and increase PM levels of the mutant. FLT3-ITD activates downstream in the endoplasmic reticulum (ER) and the Golgi apparatus during its biosynthetic trafficking. Results of our trafficking inhibitor treatment assays show that FLT3-ITD in the ER activates STAT5, whereas that in the Golgi can cause the activation of AKT and ERK. We provide evidence that FLT3-ITD signals from the early secretory compartments before reaching the PM in AML cells.
Collapse
|
30
|
Targeted therapy for drug-tolerant persister cells after imatinib treatment for gastrointestinal stromal tumours. Br J Cancer 2021; 125:1511-1522. [PMID: 34611306 DOI: 10.1038/s41416-021-01566-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the effectiveness of tyrosine kinase inhibitors (TKI), gastrointestinal stromal tumours (GIST) develop after the withdrawal of TKI. Based on previous studies, a subpopulation of drug-tolerant cells called "persister cells" may be responsible for the recurrence and have thus, gained attention as a novel target in cancer therapy. METHODS The metabolic changes were investigated in imatinib-derived persister GIST cells. We investigated the efficacy and the mechanism of GPX4 inhibitor, which is known as a major inducer of "ferroptosis". We also evaluated the effects of RSL3 to the gefitinib-derived persister lung cancer cells. RESULTS We demonstrated a downregulation of glucose metabolism, subsequent decrease in the glutathione level and sensitivity to glutathione peroxidase 4 (GPX4) inhibitor, RSL3 in persister cells. As the cell death induced by RSL3 was found to be "iron-dependent" and "caspase-independent", loss of GPX4 function could have possibly induced selective persister cell ferroptotic death. In the xenograft model, we confirmed the inhibition of tumour regrowth after discontinuation of imatinib treatment. Moreover, RSL3 prevented the growth of gefitinib-derived persister lung cancer cells. CONCLUSIONS RSL3 combined with TKI may be a promising therapy for both GIST and epidermal growth factor receptor-mutated lung cancer.
Collapse
|
31
|
Kihara T, Yuan J, Watabe T, Kitajima K, Kimura N, Ohkouchi M, Hashikura Y, Ohkubo S, Takahashi T, Hirota S. Pimitespib is effective on cecal GIST in a mouse model of familial GISTs with KIT-Asp820Tyr mutation through KIT signaling inhibition. Exp Mol Pathol 2021; 123:104692. [PMID: 34606780 DOI: 10.1016/j.yexmp.2021.104692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023]
Abstract
Three families with multiple gastrointestinal stromal tumors (GISTs) caused by a germline Asp820Tyr mutation at exon 17 of the c-kit gene (KIT-Asp820Tyr) have been reported. We previously generated a knock-in mouse model of the family, and the mice with KIT-Asp818Tyr corresponding to human KIT-Asp820Tyr showed a cecal tumor equivalent to human GIST. In the model mice, we reported that tyrosine kinase inhibitor, imatinib, could stabilize but not decrease the cecal tumor volume. In this report, we examined whether a heat shock protein 90 inhibitor, pimitespib (TAS-116), has an inhibitory effect on phosphorylation of KIT-Asp818Tyr and can decrease the cecal tumor volume in the model mice. First, we showed that pimitespib inhibited KIT phosphorylation both dose- and time-dependently in KIT-Asp818Tyr transfected murine Ba/F3 cells. Then, four 1-week courses of pimitespib were orally administered to heterozygous (KIT-Asp818Tyr/+) model mice. Each course consisted of once-daily administration for consecutive 5 days followed by 2 days-off. Cecal tumors were dissected, and tumor volume was histologically analyzed, Ki-67 labeling index was immunohistochemically examined, and apoptotic figures were counted. Compared to the vehicle treated mice, pimitespib administered mice showed statistically significantly smaller cecal tumor volume, lower Ki-67 labeling index, and higher number of apoptotic figures in 10 high power fields (P = 0.0344, P = 0.0019 and P = 0.0269, respectively). Western blotting revealed that activation of KIT signaling molecules was strongly inhibited in the tumor tissues of pimitespib-administered mice compared to control mice. Thus, pimitespib seemed to inhibit in vivo tumor progression effectively in the model mice. These results suggest that the progression of multiple GISTs in patients with germline KIT-Asp820Tyr might be controllable by pimitespib.
Collapse
Affiliation(s)
- Takako Kihara
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jiayin Yuan
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadashi Watabe
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuhiro Kitajima
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Neinei Kimura
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mizuka Ohkouchi
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yuka Hashikura
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan.
| |
Collapse
|
32
|
Bauer S, George S, von Mehren M, Heinrich MC. Early and Next-Generation KIT/PDGFRA Kinase Inhibitors and the Future of Treatment for Advanced Gastrointestinal Stromal Tumor. Front Oncol 2021; 11:672500. [PMID: 34322383 PMCID: PMC8313277 DOI: 10.3389/fonc.2021.672500] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
The majority of gastrointestinal stromal tumors (GIST) harbor an activating mutation in either the KIT or PDGFRA receptor tyrosine kinases. Approval of imatinib, a KIT/PDGFRA tyrosine kinase inhibitor (TKI), meaningfully improved the treatment of advanced GIST. Other TKIs subsequently gained approval: sunitinib as a second-line therapy and regorafenib as a third-line therapy. However, resistance to each agent occurs in almost all patients over time, typically due to secondary kinase mutations. A major limitation of these 3 approved therapies is that they target the inactive conformation of KIT/PDGFRA; thus, their efficacy is blunted against secondary mutations in the kinase activation loop. Neither sunitinib nor regorafenib inhibit the full spectrum of KIT resistance mutations, and resistance is further complicated by extensive clonal heterogeneity, even within single patients. To combat these limitations, next-generation TKIs were developed and clinically tested, leading to 2 new USA FDA drug approvals in 2020. Ripretinib, a broad-spectrum KIT/PDGFRA inhibitor, was recently approved for the treatment of adult patients with advanced GIST who have received prior treatment with 3 or more kinase inhibitors, including imatinib. Avapritinib, a type I kinase inhibitor that targets active conformation, was approved for the treatment of adults with unresectable or metastatic GIST harboring a PDGFRA exon 18 mutation, including PDGFRA D842V mutations. In this review, we will discuss how resistance mutations have driven the need for newer treatment options for GIST and compare the original GIST TKIs with the next-generation KIT/PDGFRA kinase inhibitors, ripretinib and avapritinib, with a focus on their mechanisms of action.
Collapse
Affiliation(s)
- Sebastian Bauer
- Department of Medical Oncology, West German Cancer Center, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Margaret von Mehren
- Department of Hematology and Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Michael C. Heinrich
- Department of Medicine, Portland VA Health Care System and OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
33
|
Colunga Biancatelli RML, Solopov P, Gregory B, Catravas JD. The HSP90 Inhibitor, AUY-922, Protects and Repairs Human Lung Microvascular Endothelial Cells from Hydrochloric Acid-Induced Endothelial Barrier Dysfunction. Cells 2021; 10:cells10061489. [PMID: 34199261 PMCID: PMC8232030 DOI: 10.3390/cells10061489] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Exposure to hydrochloric acid (HCl) leads acutely to asthma-like symptoms, acute respiratory distress syndrome (ARDS), including compromised alveolo-capillary barrier, and respiratory failure. To better understand the direct effects of HCl on pulmonary endothelial function, we studied the characteristics of HCl-induced endothelial barrier dysfunction in primary cultures of human lung microvascular endothelial cells (HLMVEC), defined the involved molecular pathways, and tested the potentially beneficial effects of Heat Shock Protein 90 (HSP90) inhibitors. HCl impaired barrier function in a time- and concentration-dependent manner and was associated with activation of Protein Kinase B (AKT), Ras homolog family member A (RhoA) and myosin light chain 2 (MLC2), as well as loss of plasmalemmal VE-cadherin, rearrangement of cortical actin, and appearance of inter-endothelial gaps. Pre-treatment or post-treatment of HLMVEC with AUY-922, a third-generation HSP90 inhibitor, prevented and restored HCl-induced endothelial barrier dysfunction. AUY-922 increased the expression of HSP70 and inhibited the activation (phosphorylation) of extracellular-signal regulated kinase (ERK) and AKT. AUY-922 also prevented the HCl-induced activation of RhoA and MLC2 and the internalization of plasmalemmal VE-cadherin. We conclude that, by increasing the expression of cytoprotective proteins, interfering with actomyosin contractility, and enhancing the expression of junction proteins, inhibition of HSP90 may represent a useful approach for the management of HCl-induced endothelial dysfunction and acute lung injury.
Collapse
Affiliation(s)
- Ruben M. L. Colunga Biancatelli
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (B.G.); (J.D.C.)
- Correspondence:
| | - Pavel Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (B.G.); (J.D.C.)
| | - Betsy Gregory
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (B.G.); (J.D.C.)
| | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (P.S.); (B.G.); (J.D.C.)
- School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
34
|
Arolla RG, Malladi S, Bhaduri U, Gayatri MB, Pattamshetty P, Mohan V, Katika MR, Madhava Reddy AB, Satyanarayana Rao MR, Vudem DR, Kancha RK. Analysis of cellular models of clonal evolution reveals co-evolution of imatinib and HSP90 inhibitor resistances. Biochem Biophys Res Commun 2020; 534:461-467. [PMID: 33246559 DOI: 10.1016/j.bbrc.2020.11.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/15/2020] [Indexed: 01/11/2023]
Abstract
Treatment relapse due to clonal evolution was shown to be an independent factor for poor prognosis in advanced stages of chronic myeloid leukemia. Overcoming secondary resistance arising due to clonal evolution is still an unmet need and lack of adequate pre-clinical models hampers the identification of underlying mechanisms and testing of alternate treatment strategies. The current study thus aimed to create cellular models to study molecular mechanisms underlying clonal evolution and identify strategies to overcome the secondary drug resistance. Analysis of cell lines derived from three independent cell-based screens revealed the co-evolution specifically of imatinib and HSP90 inhibitor (HSP90i) resistances despite their exposure to a single inhibitor alone. Molecular and biochemical characterization of these cell lines revealed additional cytogenetic abnormalities, differential activation of pro-survival signaling molecules and over expression of ABL kinase and HSP90 genes. Importantly, all the imatinib-HSP90i dual resistant cell lines remained sensitive to sorafenib and vorinostat suggesting their utility in treating patients who relapse upon imatinib treatment due to clonal evolution. In addition, we cite similar examples of dual resistance towards various kinase inhibitors and HSP90i in some cell lines that represent solid cancers suggesting co-evolution leading to secondary drug resistance as a pan-cancer phenomenon. Taken together, our results suggest the efficacy of HSP90i in overcoming drug resistance caused by point mutations in the target kinase but not in cases of clonal evolution.
Collapse
Affiliation(s)
- Rajender Goud Arolla
- Molecular Biology Laboratory, CPMB, Osmania University, Hyderabad, 500007, India
| | - Shweta Malladi
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad, 500007, India
| | - Utsa Bhaduri
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, 560064, India
| | - Meher Bolisetti Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Preethi Pattamshetty
- Department of Genetics and Molecular Medicine, Vasavi Medical and Research Centre, Hyderabad, 500034, India
| | - Vasavi Mohan
- Department of Genetics and Molecular Medicine, Vasavi Medical and Research Centre, Hyderabad, 500034, India
| | | | | | - Manchanahalli R Satyanarayana Rao
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, 560064, India
| | | | - Rama Krishna Kancha
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad, 500007, India.
| |
Collapse
|
35
|
Heat Shock Proteins and PD-1/PD-L1 as Potential Therapeutic Targets in Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12092592. [PMID: 32932806 PMCID: PMC7563255 DOI: 10.3390/cancers12092592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Myeloproliferative neoplasms (MPN), which are a heterogeneous group of rare disorders that affect blood cell production in bone marrow, present many significant challenges for clinicians. Though considerable progress has been made, in particular with the JAK1/2 inhibitor ruxolitinib, more effective alternative therapeutic approaches are needed. In the search for new and more efficient therapies, heat shock proteins, also known as stress proteins, and the programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) immune checkpoint axis have been found to be of great interest in hematologic malignancies. Here, we review the therapeutic potential of stress protein inhibitors in the management of patients diagnosed with MPN and summarize the accumulating evidence of the role of the PD-1/PD-L1 axis in MPN in order to provide perspectives on future therapeutic opportunities relative to the inhibition of these targets. Abstract Myeloproliferative neoplasms (MPN) are a group of clonal disorders that affect hematopoietic stem/progenitor cells. These disorders are often caused by oncogenic driver mutations associated with persistent Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling. While JAK inhibitors, such as ruxolitinib, reduce MPN-related symptoms in myelofibrosis, they do not influence the underlying cause of the disease and are not curative. Due to these limitations, there is a need for alternative therapeutic strategies and targets. Heat shock proteins (HSPs) are cytoprotective stress-response chaperones involved in protein homeostasis and in many critical pathways, including inflammation. Over the last decade, several research teams have unraveled the mechanistic connection between STAT signaling and several HSPs, showing that HSPs are potential therapeutic targets for MPN. These HSPs include HSP70, HSP90 (chaperoning JAK2) and both HSP110 and HSP27, which are key factors modulating STAT3 phosphorylation status. Like the HSPs, the PD-1/PD-L1 signaling pathway has been widely studied in cancer, but the importance of PD-L1-mediated immune escape in MPN was only recently reported. In this review, we summarize the role of HSPs and PD-1/PD-L1 signaling, the modalities of their experimental blockade, and the effect in MPN. Finally, we discuss the potential of these emerging targeted approaches in MPN therapy.
Collapse
|
36
|
Santarpia M, Aguilar A, Chaib I, Cardona AF, Fancelli S, Laguia F, Bracht JWP, Cao P, Molina-Vila MA, Karachaliou N, Rosell R. Non-Small-Cell Lung Cancer Signaling Pathways, Metabolism, and PD-1/PD-L1 Antibodies. Cancers (Basel) 2020; 12:E1475. [PMID: 32516941 PMCID: PMC7352732 DOI: 10.3390/cancers12061475] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
Treatment of advanced (metastatic) non-small-cell lung cancer (NSCLC) is currently mainly based on immunotherapy with antibodies against PD-1 or PD-L1, alone, or in combination with chemotherapy. In locally advanced NSCLC and in early resected stages, immunotherapy is also employed. Tumor PD-L1 expression by immunohistochemistry is considered the standard practice. Response rate is low, with median progression free survival very short in the vast majority of studies reported. Herein, numerous biological facets of NSCLC are described involving driver genetic lesions, mutations ad fusions, PD-L1 glycosylation, ferroptosis and metabolic rewiring in NSCLC and lung adenocarcinoma (LUAD). Novel concepts, such as immune-transmitters and the effect of neurotransmitters in immune evasion and tumor growth, the nascent relevance of necroptosis and pyroptosis, possible new biomarkers, such as gasdermin D and gasdermin E, the conundrum of K-Ras mutations in LUADs, with the growing recognition of liver kinase B1 (LKB1) and metabolic pathways, including others, are also commented. The review serves to charter diverse treatment solutions, depending on the main altered signaling pathways, in order to have effectual immunotherapy. Tumor PDCD1 gene (encoding PD-1) has been recently described, in equilibrium with tumor PD-L1 (encoded by PDCD1LG1). Such description explains tumor hyper-progression, which has been reported in several studies, and poises the fundamental criterion that IHC PD-L1 expression as a biomarker should be revisited.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, 98122 Messina, Italy;
| | - Andrés Aguilar
- Instituto Oncológico Dr Rosell, Hospital Universitario Quirón-Dexeus, 08028 Barcelona, Spain;
| | - Imane Chaib
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (I.C.); (S.F.); (F.L.)
| | - Andrés Felipe Cardona
- Foundation for Clinical and Applied Cancer Research-FICMAC Translational Oncology, Bogotá 100110, Colombia;
| | - Sara Fancelli
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (I.C.); (S.F.); (F.L.)
| | - Fernando Laguia
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (I.C.); (S.F.); (F.L.)
| | | | - Peng Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Miguel Angel Molina-Vila
- Pangaea Oncology, Hospital Universitario Quirón-Dexeus, 08028 Barcelona, Spain; (J.W.P.B.); (M.A.M.-V.)
| | | | - Rafael Rosell
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (I.C.); (S.F.); (F.L.)
| |
Collapse
|
37
|
Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Taranejoo S, Zali H. HSP90 and Co-chaperones: Impact on Tumor Progression and Prospects for Molecular-Targeted Cancer Therapy. Cancer Invest 2020; 38:310-328. [PMID: 32274949 DOI: 10.1080/07357907.2020.1752227] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heat shock protein 90 (HSP90), a highly and unique chaperone, presents as a double-edged sword. It plays an essential role in many physiological and pathological processes, including tumor development. The current review highlights a recent understanding of the roles of HSP90 in molecular mechanisms underlying cancer survival and progression. HSP90 and its client proteins through the regulation of oncoproteins including signaling proteins, receptors, and transcriptional factors involved in tumorigenesis. It also has potential clinical application as diagnostic and prognostic biomarkers for assessing cancer progression. In this way, using HSP90 to develop new anticancer therapeutic agents including HSP90 inhibitors, anti-HSP90 antibody, and HSP90-based vaccines has been promising.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrouz Taranejoo
- Wellman Centre for Photomedicine, Harvard-MIT Division of Health Sciences and Technology (HST), Boston, MA, USA
| | - Hakimeh Zali
- Department of Tissue engineering and applied cell, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|