1
|
West J, Rentzeperis F, Adam C, Bravo R, Luddy KA, Robertson-Tessi M, Anderson ARA. Tumor-immune metaphenotypes orchestrate an evolutionary bottleneck that promotes metabolic transformation. Front Immunol 2024; 15:1323319. [PMID: 38426105 PMCID: PMC10902449 DOI: 10.3389/fimmu.2024.1323319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Metabolism plays a complex role in the evolution of cancerous tumors, including inducing a multifaceted effect on the immune system to aid immune escape. Immune escape is, by definition, a collective phenomenon by requiring the presence of two cell types interacting in close proximity: tumor and immune. The microenvironmental context of these interactions is influenced by the dynamic process of blood vessel growth and remodelling, creating heterogeneous patches of well-vascularized tumor or acidic niches. Methods Here, we present a multiscale mathematical model that captures the phenotypic, vascular, microenvironmental, and spatial heterogeneity which shapes acid-mediated invasion and immune escape over a biologically-realistic time scale. The model explores several immune escape mechanisms such as i) acid inactivation of immune cells, ii) competition for glucose, and iii) inhibitory immune checkpoint receptor expression (PD-L1). We also explore the efficacy of anti-PD-L1 and sodium bicarbonate buffer agents for treatment. To aid in understanding immune escape as a collective cellular phenomenon, we define immune escape in the context of six collective phenotypes (termed "meta-phenotypes"): Self-Acidify, Mooch Acid, PD-L1 Attack, Mooch PD-L1, Proliferate Fast, and Starve Glucose. Results Fomenting a stronger immune response leads to initial benefits (additional cytotoxicity), but this advantage is offset by increased cell turnover that leads to accelerated evolution and the emergence of aggressive phenotypes. This creates a bimodal therapy landscape: either the immune system should be maximized for complete cure, or kept in check to avoid rapid evolution of invasive cells. These constraints are dependent on heterogeneity in vascular context, microenvironmental acidification, and the strength of immune response. Discussion This model helps to untangle the key constraints on evolutionary costs and benefits of three key phenotypic axes on tumor invasion and treatment: acid-resistance, glycolysis, and PD-L1 expression. The benefits of concomitant anti-PD-L1 and buffer treatments is a promising treatment strategy to limit the adverse effects of immune escape.
Collapse
Affiliation(s)
- Jeffrey West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | | | - Casey Adam
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Rafael Bravo
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Kimberly A Luddy
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
2
|
Hélène C, Conrad O, Pflumio C, Borel C, Voegelin M, Bernard A, Schultz P, Onea MA, Jung A, Martin S, Burgy M. Dynamic profiling of immune microenvironment during anti-PD-1 immunotherapy for head and neck squamous cell carcinoma: the IPRICE study. BMC Cancer 2023; 23:1209. [PMID: 38066522 PMCID: PMC10704641 DOI: 10.1186/s12885-023-11672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors of programmed cell death protein 1 (PD-1) represent a significant breakthrough in treating head and neck squamous cell carcinoma (HNSCC), with long-lasting responses and prolonged survival observed in first- and second-line therapy. However, this is observed in < 20% of patients and high primary/secondary resistance may occur. The primary objective of the identification of predictive factors for the response to anti-PD-1 immunotherapy in head and neck squamous cell carcinoma (IPRICE) study is to identify predictive factors of response to anti-PD-1 immunotherapy. METHODS The IPRICE study is a single-center, prospective, non-randomized, open-label, and interventional clinical trial. Liquid and tumor biopsies will be performed in 54 patients with recurrent/metastatic (R/M) HNSCC undergoing anti-PD-1 immunotherapy alone to compare the evolution of gene expression and immunological profile between responders and non-responders. We will use a multidisciplinary approach including spatial transcriptomics, single seq-RNA analysis, clinical data, and medical images. Genes, pathways, and transcription factors potentially involved in the immune response will also be analyzed, including genes involved in the interferon-gamma (IFN-γ) pathway, immunogenic cell death and mitophagy, hypoxia, circulating miRNA-mediated immunomodulation, cytokines, and immune repertoire within the tumor microenvironment (TME). With a follow-up period of 3-years, these data will help generate effective biomarkers to define optimal therapeutic strategy and new immunomodulatory agents based on a better understanding of primary/secondary resistance mechanisms. Tumor biopsy will be performed initially before the start of immunotherapy at the first tumor assessment and is only proposed at tumor progression. Clinical data will be collected using a dedicated Case Report Form (CRF). DISCUSSION Identifying predictive factors of the response to anti-PD-1 immunotherapy and optimizing long-term immune response require a thorough understanding of the intrinsic and acquired resistance to immunotherapy. To achieve this, dynamic profiling of TME during anti-PD-1 immunotherapy based on analysis of tumor biopsy samples is critical. This will be accomplished through the anatomical localization of HNSCC, which will allow for the analysis of multiple biopsies during treatment and the emergence of breakthrough technologies including single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics. TRIAL REGISTRATION Clinicaltrial.gov. Registered April 14, 2022, https://www. CLINICALTRIALS gov/study/NCT05328024 .
Collapse
Affiliation(s)
- Carinato Hélène
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe France, Strasbourg, France
| | - Ombline Conrad
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, Strasbourg, France
| | - Carole Pflumio
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe France, Strasbourg, France
| | - Christian Borel
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe France, Strasbourg, France
| | - Manon Voegelin
- Department of Clinical Research, Institut de Cancérologie Strasbourg Europe France, Strasbourg, France
| | - Alexandre Bernard
- Department of Clinical Research, Institut de Cancérologie Strasbourg Europe France, Strasbourg, France
| | - Philippe Schultz
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, Strasbourg, France
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital France, Strasbourg, France
| | - Mihaela-Alina Onea
- Department of Pathology, Strasbourg University Hospital France, Strasbourg, France
| | - Alain Jung
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, Strasbourg, France
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, Strasbourg, 67200, France
| | - Sophie Martin
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, Strasbourg, France
| | - Mickaël Burgy
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe France, Strasbourg, France.
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, Strasbourg, France.
| |
Collapse
|
3
|
Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, Nagarajan A, Liu J, Subudhi SK, Poon C, Gant KL, Herbrich SM, Anandhan S, Islam S, Amit M, Anandappa G, Allison JP. Immune checkpoint therapy-current perspectives and future directions. Cell 2023; 186:1652-1669. [PMID: 37059068 DOI: 10.1016/j.cell.2023.03.006] [Citation(s) in RCA: 301] [Impact Index Per Article: 150.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 04/16/2023]
Abstract
Immune checkpoint therapy (ICT) has dramatically altered clinical outcomes for cancer patients and conferred durable clinical benefits, including cure in a subset of patients. Varying response rates across tumor types and the need for predictive biomarkers to optimize patient selection to maximize efficacy and minimize toxicities prompted efforts to unravel immune and non-immune factors regulating the responses to ICT. This review highlights the biology of anti-tumor immunity underlying response and resistance to ICT, discusses efforts to address the current challenges with ICT, and outlines strategies to guide the development of subsequent clinical trials and combinatorial efforts with ICT.
Collapse
Affiliation(s)
- Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deblina Raychaudhuri
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bilal A Siddiqui
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratishtha Singh
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashwat Nagarajan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jielin Liu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Candice Poon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristal L Gant
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shelley M Herbrich
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swetha Anandhan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shajedul Islam
- Department of Head & Neck Surgery Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Moran Amit
- Department of Head & Neck Surgery Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gayathri Anandappa
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Significant Tumor Regression after Neoadjuvant Chemotherapy in Gastric Cancer, but Poor Survival of the Patient? Role of MHC Class I Alterations. Cancers (Basel) 2023; 15:cancers15030771. [PMID: 36765729 PMCID: PMC9913563 DOI: 10.3390/cancers15030771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
We aimed to determine the clinical and prognostic relevance of allelic imbalance (AI) of the major histocompatibility complex (MHC) class I genes, encompassing the human leukocyte antigen (HLA) class I and beta-2 microglobulin (B2M) genes, in the context of neoadjuvant platinum/fluoropyrimidine chemotherapy (CTx). Biopsies before CTx were studied in 158 patients with adenocarcinoma of the stomach or gastroesophageal junction. The response was histopathologically evaluated. AI was detected by multiplex PCRs analysis of four or five microsatellite markers in HLA and B2M regions, respectively. AI with no marker was significantly associated with response or survival. However, subgroup analysis revealed differences. AI at marker D6S265, close to the HLA-A gene, was associated with an obvious increased risk in responding (HR, 3.62; 95% CI, 0.96-13.68, p = 0.058) but not in non-responding patients (HR, 0.92; 95% CI, 0.51-1.65, p = 0.773). Markers D6S273 and D6S2872 showed similar results. The interaction between AI at D6S265 and response to CTx was significant in a multivariable analysis (p = 0.010). No associations were observed for B2M markers. Our results underline the importance of intact neoantigen presentation specifically for responding patients and may help explain an unexpectedly poor survival of a patient despite significant tumor regression after neoadjuvant platinum/fluoropyrimidine CTx.
Collapse
|