1
|
Duan J, Chen J, Lin Y, Lin SL, Wu J. Endocannabinoid Receptor 2 Function is Associated with Tumor-Associated Macrophage Accumulation and Increases in T Cell Number to Initiate a Potent Antitumor Response in a Syngeneic Murine Model of Glioblastoma. Cannabis Cannabinoid Res 2024; 9:1524-1536. [PMID: 38888628 PMCID: PMC11685299 DOI: 10.1089/can.2024.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Introduction: Glioblastoma patients have a highly immunosuppressive tumor microenvironment and systemic immunosuppression that comprise a major barrier to immune checkpoint therapy. Based on the production of endocannabinoids by glioblastomas, we explored involvement of endocannabinoid receptor 2 (CB2R), encoded by the CNR2 gene, which is predominantly expressed by immune cells, in glioblastoma-related immunosuppression. Materials & Methods: Bioinformatics of human glioblastoma databases was used to correlate enzymes involved in the synthesis and degradation of endocannabinoids, as well as CB2Rs, with patient overall survival. Intrastriatal administration of luciferase-expressing, murine GL261 glioblastoma cells was used to establish in in vivo glioblastoma model for characterization of tumor growth and intratumoral immune cell infiltration, as well as provide immune cells for in vitro co-culture experiments. Involvement of CB2Rs was determined by treatment with CB2R agonist (GW405833) or CB2R antagonist (AM630). ELISA, FACS, and immunocytochemistry were used to determine perforin, granzyme B, and surface marker levels. Results: Bioinformatics of human glioblastoma databases showed high expression of CB2R and elevated endocannabinoid production correlated with poorer prognosis, and involved immune-associated pathways. AM630treatment of GL261 glioblastoma-bearing mice induced a potent antitumor response, with survival plateauing at 50% on Day 40, when all control mice (median survival 28 days) and mice treated with GW405833 (median survival 21 days) had died. Luciferase tumor imaging revealed accelerated tumor growth by GW405833 treatment, but stable or regressing tumors in AM630-treated mice. Notably, in spleens, AM630 treatment caused an 83% decrease in monocytes/macrophages, and 1.8- and 1.6-fold increases in CD8+ and CD4+ cells, respectively. Within tumors, there was a corresponding decrease in tumor-associated macrophages (TAMs) and increase in CD8+ T cells. In vitro, lymphocytes from AM630-treated mice showed greater cytotoxic function (increased percentage of perforin- and granzyme B-positive CD8+ T cells). Discussion: These results suggest that inhibition of CB2R enhances both immunosuppressive TAM infiltration and systemic T-cell suppression through CB2R activation, and that inhibition of CB2Rs can potently counter both the immunosuppressive tumor microenvironment, as well as systemic immunosuppression in glioblastoma.
Collapse
Affiliation(s)
- Jin Duan
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, China
| | - Jieling Chen
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, China
| | - Yilin Lin
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Stanley L. Lin
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, China
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Walker SB, Duarte JL, Di Filippo LD, Chorilli M. Improving the Biopharmaceutical Properties of Cannabinoids in Glioblastoma Multiforme Therapy With Nanotechnology: A Drug Delivery Perspective. Drug Dev Res 2024; 85:e70023. [PMID: 39620407 DOI: 10.1002/ddr.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/09/2024] [Accepted: 11/11/2024] [Indexed: 12/11/2024]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor in adults and is known for its rapid proliferation and infiltrative nature. Current therapeutic strategies include surgical resection followed by radio- and chemotherapy. Still, they are hindered by GBM biological characteristics and physical-chemical properties of chemotherapeutic drugs, leading to limited efficacy and poor prognosis. Cannabinoids have emerged as potential anti-GBM agents, exhibiting antiangiogenic, antimetastatic, and antiproliferative effects. However, their hydrophobicity and poor oral bioavailability pose significant challenges for clinical applications. This study evaluates the potential of nanocarriers in enhancing the solubility and targeted delivery of cannabinoids for GBM therapy. The innovative combination of nanotechnology with cannabinoid-based treatment offers a promising strategy to improve therapeutic outcomes. We addressed the application of nanocarriers to deliver cannabinoids, which can enhance passage across the blood-brain barrier and enable targeted therapy. Studies demonstrate the potential of nanocarriers in improving solubility, stability, and controlled release of cannabinoids, highlighting the advancements in nanocarrier design for optimized delivery to glioma cells. Cannabinoids can exert their antitumor effect, including the induction of apoptosis through the ceramide and p8-regulated pathways and the modulation of immune responses. The evidence found in this study supports the potential of cannabinoid-based nanotechnologies in GBM therapeutic regimens as a strategy to enhance its efficacy and patient outcomes.
Collapse
Affiliation(s)
- Stephanie B Walker
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jonatas L Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Leonardo D Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
3
|
Wang K, Schober L, Fischer A, Bechmann N, Maurer J, Peischer L, Reul A, Hantel C, Reincke M, Beuschlein F, Robledo M, Mohr H, Pellegata NS, Schilbach K, Knösel T, Ilmer M, Angele M, Kroiss M, Maccio U, Broglie-Däppen M, Vetter D, Lehmann K, Pacak K, Grossman AB, Auernhammer CJ, Zitzmann K, Nölting S. Opposing Effects of Cannabidiol in Patient-derived Neuroendocrine Tumor, Pheochromocytoma/Paraganglioma Primary Cultures. J Clin Endocrinol Metab 2024; 109:2892-2904. [PMID: 38605427 DOI: 10.1210/clinem/dgae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
CONTEXT Treatment options for advanced neuroendocrine tumors (NETs), pheochromocytomas and paragangliomas (PPGLs) are still limited. In recent years, antitumor effects of cannabinoids have been reported; however, there are only very limited data available in NETs or PPGLs. OBJECTIVE Investigation of the effects of cannabidiol (CBD) on patient-derived human NET/PPGL primary cultures and on NET/PPGL cell lines. METHODS We established primary cultures derived from 46 different patients with PPGLs (n = 35) or NETs (n = 11) who underwent tumor resection at 2 centers. Treatment of patient primary cultures with clinically relevant doses (5 µM) and slightly higher doses (10 µM) of CBD was performed. RESULTS We found opposing effects of 5 µM CBD: significant antitumor effects in 5/35 (14%) and significant tumor-promoting effects in 6/35 (17%) of PPGL primary cultures. In terms of antitumor effects, cluster 2-related PPGLs showed significantly stronger responsivity to CBD compared to cluster 1-related PPGLs (P = .042). Of the cluster 2-related tumors, NF1 PPGLs showed the strongest responsivity (4/5 PPGL primary cultures with a significant decrease in cell viability were NF1-mutated). We also found opposing effects of 10 µM CBD in PPGLs and NETs: significant antitumor effects in 9/33 of PPGL (27%) and 3/11 of NET (27%) primary cultures and significant tumor-promoting effects in 6/33 of PPGL (18%) and 2/11 of NET (18%) primary cultures. CONCLUSION We suggest a potential novel treatment option for some NETs/PPGLs but also provide evidence for caution when applying cannabinoids as supportive therapy for pain or appetite management to cancer patients and possibly as health supplements.
Collapse
Affiliation(s)
- Katharina Wang
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Laura Schober
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Julian Maurer
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Lea Peischer
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Astrid Reul
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
- Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Martin Reincke
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Felix Beuschlein
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
- The LOOP Zurich-Medical Research Center, 8044 Zurich, Switzerland
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, 28029 Madrid, Spain
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Katharina Schilbach
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS-certified Center of Excellence), LMU University Hospital, 81377 Munich, Germany
| | - Matthias Ilmer
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS-certified Center of Excellence), LMU University Hospital, 81377 Munich, Germany
- Department of General, Visceral, and Transplantation Surgery, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Martin Angele
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS-certified Center of Excellence), LMU University Hospital, 81377 Munich, Germany
- Department of General, Visceral, and Transplantation Surgery, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Kroiss
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Department of Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Umberto Maccio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Martina Broglie-Däppen
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Diana Vetter
- Department of Visceral and Transplantation Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Kuno Lehmann
- Department of Visceral and Transplantation Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK
- NET Unit, ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, UK
| | - Christoph J Auernhammer
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS-certified Center of Excellence), LMU University Hospital, 81377 Munich, Germany
| | - Kathrin Zitzmann
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland
| |
Collapse
|
4
|
Yu H, Chen Y, Deng J, Cai G, Fu W, Shentu C, Xu Y, Liu J, Zhou Y, Luo Y, Chen Y, Liu X, Wu Y, Xu T. Integrated metabolomics and proteomics analyses to reveal anticancer mechanism of hemp oil extract in colorectal cancer. J Pharm Biomed Anal 2024; 249:116379. [PMID: 39059180 DOI: 10.1016/j.jpba.2024.116379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Cannabis sativa L., with a rich history in Chinese folk medicine, includes hemp strains that offer substantial economic and medical benefits due to their non-addictive properties. Hemp has demonstrated various pharmaceutical activities, including anti-inflammatory, antioxidant, and anti-tumor effects. This study explores the potential of hemp oil extract (HOE) in treating colorectal cancer (CRC). Despite its promise, the specific anticancer mechanisms of HOE have not been well understood. To elucidate these mechanisms, we employed mass spectrometry-based metabolomics and proteomics to investigate the global effects of HOE on CRC cells. Additionally, bioinformatics approaches, including bulk RNA-seq and single-cell RNA-seq, were used to identify gene expression differences and cellular heterogeneity. The results were validated using flow cytometry, western blotting, and immunohistochemistry. Our findings reveal that HOE induces significant alterations in purine metabolism pathways, down-regulates c-MYC, and inhibits the expression of cell cycle-related proteins such as CCND1, CDK4, and CDK6, leading to cell cycle arrest in the G1 phase. This comprehensive analysis demonstrates that HOE effectively blocks the cell cycle in the G1 phase, thereby inhibiting colorectal cancer cell proliferation. These findings provide experimental evidence supporting the potential therapeutic use of hemp in medicine.
Collapse
Affiliation(s)
- Hengyuan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou 325800, China
| | - Yang Chen
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Xihu University School of Medicine, Hangzhou 310006, China
| | - Jiayin Deng
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guoxin Cai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiliang Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengyu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Youdong Xu
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jie Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Shandong C.P. Freda Pharmaceutical Co., Ltd., Jinan 250104, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yingjie Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou 325800, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou 325800, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou 325800, China
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Tengfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou 325800, China.
| |
Collapse
|
5
|
John Hamilton A, Lane S, Werry EL, Suri A, Bailey AW, Mercé C, Kadolsky U, Payne AD, Kassiou M, Treiger Sredni S, Saxena A, Gunosewoyo H. Synthesis and Antitumour Evaluation of Tricyclic Indole-2-Carboxamides against Paediatric Brain Cancer Cells. ChemMedChem 2024; 19:e202400098. [PMID: 38923350 DOI: 10.1002/cmdc.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Antitumour properties of some cannabinoids (CB) have been reported in the literature as early as 1970s, however there is no clear consensus to date on the exact mechanisms leading to cancer cell death. The indole-based WIN 55,212-2 and SDB-001 are both known as potent agonists at both CB1 and CB2 receptors, yet we demonstrate herein that only the former can exert in vitro antitumour effects when tested against a paediatric brain cancer cell line KNS42. In this report, we describe the synthesis of novel 3,4-fused tricyclic indoles and evaluate their functional potencies at both cannabinoid receptors, as well as their abilities to inhibit the growth or proliferation of KNS42 cells. Compared to our previously reported indole-2-carboxamides, these 3,4-fused tricyclic indoles had either completely lost activities, or, showed moderate-to-weak antagonism at both CB1 and CB2 receptors. Compound 23 displayed the most potent antitumour properties among the series. Our results further support the involvement of non-CB pathways for the observed antitumour activities of amidoalkylindole-based cannabinoids, in line with our previous findings. Transcriptomic analysis comparing cells treated or non-treated with compound 23 suggested the observed antitumour effects of 23 are likely to result mainly from disruption of the FOXM1-regulated cell cycle pathways.
Collapse
Affiliation(s)
| | - Samuel Lane
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney NSW, 2006, Australia
| | - Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | | | | | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alka Saxena
- Genomics WA, QEII Campus, Nedlands, WA, 6009, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
6
|
Valerius AR, Webb LM, Thomsen A, Lehrer EJ, Breen WG, Campian JL, Riviere-Cazaux C, Burns TC, Sener U. Review of Novel Surgical, Radiation, and Systemic Therapies and Clinical Trials in Glioblastoma. Int J Mol Sci 2024; 25:10570. [PMID: 39408897 PMCID: PMC11477105 DOI: 10.3390/ijms251910570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Despite an established standard of care including surgical resection, radiation therapy, and chemotherapy, GBM unfortunately is associated with a dismal prognosis. Therefore, researchers are extensively evaluating avenues to expand GBM therapy and improve outcomes in patients with GBM. In this review, we provide a broad overview of novel GBM therapies that have recently completed or are actively undergoing study in clinical trials. These therapies expand across medical, surgical, and radiation clinical trials. We additionally review methods for improving clinical trial design in GBM.
Collapse
Affiliation(s)
| | - Lauren M. Webb
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
| | - Anna Thomsen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
| | - Eric J. Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - William G. Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Terry C. Burns
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Bozzuto G, Calcabrini A, Colone M, Condello M, Dupuis ML, Pellegrini E, Stringaro A. Phytocompounds and Nanoformulations for Anticancer Therapy: A Review. Molecules 2024; 29:3784. [PMID: 39202863 PMCID: PMC11357218 DOI: 10.3390/molecules29163784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is a complex disease that affects millions of people and remains a major public health problem worldwide. Conventional cancer treatments, including surgery, chemotherapy, immunotherapy, and radiotherapy, have limited achievements and multiple drawbacks, among which are healthy tissue damage and multidrug-resistant phenotype onset. Increasing evidence shows that many plants' natural products, as well as their bioactive compounds, have promising anticancer activity and exhibit minimal toxicity compared to conventional anticancer drugs. However, their widespread use in cancer therapy is severely restricted by limitations in terms of their water solubility, absorption, lack of stability, bioavailability, and selective targeting. The use of nanoformulations for plants' natural product transportation and delivery could be helpful in overcoming these limitations, thus enhancing their therapeutic efficacy and providing the basis for improved anticancer treatment strategies. The present review is aimed at providing an update on some phytocompounds (curcumin, resveratrol, quercetin, and cannabinoids, among others) and their main nanoformulations showing antitumor activities, both in vitro and in vivo, against such different human cancer types as breast and colorectal cancer, lymphomas, malignant melanoma, glioblastoma multiforme, and osteosarcoma. The intracellular pathways underlying phytocompound anticancer activity and the main advantages of nanoformulation employment are also examined. Finally, this review critically analyzes the research gaps and limitations causing the limited success of phytocompounds' and nanoformulations' clinical translation.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Annarica Calcabrini
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Condello
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Evelin Pellegrini
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| |
Collapse
|
8
|
Rushendran R, Begum RF, Singh S A, Narayanan PL, Vellapandian C, Prajapati BG, Paul PK. Navigating neurological disorders: harnessing the power of natural compounds for innovative therapeutic breakthroughs. EXCLI JOURNAL 2024; 23:534-569. [PMID: 38741726 PMCID: PMC11089094 DOI: 10.17179/excli2024-7051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 05/16/2024]
Abstract
Novel treatments are needed as neurological issues become more frequent worldwide. According to the report, plants, oceans, microorganisms, and animals contain interesting drug discovery compounds. Alzheimer's, Parkinson's, and stroke reviews emphasize neurological disorders' complexity and natural substances' safety. Learn about marine-derived and herbal substances' neuroprotective characteristics and applications. Molecular pathways show these substances' neurological healing effects. This article discusses clinical usage of Bryostatin-1, Fucoidan, Icariin, Salvianolic acid, Curcumin, Resveratrol, etc. Their potential benefits for asthma and Alzheimer's disease are complex. Although limited, the study promotes rigorous scientific research and collaboration between traditional and alternative medical practitioners. Unexplored natural compounds, quality control, well-structured clinical trials, and interdisciplinary collaboration should guide future study. Developing and employing natural chemicals to treat neurological illnesses requires ethical sourcing, sustainability, and public awareness. This detailed analysis covers natural chemicals' current state, challenges, and opportunities in neurological disorder treatment. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Pavithra Lakshmi Narayanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, Gujarat, India
| | - Pijush Kumar Paul
- Department of Pharmacy, Gono Bishwabidyalay University, Mirzanagar, Savar, Dhaka-1344, Bangladesh
| |
Collapse
|
9
|
Buchalska B, Kamińska K, Owe-Larsson M, Cudnoch-Jędrzejewska A. Cannabinoids in the treatment of glioblastoma. Pharmacol Rep 2024; 76:223-234. [PMID: 38457018 DOI: 10.1007/s43440-024-00580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Glioblastoma (GBM) is the most prevalent primary malignant tumor of the nervous system. While the treatment of other neoplasms is increasingly more efficacious the median survival rate of GBM patients remains low and equals about 14 months. Due to this fact, there are intensive efforts to find drugs that would help combat GBM. Nowadays cannabinoids are becoming more and more important in the field of cancer and not only because of their properties of antiemetic drugs during chemotherapy. These compounds may have a direct cytotoxic effect on cancer cells. Studies indicate GBM has disturbances in the endocannabinoid system-changes in cannabinoid metabolism as well as in the cannabinoid receptor expression. The GBM cells show expression of cannabinoid receptors 1 and 2 (CB1R and CB2R), which mediate various actions of cannabinoids. Through these receptors, cannabinoids inhibit the proliferation and invasion of GBM cells, along with changing their morphology. Cannabinoids also induce an intrinsic pathway of apoptosis in the tumor. Hence the use of cannabinoids in the treatment of GBM may be beneficial to the patients. So far, studies focusing on using cannabinoids in GBM therapy are mainly preclinical and involve cell lines and mice. The results are promising and show cannabinoids inhibit GBM growth. Several clinical studies are also being carried out. The preliminary results show good tolerance of cannabinoids and prolonged survival after administration of these drugs. In this review, we describe the impact of cannabinoids on GBM and glioma cells in vitro and in animal studies. We also provide overview of clinical trials on using cannabinoids in the treatment of GBM.
Collapse
Affiliation(s)
- Barbara Buchalska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, 02097, Poland
| | - Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, 02097, Poland.
| | - Maja Owe-Larsson
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, 02097, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, 02097, Poland
| |
Collapse
|
10
|
Morris JN, Loyer J, Blunt J. Stigma, risks, and benefits of medicinal cannabis use among Australians with cancer. Support Care Cancer 2024; 32:252. [PMID: 38532234 DOI: 10.1007/s00520-024-08439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE People with cancer who use medicinal cannabis do so despite risks associated with limited clinical evidence, legalities, and stigma. This study investigated how Australians with cancer rationalise their medicinal cannabis use despite its risks. METHODS Ten adults (5 males and 5 females; mean age of 53.3) who used cannabis medicinally for their cancer were interviewed in 2021-2022 about how they used and accessed the substance, attitudes and beliefs underpinning their use, and conversations with others about medicinal cannabis. RESULTS Participants had cancer of the bowel, skin, oesophagus, stomach, thyroid, breast, and Hodgkin lymphoma for which they were receiving treatment (n = 5) or under surveillance (n = 5), with most (n = 6) encountering metastatic disease. Cannabis was used to treat a variety of cancer-related symptoms such as pain, poor sleep, and low mood. Cannabis was perceived as natural and thus less risky than pharmaceuticals. Participants legitimised their medicinal cannabis use by emphasising its natural qualities and distancing themselves from problematic users or riskier substances. Cost barriers and a lack of healthcare professional communication impeded prescription access. Similarly, participants navigated medicinal cannabis use independently due to a lack of guidance from healthcare professionals. CONCLUSION Findings highlight the need for robust data regarding the harms and efficacy of medicinal cannabis and dissemination of such information among healthcare professionals and to patients who choose to use the substance. Ensuring healthcare professionals are equipped to provide non-judgmental and evidence-based guidance may mitigate potential safety and legal risks.
Collapse
Affiliation(s)
- Julia N Morris
- Cancer Council SA, 202 Greenhill Road, Eastwood, SA, 5063, Australia.
| | | | | |
Collapse
|
11
|
Dasram MH, Naidoo P, Walker RB, Khamanga SM. Targeting the Endocannabinoid System Present in the Glioblastoma Tumour Microenvironment as a Potential Anti-Cancer Strategy. Int J Mol Sci 2024; 25:1371. [PMID: 38338649 PMCID: PMC10855826 DOI: 10.3390/ijms25031371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The highly aggressive and invasive glioblastoma (GBM) tumour is the most malignant lesion among adult-type diffuse gliomas, representing the most common primary brain tumour in the neuro-oncology practice of adults. With a poor overall prognosis and strong resistance to treatment, this nervous system tumour requires new innovative treatment. GBM is a polymorphic tumour consisting of an array of stromal cells and various malignant cells contributing to tumour initiation, progression, and treatment response. Cannabinoids possess anti-cancer potencies against glioma cell lines and in animal models. To improve existing treatment, cannabinoids as functionalised ligands on nanocarriers were investigated as potential anti-cancer agents. The GBM tumour microenvironment is a multifaceted system consisting of resident or recruited immune cells, extracellular matrix components, tissue-resident cells, and soluble factors. The immune microenvironment accounts for a substantial volume of GBM tumours. The barriers to the treatment of glioblastoma with cannabinoids, such as crossing the blood-brain barrier and psychoactive and off-target side effects, can be alleviated with the use of nanocarrier drug delivery systems and functionalised ligands for improved specificity and targeting of pharmacological receptors and anti-cancer signalling pathways. This review has shown the presence of endocannabinoid receptors in the tumour microenvironment, which can be used as a potential unique target for specific drug delivery. Existing cannabinoid agents, studied previously, show anti-cancer potencies via signalling pathways associated with the hallmarks of cancer. The results of the review can be used to provide guidance in the design of future drug therapy for glioblastoma tumours.
Collapse
Affiliation(s)
| | | | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa (R.B.W.)
| |
Collapse
|
12
|
Khodadadi H, Salles ÉL, Alptekin A, Mehrabian D, Rutkowski M, Arbab AS, Yeudall WA, Yu JC, Morgan JC, Hess DC, Vaibhav K, Dhandapani KM, Baban B. Inhalant Cannabidiol Inhibits Glioblastoma Progression Through Regulation of Tumor Microenvironment. Cannabis Cannabinoid Res 2023; 8:824-834. [PMID: 34918964 PMCID: PMC10589502 DOI: 10.1089/can.2021.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Glioblastoma (GBM) is the most common invasive brain tumor composed of diverse cell types with poor prognosis. The highly complex tumor microenvironment (TME) and its interaction with tumor cells play important roles in the development, progression, and durability of GBM. Angiogenic and immune factors are two major components of TME of GBM; their interplay is a major determinant of tumor vascularization, immune profile, as well as immune unresponsiveness of GBM. Given the ineffectiveness of current standard therapies (surgery, radiotherapy, and concomitant chemotherapy) in managing patients with GBM, it is necessary to develop new ways of treating these lethal brain tumors. Targeting TME, altering tumor ecosystem may be a viable therapeutic strategy with beneficial effects for patients in their fight against GBM. Materials and Methods: Given the potential therapeutic effects of cannabidiol (CBD) in a wide spectrum of diseases, including malignancies, we tested, for the first time, whether inhalant CBD can inhibit GBM tumor growth using a well-established orthotopic murine model. Optical imaging, histology, immunohistochemistry, and flow cytometry were employed to describe the outcomes such as tumor progression, cancer cell signaling pathways, and the TME. Results: Our findings showed that inhalation of CBD was able to not only limit the tumor growth but also to alter the dynamics of TME by repressing P-selectin, apelin, and interleukin (IL)-8, as well as blocking a key immune checkpoint-indoleamine 2,3-dioxygenase (IDO). In addition, CBD enhanced the cluster of differentiation (CD) 103 expression, indicating improved antigen presentation, promoted CD8 immune responses, and reduced innate Lymphoid Cells within the tumor. Conclusion: Overall, our novel findings support the possible therapeutic role of inhaled CBD as an effective, relatively safe, and easy to administer treatment adjunct for GBM with significant impacts on the cellular and molecular signaling of TME, warranting further research.
Collapse
Affiliation(s)
- Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Daniel Mehrabian
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Martin Rutkowski
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ali S. Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - W. Andrew Yeudall
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jack C. Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John C. Morgan
- Parkinson's Foundation Center of Excellence, Movement Disorders, Program, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kumar Vaibhav
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishnan M. Dhandapani
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
13
|
Voicu V, Brehar FM, Toader C, Covache-Busuioc RA, Corlatescu AD, Bordeianu A, Costin HP, Bratu BG, Glavan LA, Ciurea AV. Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy. Biomolecules 2023; 13:1388. [PMID: 37759788 PMCID: PMC10526757 DOI: 10.3390/biom13091388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In this review article, we embark on a thorough exploration of cannabinoids, compounds that have garnered considerable attention for their potential therapeutic applications. Initially, this article delves into the fundamental background of cannabinoids, emphasizing the role of endogenous cannabinoids in the human body and outlining their significance in studying neurodegenerative diseases and cancer. Building on this foundation, this article categorizes cannabinoids into three main types: phytocannabinoids (plant-derived cannabinoids), endocannabinoids (naturally occurring in the body), and synthetic cannabinoids (laboratory-produced cannabinoids). The intricate mechanisms through which these compounds interact with cannabinoid receptors and signaling pathways are elucidated. A comprehensive overview of cannabinoid pharmacology follows, highlighting their absorption, distribution, metabolism, and excretion, as well as their pharmacokinetic and pharmacodynamic properties. Special emphasis is placed on the role of cannabinoids in neurodegenerative diseases, showcasing their potential benefits in conditions such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. The potential antitumor properties of cannabinoids are also investigated, exploring their potential therapeutic applications in cancer treatment and the mechanisms underlying their anticancer effects. Clinical aspects are thoroughly discussed, from the viability of cannabinoids as therapeutic agents to current clinical trials, safety considerations, and the adverse effects observed. This review culminates in a discussion of promising future research avenues and the broader implications for cannabinoid-based therapies, concluding with a reflection on the immense potential of cannabinoids in modern medicine.
Collapse
Affiliation(s)
- Victor Voicu
- Pharmacology, Toxicology and Clinical Psychopharmacology, “Carol Davila” University of Medicine and Pharmacy in Bucharest, 020021 Bucharest, Romania;
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Felix-Mircea Brehar
- Neurosurgery Department, Emergency Clinical Hospital Bagdasar-Arseni, 041915 Bucharest, Romania
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
14
|
Tong Z, Esser L, Galettis P, Rudd D, Easton CD, Nilghaz A, Peng B, Zhu D, Thissen H, Martin JH, Voelcker NH. Fluoropolymer Functionalization of Organ-on-Chip Platform Increases Detection Sensitivity for Cannabinoids. BIOSENSORS 2023; 13:779. [PMID: 37622865 PMCID: PMC10452156 DOI: 10.3390/bios13080779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Microfluidic technology is applied across various research areas including organ-on-chip (OOC) systems. The main material used for microfluidics is polydimethylsiloxane (PDMS), a silicone elastomer material that is biocompatible, transparent, and easy to use for OOC systems with well-defined microstructures. However, PDMS-based OOC systems can absorb hydrophobic and small molecules, making it difficult and erroneous to make quantitative analytical assessments for such compounds. In this paper, we explore the use of a synthetic fluoropolymer, poly(4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole-co-tetrafluoroethylene) (Teflon™ AF 2400), with excellent "non-stick" properties to functionalize OOC systems. Cannabinoids, including cannabidiol (CBD), are classes of hydrophobic compounds with a great potential for the treatment of anxiety, depression, pain, and cancer. By using CBD as a testing compound, we examined and systematically quantified CBD absorption into PDMS by means of an LC-MS/MS analysis. In comparison to the unmodified PDMS microchannels, an increase of approximately 30× in the CBD signal was detected with the fluoropolymer surface modification after 3 h of static incubation. Under perfusion conditions, we observed an increase of nearly 15× in the CBD signals from the surface-modified microchannels than from the unmodified microchannels. Furthermore, we also demonstrated that fluoropolymer-modified microchannels are compatible for culturing hCMEC/D3 endothelial cells and for CBD perfusion experiments.
Collapse
Affiliation(s)
- Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (Z.T.); (D.R.); (A.N.); (B.P.); (D.Z.)
| | - Lars Esser
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia; (L.E.); (C.D.E.); (H.T.)
| | - Peter Galettis
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, Faculty of Health, Medicine & Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia;
- Centre Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (Z.T.); (D.R.); (A.N.); (B.P.); (D.Z.)
| | - Christopher D. Easton
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia; (L.E.); (C.D.E.); (H.T.)
| | - Azadeh Nilghaz
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (Z.T.); (D.R.); (A.N.); (B.P.); (D.Z.)
- Institute for Frontier Materials, Deakin University, Waurn Pounds, VIC 3216, Australia
| | - Bo Peng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (Z.T.); (D.R.); (A.N.); (B.P.); (D.Z.)
- Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Douer Zhu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (Z.T.); (D.R.); (A.N.); (B.P.); (D.Z.)
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia; (L.E.); (C.D.E.); (H.T.)
| | - Jennifer H. Martin
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, Faculty of Health, Medicine & Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia;
- Centre Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (Z.T.); (D.R.); (A.N.); (B.P.); (D.Z.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
15
|
Young JS, Al-Adli N, Sibih YE, Scotford KL, Casey M, James S, Berger MS. Recognizing the psychological impact of a glioma diagnosis on mental and behavioral health: a systematic review of what neurosurgeons need to know. J Neurosurg 2023; 139:11-19. [PMID: 36334288 PMCID: PMC10413205 DOI: 10.3171/2022.9.jns221139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
A cancer diagnosis is life altering and frequently associated with both acute and long-lasting psychosocial and behavioral distress for patients. The impact of a diffuse glioma diagnosis on mental health is an important aspect of the patient experience with their disease. This needs to be understood by neurosurgeons so these concerns can be appropriately addressed in a timely fashion and integrated into the multidisciplinary care of neuro-oncology patients. The relatively grave prognosis associated with diffuse gliomas, the morbidity associated with treatment, and the constant threat of developing a new neurological deficit all can negatively affect a patient's mental ability to cope and ultimately manifest in mental health disorders such as anxiety and depression. The objective of this systematic review was to describe the variety of behavioral health disorders patients may experience following a glioma diagnosis and discuss possible treatment options. The PubMed, Web of Science, Embase, and PsycINFO databases were searched through July 1, 2022, using broad search terms, which resulted in 5028 studies that were uploaded to Covidence systematic review software. Duplicates, non-English-language studies, and studies with irrelevant outcomes or incorrect design were removed (n = 3167). A total of 92 articles reporting behavioral health outcomes in brain tumor patients were categorized and extracted for associations with overall mental health, anxiety, depression, distress, stress, pharmacology, interventions, and mental health in caregivers. The authors identified numerous studies reporting the prevalence of mental health disorders and their negative influence in this population. However, there is a paucity of literature on therapeutic options for patients. Given the strong correlation between patient quality of life and mental well-being, there is a considerable need for early recognition and treatment of these behavioral health disorders to optimize everyday functioning for patients.
Collapse
Affiliation(s)
- Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, CA
| | - Nadeem Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, CA
- School of Medicine, Texas Christian University, Fort Worth, TX
| | - Youssef E. Sibih
- Department of Neurological Surgery, University of California, San Francisco, CA
| | - Katrina L. Scotford
- Department of Neurological Surgery, University of California, San Francisco, CA
| | - Megan Casey
- School of Medicine, University of California, San Francisco, CA
| | | | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, CA
| |
Collapse
|
16
|
Sim HW, Lorrey S, Khasraw M. Advances in Treatment of Isocitrate Dehydrogenase (IDH)-Wildtype Glioblastomas. Curr Neurol Neurosci Rep 2023; 23:263-276. [PMID: 37154886 DOI: 10.1007/s11910-023-01268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE OF REVIEW The management of isocitrate dehydrogenase (IDH)-wildtype glioblastomas is an area of unmet need. Despite multimodal therapy incorporating maximal safe resection, radiotherapy, and temozolomide, clinical outcomes remain poor. At disease progression or relapse, available systemic agents such as temozolomide, lomustine, and bevacizumab have limited efficacy. We review the recent advances in the treatment of IDH-wildtype glioblastomas. RECENT FINDINGS A broad repertoire of systemic agents is in the early stages of development, encompassing the areas of precision medicine, immunotherapy, and repurposed medications. The use of medical devices may present opportunities to bypass the blood-brain barrier. Novel clinical trial designs aim to efficiently test treatment options to advance the field. There are a number of emerging treatment options for IDH-wildtype glioblastomas which are undergoing evaluation in clinical trials. Advances in our scientific understanding of IDH-wildtype glioblastomas offer hope and the prospect of incremental improvements in clinical outcomes.
Collapse
Affiliation(s)
- Hao-Wen Sim
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, 2050, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2010, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, NSW, 2010, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, 2050, Australia
| | - Selena Lorrey
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
- Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mustafa Khasraw
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, 2050, Australia.
- Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke University School of Medicine, Duke University Medical Center, Box 3624, Durham, NC, 27710, USA.
| |
Collapse
|
17
|
Cherkasova V, Wang B, Gerasymchuk M, Fiselier A, Kovalchuk O, Kovalchuk I. Use of Cannabis and Cannabinoids for Treatment of Cancer. Cancers (Basel) 2022; 14:5142. [PMID: 36291926 PMCID: PMC9600568 DOI: 10.3390/cancers14205142] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
The endocannabinoid system (ECS) is an ancient homeostasis mechanism operating from embryonic stages to adulthood. It controls the growth and development of many cells and cell lineages. Dysregulation of the components of the ECS may result in uncontrolled proliferation, adhesion, invasion, inhibition of apoptosis and increased vascularization, leading to the development of various malignancies. Cancer is the disease of uncontrolled cell division. In this review, we will discuss whether the changes to the ECS are a cause or a consequence of malignization and whether different tissues react differently to changes in the ECS. We will discuss the potential use of cannabinoids for treatment of cancer, focusing on primary outcome/care-tumor shrinkage and eradication, as well as secondary outcome/palliative care-improvement of life quality, including pain, appetite, sleep, and many more factors. Finally, we will complete this review with the chapter on sex- and gender-specific differences in ECS and response to cannabinoids, and equality of the access to treatments with cannabinoids.
Collapse
Affiliation(s)
- Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Anna Fiselier
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
18
|
Abrams DI, Velasco G, Twelves C, Ganju RK, Bar-Sela G. Cancer Treatment: Preclinical & Clinical. J Natl Cancer Inst Monogr 2021; 2021:107-113. [PMID: 34850894 DOI: 10.1093/jncimonographs/lgab010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
The first evidence that cannabinoids may have in vitro and in vivo antineoplastic activity against tumor cell lines and animal tumor models was published in the Journal of the National Cancer Institute nearly 50 years ago. Cannabinoids appear to induce apoptosis in rodent brain tumors by way of direct interaction with the cannabinoid receptor. They may inhibit angiogenesis and tumor cell invasiveness. Despite preclinical findings, attempts to translate the benefits from bench to bedside have been limited. This session provides a review of the basic science supporting the use of cannabinoids in gliomas, paired with the first randomized clinical trial of a cannabis-based therapy for glioblastoma multiforme. Another preclinical presentation reports the effects of cannabinoids on triple-negative breast cancer cell lines and how cannabidiol may affect tumors. The session's second human trial raises concerns about the use of botanical cannabis in patients with advanced cancer receiving immunotherapy suggesting inferior outcomes.
Collapse
Affiliation(s)
- Donald I Abrams
- Hematology-Oncology Division, Department of Medicine, University of California, San Francisco, CA, USA
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.,Group of Cannabinoid Signaling in Cancer Cells, Division of Oncology Research, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Chris Twelves
- Department of Oncology, University of Leeds and Leeds Teaching Hospitals Trust, Leeds, England, UK
| | - Ramesh K Ganju
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Gil Bar-Sela
- Oncology and Hematology Division, Cancer Center, Emek Medical Center, Afula,Israel.,Bruce Rappaport Faculty of Medicine, Technion/Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
19
|
Fiani B, Covarrubias C, Onyedimma C, Jarrah R. Neurocytological Advances in the Treatment of Glioblastoma Multiforme. Cureus 2021; 13:e16301. [PMID: 34405064 PMCID: PMC8352800 DOI: 10.7759/cureus.16301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/10/2021] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive neoplasm of the brain that has commonly led to disappointing patient outcomes. Despite medical advancements and increasing research efforts, GBM studies reveal a stagnant survival rate at the global level with only sluggish improvement over time. Modern neuro-oncology research places a heavy emphasis on pharmacological therapies. Through a broad database search, we accumulated and synthesized the GBM-related neuroimmunocytological literature to create a comprehensive and contemporary review. Based on our findings, we discuss the recent neurocytological treatment strategies for GMB and the results of the studies. Regorafenib, paxalisib, and dianhydrogalactitol (VAL-083) are showing initial promise to decrease disease progression. VAL-083 is an alkylating agent that creates N7 methylation on DNA and has the ability to cross the blood-brain barrier (BBB). Selinexor, recombinant nonpathogenic polio-rhinovirus, and GBM-vaccine of autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector have all also shown initial clinical benefit in terms of prolonging survival. Most trials observe modest improvement in outcomes with a positive safety profile. Nevertheless, the need for further studies is warranted, along with the trending of post-therapeutic biomarkers in order to better access future patient outcomes.
Collapse
Affiliation(s)
- Brian Fiani
- Neurosurgery, Desert Regional Medical Center, Palm Springs, USA
| | - Claudia Covarrubias
- School of Medicine, Universidad Anáhuac Querétaro, Santiago de Querétaro, MEX
| | | | - Ryan Jarrah
- Neurological Surgery, University of Michigan - Flint, Flint, USA
| |
Collapse
|