1
|
Guffanti F, Mengoli I, Damia G. Current HRD assays in ovarian cancer: differences, pitfalls, limitations, and novel approaches. Front Oncol 2024; 14:1405361. [PMID: 39220639 PMCID: PMC11361952 DOI: 10.3389/fonc.2024.1405361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Ovarian carcinoma (OC) still represents an insidious and fatal malignancy, and few significant results have been obtained in the last two decades to improve patient survival. Novel targeted therapies such as poly (ADP-ribose) polymerase inhibitors (PARPi) have been successfully introduced in the clinical management of OC, but not all patients will benefit, and drug resistance almost inevitably occurs. The identification of patients who are likely to respond to PARPi-based therapies relies on homologous recombination deficiency (HRD) tests, as this condition is associated with response to these treatments. This review summarizes the genomic and functional HRD assays currently used in clinical practice and those under evaluation, the clinical implications of HRD testing in OC, and their current pitfalls and limitations. Special emphasis will be placed on the functional HRD assays under development and the use of machine learning and artificial intelligence technologies as novel strategies to overcome the current limitations of HRD tests for a better-personalized treatment to improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Giovanna Damia
- Laboratory of Preclinical Gynaecological Oncology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
2
|
Kulkarni S, Gajjar K, Madhusudan S. Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer. Front Oncol 2024; 14:1414112. [PMID: 39135999 PMCID: PMC11317305 DOI: 10.3389/fonc.2024.1414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Advanced epithelial ovarian cancer is the commonest cause of gynaecological cancer deaths. First-line treatment for advanced disease includes a combination of platinum-taxane chemotherapy (post-operatively or peri-operatively) and maximal debulking surgery whenever feasible. Initial response rate to chemotherapy is high (up to 80%) but most patients will develop recurrence (approximately 70-90%) and succumb to the disease. Recently, poly-ADP-ribose polymerase (PARP) inhibition (by drugs such as Olaparib, Niraparib or Rucaparib) directed synthetic lethality approach in BRCA germline mutant or platinum sensitive disease has generated real hope for patients. PARP inhibitor (PARPi) maintenance therapy can prolong survival but therapeutic response is not sustained due to intrinsic or acquired secondary resistance to PARPi therapy. Reversion of BRCA1/2 mutation can lead to clinical PARPi resistance in BRCA-germline mutated ovarian cancer. However, in the more common platinum sensitive sporadic HGSOC, the clinical mechanisms of development of PARPi resistance remains to be defined. Here we provide a comprehensive review of the current status of PARPi and the mechanisms of resistance to therapy.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham NHS Trust, West Bromwich, United Kingdom
| | - Ketankumar Gajjar
- Department of Gynaecological Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
3
|
Chiappa M, Decio A, Guarrera L, Mengoli I, Karki A, Yemane D, Ghilardi C, Scanziani E, Canesi S, Barbera MC, Craparotta I, Bolis M, Fruscio R, Grasselli C, Ceruti T, Zucchetti M, Patterson JC, Lu RA, Yaffe MB, Ridinger M, Damia G, Guffanti F. Onvansertib treatment overcomes olaparib resistance in high-grade ovarian carcinomas. Cell Death Dis 2024; 15:521. [PMID: 39039067 PMCID: PMC11263393 DOI: 10.1038/s41419-024-06894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Occurrence of resistance to olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) approved in ovarian carcinoma, has already been shown in clinical settings. Identifying combination treatments to sensitize tumor cells and/or overcome resistance to olaparib is critical. Polo-like kinase 1 (PLK1), a master regulator of mitosis, is also involved in the DNA damage response promoting homologous recombination (HR)-mediated DNA repair and in the recovery from the G2/M checkpoint. We hypothesized that PLK1 inhibition could sensitize tumor cells to PARP inhibition. Onvansertib, a highly selective PLK1 inhibitor, and olaparib were tested in vitro and in vivo in BRCA1 mutated and wild-type (wt) ovarian cancer models, including patient-derived xenografts (PDXs) resistant to olaparib. The combination of onvansertib and olaparib was additive or synergic in different ovarian cancer cell lines, causing a G2/M block of the cell cycle, DNA damage, and apoptosis, much more pronounced in cells treated with the two drugs as compared to controls and single agents treated cells. The combined treatment was well tolerated in vivo and resulted in tumor growth inhibition and a statistically increased survival in olaparib-resistant-BRCA1 mutated models. The combination was also active, although to a lesser extent, in BRCA1 wt PDXs. Pharmacodynamic analyses showed an increase in mitotic, apoptotic, and DNA damage markers in tumor samples derived from mice treated with the combination versus vehicle. We could demonstrate that in vitro onvansertib inhibited both HR and non-homologous end-joining repair pathways and in vivo induced a decrease in the number of RAD51 foci-positive tumor cells, supporting its ability to induce HR deficiency and favoring the activity of olaparib. Considering that the combination was well tolerated, these data support and foster the clinical evaluation of onvansertib with PARPis in ovarian cancer, particularly in the PARPis-resistant setting.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandra Decio
- Laboratory of Cancer Metastasis Therapeutics, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luca Guarrera
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Mengoli
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Anju Karki
- R&D Department, Cardiff Oncology, San Diego, CA, USA
| | - Divora Yemane
- R&D Department, Cardiff Oncology, San Diego, CA, USA
| | - Carmen Ghilardi
- Laboratory of Cancer Metastasis Therapeutics, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi Campus, Italy
- Mouse and Animal Pathology Lab (MAPLab), UniMi Foundation, Milan, Italy
| | - Simone Canesi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi Campus, Italy
- Mouse and Animal Pathology Lab (MAPLab), UniMi Foundation, Milan, Italy
| | - Maria C Barbera
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Craparotta
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Bolis
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, San Gerardo Hospital, University of Milan Bicocca, Monza, Italy
| | - Chiara Grasselli
- Immuno-Pharmacology Unit, Department of Oncology, Mario Negri Institute for Pharmacological Research (IRCCS), Milan, Italy
| | - Tommaso Ceruti
- Laboratory of Laboratory of Cancer Pharmacology, Experimental Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Massimo Zucchetti
- Laboratory of Laboratory of Cancer Pharmacology, Experimental Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Jesse C Patterson
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robin A Lu
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Micheal B Yaffe
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maya Ridinger
- R&D Department, Cardiff Oncology, San Diego, CA, USA
| | - Giovanna Damia
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Federica Guffanti
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
4
|
Guffanti F, Mengoli I, Alvisi MF, Dellavedova G, Giavazzi R, Fruscio R, Rulli E, Damia G. BRCA1 foci test as a predictive biomarker of olaparib response in ovarian cancer patient-derived xenograft models. Front Pharmacol 2024; 15:1390116. [PMID: 38989145 PMCID: PMC11234799 DOI: 10.3389/fphar.2024.1390116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Standard therapy for high-grade ovarian carcinoma includes surgery followed by platinum-based chemotherapy and poly-ADP ribose polymerase inhibitors (PARPis). Deficiency in homologous recombination repair (HRD) characterizes almost half of high-grade ovarian carcinomas and is due to genetic and epigenetic alterations in genes involved in HR repair, mainly BRCA1/BRCA2, and predicts response to PARPi. The academic and commercial tests set up to define the HRD status of the tumor rely on DNA sequencing analysis, while functional tests such as the RAD51 foci assay are currently under study, but have not been validated yet and are available for patients. In a well-characterized ovarian carcinoma patient-derived xenograft platform whose response to cisplatin and olaparib, a PARPi, is known, we assessed the association between the BRCA1 foci score, determined in formalin-fixed paraffin-embedded tumor slices with an immunofluorescence technique, and other HRD biomarkers and explored the potential of the BRCA1 foci test to predict tumors' response to cisplatin and olaparib. The BRCA1 foci score was associated with both tumors' HRD status and RAD51 foci score. A low BRCA1 foci score predicted response to olaparib and cisplatin, while a high score was associated with resistance to therapy. As we recently published that a low RAD51 foci score predicted olaparib sensitivity in our xenobank, we combined the two scores and showed that the predictive value was better than with the single tests. This study reports for the first time the capacity of the BRCA1 foci test to identify HRD ovarian carcinomas and possibly predict response to olaparib.
Collapse
Affiliation(s)
- Federica Guffanti
- Laboratory of Preclinical Gynaecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Mengoli
- Laboratory of Preclinical Gynaecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maria Francesca Alvisi
- Laboratory of Methodology for Clinical Research, Clinical Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Dellavedova
- Laboratory of Cancer Metastasis Therapeutics, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Raffaella Giavazzi
- Laboratory of Cancer Metastasis Therapeutics, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, San Gerardo Hospital, University of Milan Bicocca, Monza, Italy
| | - Eliana Rulli
- Laboratory of Methodology for Clinical Research, Clinical Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giovanna Damia
- Laboratory of Preclinical Gynaecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
5
|
Stiegeler N, Garsed DW, Au-Yeung G, Bowtell DDL, Heinzelmann-Schwarz V, Zwimpfer TA. Homologous recombination proficient subtypes of high-grade serous ovarian cancer: treatment options for a poor prognosis group. Front Oncol 2024; 14:1387281. [PMID: 38894867 PMCID: PMC11183307 DOI: 10.3389/fonc.2024.1387281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Approximately 50% of tubo-ovarian high-grade serous carcinomas (HGSCs) have functional homologous recombination-mediated (HR) DNA repair, so-called HR-proficient tumors, which are often associated with primary platinum resistance (relapse within six months after completion of first-line therapy), minimal benefit from poly(ADP-ribose) polymerase (PARP) inhibitors, and shorter survival. HR-proficient tumors comprise multiple molecular subtypes including cases with CCNE1 amplification, AKT2 amplification or CDK12 alteration, and are often characterized as "cold" tumors with fewer infiltrating lymphocytes and decreased expression of PD-1/PD-L1. Several new treatment approaches aim to manipulate these negative prognostic features and render HR-proficient tumors more susceptible to treatment. Alterations in multiple different molecules and pathways in the DNA damage response are driving new drug development to target HR-proficient cancer cells, such as inhibitors of the CDK or P13K/AKT pathways, as well as ATR inhibitors. Treatment combinations with chemotherapy or PARP inhibitors and agents targeting DNA replication stress have shown promising preclinical and clinical results. New approaches in immunotherapy are also being explored, including vaccines or antibody drug conjugates. Many approaches are still in the early stages of development and further clinical trials will determine their clinical relevance. There is a need to include HR-proficient tumors in ovarian cancer trials and to analyze them in a more targeted manner to provide further evidence for their specific therapy, as this will be crucial in improving the overall prognosis of HGSC and ovarian cancer in general.
Collapse
Affiliation(s)
| | - Dale W. Garsed
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - George Au-Yeung
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - David D. L. Bowtell
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Tibor A. Zwimpfer
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Gynecological Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
6
|
Arcieri M, Tius V, Andreetta C, Restaino S, Biasioli A, Poletto E, Damante G, Ercoli A, Driul L, Fagotti A, Lorusso D, Scambia G, Vizzielli G. How BRCA and homologous recombination deficiency change therapeutic strategies in ovarian cancer: a review of literature. Front Oncol 2024; 14:1335196. [PMID: 38525421 PMCID: PMC10957789 DOI: 10.3389/fonc.2024.1335196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 03/26/2024] Open
Abstract
About 50% of High Grade Serous Ovarian Cancer exhibit a high degree of genomic instability due to mutation of genes involved in Homologous Recombination (HRD) and such defect accounts for synthetic lethality mechanism of PARP inhibitors (PARP-i). Several clinical trials have shown how BRCA and HRD mutational status profoundly affect first line chemotherapy as well as response to maintenance therapy with PARP-i, hence Progression Free Survival and Overall Survival. Consequently, there is urgent need for the development of increasingly reliable HRD tests, overcoming present limitations, as they play a key role in the diagnostic and therapeutic process as well as have a prognostic and predictive value. In this review we offer an overview of the state of the art regarding the actual knowledge about BRCA and HRD mutational status, the rationale of PARPi use and HRD testing (current and in development assays) and their implications in clinical practice and in the treatment decision process, in order to optimize and choose the best tailored therapy in patients with ovarian cancer.
Collapse
Affiliation(s)
- Martina Arcieri
- Clinic of Obstetrics and Gynecology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Science, University of Messina, Messina, Italy
| | - Veronica Tius
- Medical Area Department (DAME), in Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Claudia Andreetta
- Department of Medical Oncology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Stefano Restaino
- Clinic of Obstetrics and Gynecology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Anna Biasioli
- Clinic of Obstetrics and Gynecology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Elena Poletto
- Department of Medical Oncology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Giuseppe Damante
- Medical Area Department (DAME), in Department of Medicine (DMED), University of Udine, Udine, Italy
- Medical Genetics Institute, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Alfredo Ercoli
- Department of Human Pathology in Adult and Childhood “G. Barresi”, Unit of Gynecology and Obstetrics, University of Messina, Messina, Italy
| | - Lorenza Driul
- Clinic of Obstetrics and Gynecology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
- Medical Area Department (DAME), in Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Anna Fagotti
- Dipartimento per le Scienze Della Salute Della Donna, del Bambino e di Sanità Pubblica, UOC Ginecologia Oncologica, in Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Domenica Lorusso
- Dipartimento per le Scienze Della Salute Della Donna, del Bambino e di Sanità Pubblica, UOC Ginecologia Oncologica, in Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- Dipartimento per le Scienze Della Salute Della Donna, del Bambino e di Sanità Pubblica, UOC Ginecologia Oncologica, in Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppe Vizzielli
- Clinic of Obstetrics and Gynecology, “S. Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
- Medical Area Department (DAME), in Department of Medicine (DMED), University of Udine, Udine, Italy
| |
Collapse
|
7
|
Zhao JL, Yang J, Li K, Chen Y, Tang M, Zhu HL, Nie CL, Yuan Z, Zhao XY. Abrogation of ATR function preferentially augments cisplatin-induced cytotoxicity in PTEN-deficient breast cancer cells. Chem Biol Interact 2023; 385:110740. [PMID: 37802411 DOI: 10.1016/j.cbi.2023.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Targeting replication stress response is currently emerging as new therapeutic strategy for cancer treatment, based on monotherapy and combination approaches. As a key sensor in response to DNA damage, ataxia telangiectasia and rad3-related (ATR) kinase has become a potential therapeutic target as tumor cells are to rely heavily on ATR for survival. The tumor suppressor phosphatase and tensin homolog (PTEN) plays a crucial role in maintaining chromosome integrity. Although ATR inhibition was recently confirmed to show a synergistic inhibitory effect in PTEN-deficient triple-negative breast cancer cells, the molecular mechanism needs to be further elucidated. Additionally, whether the PTEN-deficient breast cancer cells are more preferentially sensitized than PTEN-wild type breast cancer cells to cisplatin plus ATR inhibitor remains unanswered. We demonstrate PTEN dysfunction promotes the killing effect of ATR blockade through the use of RNA interference for PTEN and a highly selective ATR inhibitor VE-821, and certify that VE-821 (1.0 μmol/L) aggravates cytotoxicity of cisplatin on breast cancer cells, especially PTEN-null MDA-MB-468 cells which show more chemoresistance than PTEN-expressing MDA-MB-231 cells. The co-treatment with VE-821 and cisplatin significantly reduced cell viability and proliferative capacity compared with cisplatin mono-treatment (P < 0.05). The increased cytotoxic activity is tied to the enhanced poly (ADP-ribose) polymerase (PARP) cleavage and consequently cell death due to the decrease in phosphorylation levels of checkpoint kinases 1 and 2 (CHK1/2), the reduction of radiation sensitive 51 (RAD51) foci and the increase in phosphorylation of the histone variant H2AX (γ-H2AX) foci (P < 0.05) as well. Together, these findings suggest combination therapy of ATR inhibitor and cisplatin may offer a potential therapeutic strategy for breast tumors.
Collapse
Affiliation(s)
- Jian-Lei Zhao
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jun Yang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mei Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui-Li Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chun-Lai Nie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhu Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin-Yu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Alizzi Z, Saravi S, Khalique S, McDonald T, Karteris E, Hall M. Identification of RAD51 foci in cancer-associated circulating cells of patients with high-grade serous ovarian cancer: association with treatment outcomes. Int J Gynecol Cancer 2023; 33:1427-1433. [PMID: 37541687 PMCID: PMC10511972 DOI: 10.1136/ijgc-2023-004483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
OBJECTIVE Fifty percent of patients with high-grade serous ovarian cancer harbor defects in the homologous recombination repair pathway. RAD51 foci form where DNA is damaged, indicating its involvement in repairing double-stranded breaks. High levels of RAD51 in ovarian cancer tissue have been associated with a poorer prognosis. OBJECTIVE To demonstrate RAD51 foci in circulating cancer-associated cells of patients with ovarian cancer and their association with clinical outcomes. METHODS One hundred and twenty-four patients with high-grade serous ovarian cancer had blood samples taken at strategic points during treatment and follow-up. Cells were stained using WT1 and RAD51 antibodies with immunofluorescence and reviewed under Leica camera microscopy; RAD51 foci were counted. Correlations were made between numbers of RAD51 foci and treatment response, BRCA status, and progression-free survival. RESULTS RAD51 foci were identified in all patients (n=42) with wild-type BRCA. BRCA mutant/homologous recombination deficiency-positive patients (n=8) had significantly lower numbers of RAD51 foci (p=0.009). Responders to treatment (n=32) had a reduction in circulating cells (p=0.02) and RAD51 foci (p=0.0007). Numbers of RAD51 foci were significantly higher in the platinum-resistant population throughout treatment: at the start of treatment, in 56 platinum-sensitive patients there was a mean of 3.6 RAD51 foci versus 6.2 in 15 platinum-resistant patients (p=0.02). Patients with a high number of RAD51 foci had worse median progression-free survival: in 39 patients with a mean of <3 RAD51 foci at treatment start, median progression-free survival had not been reached, compared with 32 patients with >3 RAD51 foci whose progression-free survival was 13 months (p=0.04). CONCLUSIONS Levels of RAD51 foci in circulating cancer-associated cells of patients with high-grade serous ovarian cancer are associated with clinical outcomes and may be a more pragmatic method of determining a homologous repair-deficient population.
Collapse
Affiliation(s)
- Zena Alizzi
- Cancer Biomarker and Cellular Endocrinology Laboratory, College of Life Sciences, Brunel University London, Uxbridge, UK
- Mount Vernon Cancer Centre, Northwood, UK
| | - Sayeh Saravi
- Cancer Biomarker and Cellular Endocrinology Laboratory, College of Life Sciences, Brunel University London, Uxbridge, UK
| | - Saira Khalique
- Cancer Biomarker and Cellular Endocrinology Laboratory, College of Life Sciences, Brunel University London, Uxbridge, UK
- Mount Vernon Cancer Centre, Northwood, UK
| | | | - Emmanouil Karteris
- Cancer Biomarker and Cellular Endocrinology Laboratory, College of Life Sciences, Brunel University London, Uxbridge, UK
| | - Marcia Hall
- Cancer Biomarker and Cellular Endocrinology Laboratory, College of Life Sciences, Brunel University London, Uxbridge, UK
- Mount Vernon Cancer Centre, Northwood, UK
| |
Collapse
|
9
|
Gong R, Ma Z, He L, Jiang S, Cao D, Cheng Y. Identification and evaluation of a novel PARP1 inhibitor for the treatment of triple-negative breast cancer. Chem Biol Interact 2023; 382:110567. [PMID: 37271214 DOI: 10.1016/j.cbi.2023.110567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a particularly invasive subtype of breast cancer and usually has a poor prognosis due to the lack of effective therapeutic targets. Approximately 25% of TNBC patients carry a breast cancer susceptibility gene1/2 (BRCA1/2) mutation. Clinically, PARP1 inhibitors have been approved for the treatment of patients with BRCA1/2-mutated breast cancer through the mechanism of synthetic lethality. In this study, we identified compound 6 {systematic name: 2-[2-(4-Hydroxy-phenyl)-vinyl]-3H-quinazolin-4-one} as a novel PARP1 inhibitor from established virtual screening methods. Compound 6 exerted stronger PARP1 inhibitory activity and anti-cancer activity as compared to olaparib in BRCA1-mutated TNBC cells and TNBC patient-derived organoids. Unexpectedly, we found that compound 6 also significantly inhibited cell viability, proliferation, and induced cell apoptosis in BRCA wild-type TNBC cells. To further elucidate the underlying molecular mechanism, we found that tankyrase (TNKS), a vital promoter of homologous-recombination repair, was a potential target of compound 6 by cheminformatics analysis. Compound 6 not only decreased the expression of PAR, but also down-regulated the expression of TNKS, thus resulting in significant DNA single-strand and double-strand breaks in BRCA wild-type TNBC cells. In addition, we demonstrated that compound 6 enhanced the sensitivity of BRCA1-mutated and wild-type TNBC cells to chemotherapy including paclitaxel and cisplatin. Collectively, our study identified a novel PARP1 inhibitor, providing a therapeutic candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Rong Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - ZhongYe Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - LinHao He
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - ShiLong Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - DongSheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China.
| |
Collapse
|
10
|
Ganzinelli M, Guffanti F, Ianza A, Sobhani N, Crovella S, Zanconati F, Bottin C, Confalonieri M, Fumagalli S, Guglielmi A, Generali D, Damia G. Epithelioid Mesothelioma Patients with Very Long Survival Display Defects in DNA Repair. Cancers (Basel) 2023; 15:4309. [PMID: 37686585 PMCID: PMC10486625 DOI: 10.3390/cancers15174309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
AIM DNA repair has an important role in malignant pleural mesothelioma (MPM) tumorigenesis and progression. Prognostic/predictive biomarkers for better management of MPM patients are needed. In the present manuscript, we analyzed the expression of more than 700 genes in a cohort of MPM patients to possibly find biomarkers correlated with survival. METHODS A total of 54 MPM patients, all with epithelioid histology, whose survival follow-up and formalin-fixed paraffin-embedded tumors were available, were included in the study. Gene expression profiles were evaluated using a Nanostring platform analyzing 760 genes involved in different cellular pathways. The percentages of proliferating tumor cells positive for RAD51 and BRCA1 foci were evaluated using an immunofluorescence assay, as a readout of homologous recombination repair status. RESULTS Patient median survival time was 16.9 months, and based on this value, they were classified as long and short survivors (LS/SS) with, respectively, an overall survival ≥ and <16.9 months as well as very long and very short survivors (VLS/VSS) with an overall survival ≥ than 33.8 and < than 8.45 months. A down-regulation in the DNA damage/repair expression score was observed in LS and VLS as compared to SS and VSS. These findings were validated by the lower number of both RAD51 and BRCA1-positive tumor cells in VLS as compared to VSS. CONCLUSIONS The down-regulation of DNA repair signature in VLS was functionally validated by a lower % of RAD51 and BRCA1-positive tumor cells. If these data can be corroborated in a prospective trial, an easy, cost-effective test could be routinely used to better manage treatment in MPM patients.
Collapse
Affiliation(s)
- Monica Ganzinelli
- Unit of Thoracic Oncology, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Federica Guffanti
- Laboratory of Preclinical Gynecological Oncology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Anna Ianza
- Oncology Department, University Health Organization Giuliano Isontina, ASUGI, Piazza Ospitale 1, 34129 Trieste, Italy; (A.I.); (A.G.); (D.G.)
| | - Navid Sobhani
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34139 Trieste, Italy; (N.S.); (F.Z.); (C.B.); (M.C.)
| | - Sergio Crovella
- IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy;
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34139 Trieste, Italy; (N.S.); (F.Z.); (C.B.); (M.C.)
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34139 Trieste, Italy; (N.S.); (F.Z.); (C.B.); (M.C.)
| | - Marco Confalonieri
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34139 Trieste, Italy; (N.S.); (F.Z.); (C.B.); (M.C.)
| | - Stefano Fumagalli
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Alessandra Guglielmi
- Oncology Department, University Health Organization Giuliano Isontina, ASUGI, Piazza Ospitale 1, 34129 Trieste, Italy; (A.I.); (A.G.); (D.G.)
| | - Daniele Generali
- Oncology Department, University Health Organization Giuliano Isontina, ASUGI, Piazza Ospitale 1, 34129 Trieste, Italy; (A.I.); (A.G.); (D.G.)
| | - Giovanna Damia
- Laboratory of Preclinical Gynecological Oncology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| |
Collapse
|
11
|
Zielli T, Labidi-Galy I, Del Grande M, Sessa C, Colombo I. The clinical challenges of homologous recombination proficiency in ovarian cancer: from intrinsic resistance to new treatment opportunities. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:499-516. [PMID: 37842243 PMCID: PMC10571062 DOI: 10.20517/cdr.2023.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023]
Abstract
Ovarian cancer is the most lethal gynecologic cancer. Optimal cytoreductive surgery followed by platinum-based chemotherapy with or without bevacizumab is the conventional therapeutic strategy. Since 2016, the pharmacological treatment of epithelial ovarian cancer has significantly changed following the introduction of the poly (ADP-ribose) polymerase inhibitors (PARPi). BRCA1/2 mutations and homologous recombination deficiency (HRD) have been established as predictive biomarkers of the benefit from platinum-based chemotherapy and PARPi. While in the absence of HRD (the so-called homologous recombination proficiency, HRp), patients derive minimal benefit from PARPi, the use of the antiangiogenic agent bevacizumab in first line did not result in different efficacy according to the presence of homologous recombination repair (HRR) genes mutations. No clinical trials have currently compared PARPi and bevacizumab as maintenance therapy in the HRp population. Different strategies are under investigation to overcome primary and acquired resistance to PARPi and to increase the sensitivity of HRp tumors to these agents. These tumors are characterized by frequent amplifications of Cyclin E and MYC, resulting in high replication stress. Different agents targeting DNA replication stress, such as ATR, WEE1 and CHK1 inhibitors, are currently being explored in preclinical models and clinical trials and have shown promising preliminary signs of activity. In this review, we will summarize the available evidence on the activity of PARPi in HRp tumors and the ongoing research to develop new treatment options in this hard-to-treat population.
Collapse
Affiliation(s)
- Teresa Zielli
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona 6500, Switzerland
| | - Intidhar Labidi-Galy
- Department of Oncology, Geneva University Hospitals, Geneva 1205, Switzerland
- Department of Medicine, Center of Translational Research in Onco-Hematology, Geneva 1205, Switzerland
| | - Maria Del Grande
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona 6500, Switzerland
| | - Cristiana Sessa
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona 6500, Switzerland
| | - Ilaria Colombo
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona 6500, Switzerland
| |
Collapse
|
12
|
Gonzalez-Ochoa E, Oza AM. An Attempt to Stretch the Benefit: Rechallenge with PARP Inhibitors in Ovarian Cancer. Clin Cancer Res 2023; 29:2563-2566. [PMID: 37191665 DOI: 10.1158/1078-0432.ccr-23-0652] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
PARP inhibitors exploit synthetic lethality in homologous recombination-deficient (HDR) cells and are standard-of-care treatment in newly diagnosed and relapsed epithelial ovarian cancer (EOC). A recent article demonstrated that a second course of olaparib can be safely administered to women with BRCA-mutated EOC. See related article by Morgan et al., p. 2602.
Collapse
Affiliation(s)
- Eduardo Gonzalez-Ochoa
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Veneziani AC, Scott C, Wakefield MJ, Tinker AV, Lheureux S. Fighting resistance: post-PARP inhibitor treatment strategies in ovarian cancer. Ther Adv Med Oncol 2023; 15:17588359231157644. [PMID: 36872947 PMCID: PMC9983116 DOI: 10.1177/17588359231157644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) represent a therapeutic milestone in the management of epithelial ovarian cancer. The concept of 'synthetic lethality' is exploited by PARPi in tumors with defects in DNA repair pathways, particularly homologous recombination deficiency. The use of PARPis has been increasing since its approval as maintenance therapy, particularly in the first-line setting. Therefore, resistance to PARPi is an emerging issue in clinical practice. It brings an urgent need to elucidate and identify the mechanisms of PARPi resistance. Ongoing studies address this challenge and investigate potential therapeutic strategies to prevent, overcome, or re-sensitize tumor cells to PARPi. This review aims to summarize the mechanisms of resistance to PARPi, discuss emerging strategies to treat patients post-PARPi progression, and discuss potential biomarkers of resistance.
Collapse
Affiliation(s)
- Ana C. Veneziani
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Clare Scott
- Walter and Eliza Hall Institute of Medical
Research, Parkville, VIC, Australia
- Department of Medical Biology, University of
Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC,
Australia
- Sir Peter MacCallum Department of Oncology,
Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | | | - Stephanie Lheureux
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5B 2M9,
Canada
| |
Collapse
|
14
|
Serra-Camprubí Q, Verdaguer H, Oliveros W, Lupión-Garcia N, Llop-Guevara A, Molina C, Vila-Casadesús M, Turpin A, Neuzillet C, Frigola J, Querol J, Yáñez-Bartolomé M, Castet F, Fabregat-Franco C, Escudero-Iriarte C, Escorihuela M, Arenas EJ, Bernadó-Morales C, Haro N, Giles FJ, Pozo ÓJ, Miquel JM, Nuciforo PG, Vivancos A, Melé M, Serra V, Arribas J, Tabernero J, Peiró S, Macarulla T, Tian TV. Human Metastatic Cholangiocarcinoma Patient-Derived Xenografts and Tumoroids for Preclinical Drug Evaluation. Clin Cancer Res 2023; 29:432-445. [PMID: 36374558 PMCID: PMC9873249 DOI: 10.1158/1078-0432.ccr-22-2551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Cholangiocarcinoma (CCA) is usually diagnosed at advanced stages, with limited therapeutic options. Preclinical models focused on unresectable metastatic CCA are necessary to develop rational treatments. Pathogenic mutations in IDH1/2, ARID1A/B, BAP1, and BRCA1/2 have been identified in 30%-50% of patients with CCA. Several types of tumor cells harboring these mutations exhibit homologous recombination deficiency (HRD) phenotype with enhanced sensitivity to PARP inhibitors (PARPi). However, PARPi treatment has not yet been tested for effectiveness in patient-derived models of advanced CCA. EXPERIMENTAL DESIGN We have established a collection of patient-derived xenografts from patients with unresectable metastatic CCA (CCA_PDX). The CCA_PDXs were characterized at both histopathologic and genomic levels. We optimized a protocol to generate CCA tumoroids from CCA_PDXs. We tested the effects of PARPis in both CCA tumoroids and CCA_PDXs. Finally, we used the RAD51 assay to evaluate the HRD status of CCA tissues. RESULTS This collection of CCA_PDXs recapitulates the histopathologic and molecular features of their original tumors. PARPi treatments inhibited the growth of CCA tumoroids and CCA_PDXs with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1. In line with these findings, only CCA_PDX and CCA patient biopsy samples with mutations of BRCA2 showed RAD51 scores compatible with HRD. CONCLUSIONS Our results suggest that patients with advanced CCA with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1, are likely to benefit from PARPi therapy. This collection of CCA_PDXs provides new opportunities for evaluating drug response and prioritizing clinical trials.
Collapse
Affiliation(s)
- Queralt Serra-Camprubí
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Helena Verdaguer
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Winona Oliveros
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Núria Lupión-Garcia
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alba Llop-Guevara
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Cristina Molina
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Maria Vila-Casadesús
- Cancer Genomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Anthony Turpin
- Université de Lille, CNRS INSERM UMR9020-U1277, CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.,Medical Oncology Department, CHRU Lille, Lille, France
| | - Cindy Neuzillet
- Gastrointestinal Oncology, Medical Oncology Department, Curie Institute, Versailles St-Quentin-Paris Saclay University, Saint-Cloud, France
| | - Joan Frigola
- Clinical Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jessica Querol
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Mariana Yáñez-Bartolomé
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Florian Castet
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carles Fabregat-Franco
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carmen Escudero-Iriarte
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Escorihuela
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Enrique J. Arenas
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Cristina Bernadó-Morales
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Noemí Haro
- Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | - Óscar J. Pozo
- Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Josep M. Miquel
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo G. Nuciforo
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Violeta Serra
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Joaquín Arribas
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Monforte de Lemos, Madrid, Spain.,Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Josep Tabernero
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandra Peiró
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Corresponding Authors: Tian V. Tian, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain. Phone: (34)932543450, ext. 8656; E-mail: ; Teresa Macarulla, ; and Sandra Peiró,
| | - Teresa Macarulla
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Corresponding Authors: Tian V. Tian, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain. Phone: (34)932543450, ext. 8656; E-mail: ; Teresa Macarulla, ; and Sandra Peiró,
| | - Tian V. Tian
- Preclinical and Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Corresponding Authors: Tian V. Tian, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain. Phone: (34)932543450, ext. 8656; E-mail: ; Teresa Macarulla, ; and Sandra Peiró,
| |
Collapse
|
15
|
O'Connor MJ, Forment JV. Mechanisms of PARP Inhibitor Resistance. Cancer Treat Res 2023; 186:25-42. [PMID: 37978129 DOI: 10.1007/978-3-031-30065-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) represent the first medicines based on the targeting of the DNA damage response (DDR). PARPi have become standard of care for first-line maintenance treatment in ovarian cancer and have also been approved in other cancer indications including breast, pancreatic and prostate. Despite their efficacy, resistance to PARPi has been reported clinically and represents a growing patient population with unmet clinical need. Here, we describe the various mechanisms of PARPi resistance that have been identified in pre-clinical models and in the clinic.
Collapse
Affiliation(s)
- Mark J O'Connor
- Oncology R&D, AstraZeneca, Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK.
| | - Josep V Forment
- Oncology R&D, AstraZeneca, Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| |
Collapse
|
16
|
Lu X, He Y, Johnston RL, Nanayakarra D, Sankarasubramanian S, Lopez JA, Friedlander M, Kalimutho M, Hooper JD, Raninga PV, Khanna KK. CBL0137 impairs homologous recombination repair and sensitizes high-grade serous ovarian carcinoma to PARP inhibitors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:355. [PMID: 36539830 PMCID: PMC9769062 DOI: 10.1186/s13046-022-02570-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND High-grade serous ovarian carcinomas (HGSCs) are a heterogeneous subtype of epithelial ovarian cancers and include serous cancers arising in the fallopian tube and peritoneum. These cancers are now subdivided into homologous recombination repair (HR)-deficient and proficient subgroups as this classification impacts on management and prognosis. PARP inhibitors (PARPi) have shown significant clinical efficacy, particularly as maintenance therapy following response to platinum-based chemotherapy in BRCA-mutant or homologous recombination (HR)-deficient HGSCs in both the 1st and 2nd line settings. However, PARPi have limited clinical benefit in HR-proficient HGSCs which make up almost 50% of HGSC and improving outcomes in these patients is now a high priority due to the poor prognosis with ineffectiveness of the current standard of care. There are a number of potential lines of investigation including efforts in sensitizing HR-proficient tumors to PARPi. Herein, we aimed to develop a novel combination therapy by targeting SSRP1 using a small molecule inhibitor CBL0137 with PARPi in HR-proficient HGSCs. EXPERIMENTAL DESIGN We tested anti-cancer activity of CBL0137 monotherapy using a panel of HGSC cell lines and patient-derived tumor cells in vitro. RNA sequencing was used to map global transcriptomic changes in CBL0137-treated patient-derived HR-proficient HGSC cells. We tested efficacy of CBL0137 in combination with PARPi using HGSC cell lines and patient-derived tumor cells in vitro and in vivo. RESULTS We show that SSRP1 inhibition using a small molecule, CBL0137, that traps SSRP1 onto chromatin, exerts a significant anti-growth activity in vitro against HGSC cell lines and patient-derived tumor cells, and also reduces tumor burden in vivo. CBL0137 induced DNA repair deficiency via inhibition of the HR repair pathway and sensitized SSRP1-high HR-proficient HGSC cell lines and patient-derived tumor cells/xenografts to the PARPi, Olaparib in vitro and in vivo. CBL0137 also enhanced the efficacy of DNA damaging platinum-based chemotherapy in HGSC patient-derived xenografts. CONCLUSION Our findings strongly suggest that combination of CBL0137 and PARP inhibition represents a novel therapeutic strategy for HR-proficient HGSCs that express high levels of SSRP1 and should be investigated in the clinic.
Collapse
Affiliation(s)
- Xue Lu
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia ,grid.1022.10000 0004 0437 5432School of Environment and Sciences, Griffith University, Nathan, QLD 4111 Australia
| | - Yaowu He
- grid.489335.00000000406180938Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102 Australia
| | - Rebecca L. Johnston
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | - Devathri Nanayakarra
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | - Sivanandhini Sankarasubramanian
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | - J. Alejandro Lopez
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia ,grid.1022.10000 0004 0437 5432School of Environment and Sciences, Griffith University, Nathan, QLD 4111 Australia
| | - Michael Friedlander
- grid.415193.bUniversity of New South Wales Clinical School, Prince of Wales Hospital, Randwick, NSW 2031 Australia
| | - Murugan Kalimutho
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | - John D. Hooper
- grid.489335.00000000406180938Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102 Australia
| | - Prahlad V. Raninga
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | - Kum Kum Khanna
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| |
Collapse
|
17
|
van der Wiel AMA, Schuitmaker L, Cong Y, Theys J, Van Hoeck A, Vens C, Lambin P, Yaromina A, Dubois LJ. Homologous Recombination Deficiency Scar: Mutations and Beyond-Implications for Precision Oncology. Cancers (Basel) 2022; 14:cancers14174157. [PMID: 36077694 PMCID: PMC9454578 DOI: 10.3390/cancers14174157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
Homologous recombination deficiency (HRD) is a prevalent in approximately 17% of tumors and is associated with enhanced sensitivity to anticancer therapies inducing double-strand DNA breaks. Accurate detection of HRD would therefore allow improved patient selection and outcome of conventional and targeted anticancer therapies. However, current clinical assessment of HRD mainly relies on determining germline BRCA1/2 mutational status and is insufficient for adequate patient stratification as mechanisms of HRD occurrence extend beyond functional BRCA1/2 loss. HRD, regardless of BRCA1/2 status, is associated with specific forms of genomic and mutational signatures termed HRD scar. Detection of this HRD scar might therefore be a more reliable biomarker for HRD. This review discusses and compares different methods of assessing HRD and HRD scar, their advances into the clinic, and their potential implications for precision oncology.
Collapse
Affiliation(s)
- Alexander M. A. van der Wiel
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lesley Schuitmaker
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ying Cong
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Arne Van Hoeck
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Conchita Vens
- Institute of Cancer Science, University of Glasgow, Glasgow G61 1BD, Scotland, UK
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
18
|
Wang N, Yang Y, Jin D, Zhang Z, Shen K, Yang J, Chen H, Zhao X, Yang L, Lu H. PARP inhibitor resistance in breast and gynecological cancer: Resistance mechanisms and combination therapy strategies. Front Pharmacol 2022; 13:967633. [PMID: 36091750 PMCID: PMC9455597 DOI: 10.3389/fphar.2022.967633] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer and gynecological tumors seriously endanger women’s physical and mental health, fertility, and quality of life. Due to standardized surgical treatment, chemotherapy, and radiotherapy, the prognosis and overall survival of cancer patients have improved compared to earlier, but the management of advanced disease still faces great challenges. Recently, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) have been clinically approved for breast and gynecological cancer patients, significantly improving their quality of life, especially of patients with BRCA1/2 mutations. However, drug resistance faced by PARPi therapy has hindered its clinical promotion. Therefore, developing new drug strategies to resensitize cancers affecting women to PARPi therapy is the direction of our future research. Currently, the effects of PARPi in combination with other drugs to overcome drug resistance are being studied. In this article, we review the mechanisms of PARPi resistance and summarize the current combination of clinical trials that can improve its resistance, with a view to identify the best clinical treatment to save the lives of patients.
Collapse
Affiliation(s)
- Nannan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dongdong Jin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
| | - Zhenan Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyue Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
- *Correspondence: Li Yang, ; Huaiwu Lu,
| | - Huaiwu Lu
- Department of Gynaecological Oncology, Sun Yat Sen Memorial Hospital, Guangzhou, China
- *Correspondence: Li Yang, ; Huaiwu Lu,
| |
Collapse
|
19
|
The disruption of the CCDC6 – PP4 axis induces a BRCAness like phenotype and sensitivity to PARP inhibitors in high-grade serous ovarian carcinoma. J Exp Clin Cancer Res 2022; 41:245. [PMID: 35964058 PMCID: PMC9375931 DOI: 10.1186/s13046-022-02459-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Treatment with PARP inhibitors (PARPi) is primarily effective against high-grade serous ovarian cancers (HGSOC) with BRCA1/2 mutations or other deficiencies in homologous recombination (HR) repair mechanisms. However, resistance to PARPi frequently develops, mostly as a result of BRCA1/2 reversion mutations. The tumour suppressor CCDC6 is involved in HR repair by regulating the PP4c phosphatase activity on γH2AX. In this work, we reported that in ovarian cancer cells, a physical or functional loss of CCDC6 results synthetic lethal with the PARP-inhibitors drugs, by affecting the HR repair. We also unravelled a role for CCDC6 as predictive marker of PARPi sensitivity in ovarian cancer, and the impact of CCDC6 downregulation in overcoming PARPi resistance in these tumours. Methods A panel of HGSOC cell lines (either BRCA-wild type or mutant) were treated with PARPi after CCDC6 was attenuated by silencing or by inhibiting USP7, a CCDC6-deubiquitinating enzyme, and the effects on cell survival were assessed. At the cellular and molecular levels, the processes underlying the CCDC6-dependent modification of drugs’ sensitivity were examined. Patient-derived xenografts (PDXs) were immunostained for CCDC6, and the expression of the protein was analysed statistically after digital or visual means. Results HGSOC cells acquired PARPi sensitivity after CCDC6 depletion. Notably, CCDC6 downregulation restored the PARPi sensitivity in newly generated or spontaneously resistant cells containing either wild type- or mutant-BRCA2. When in an un-phosphorylated state, the CCDC6 residue threonine 427 is crucial for effective CCDC6-PP4 complex formation and PP4 sequestration, which maintains high γH2AX levels and effective HR. Remarkably, the PP4-dependent control of HR repair is influenced by the CCDC6 constitutively phosphorylated mutant T427D or by the CCDC6 loss, favouring PARPi sensitivity. As a result, the PP4 regulatory component PP4R3α showed to be essential for both the activity of the PP4 complex and the CCDC6 dependent PARPi sensitivity. It's interesting to note that immunohistochemistry revealed an intense CCDC6 protein staining in olaparib-resistant HGSOC cells and PDXs. Conclusions Our findings suggest that the physical loss or the functional impairment of CCDC6 enhances the PP4c complex activity, which causes BRCAness and PARPi sensitivity in HGSOC cells. Moreover, CCDC6 downregulation might overcome PARPi resistance in HGSOCs, thus supporting the potential of targeting CCDC6 by USP7 inhibitors to tackle PARPi resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02459-2.
Collapse
|
20
|
Wang Z, Jia R, Wang L, Yang Q, Hu X, Fu Q, Zhang X, Li W, Ren Y. The Emerging Roles of Rad51 in Cancer and Its Potential as a Therapeutic Target. Front Oncol 2022; 12:935593. [PMID: 35875146 PMCID: PMC9300834 DOI: 10.3389/fonc.2022.935593] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Defects in DNA repair pathways are emerging hallmarks of cancer. Accurate DNA repairs and replications are essential for genomic stability. Cancer cells require residual DNA repair capabilities to repair the damage from replication stress and genotoxic anti-tumor agents. Defective DNA repair also promotes the accumulation of genomic changes that eventually lead to tumorigenesis, tumor progression, and therapeutic resistance to DNA-damaging anti-tumor agents. Rad51 recombinase is a critical effector of homologous recombination, which is an essential DNA repair mechanism for double-strand breaks. Rad51 has been found to be upregulated in many malignant solid tumors, and is correlated with poor prognosis. In multiple tumor types, Rad51 is critical for tumor metabolism, metastasis and drug resistance. Herein, we initially introduced the structure, expression pattern of Rad51 and key Rad51 mediators involved in homologous recombination. Additionally, we primarily discussed the role of Rad51 in tumor metabolism, metastasis, resistance to chemotherapeutic agents and poly-ADP ribose polymerase inhibitors.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, China
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Renxiang Jia
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, China
| | - Linlin Wang
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, China
| | - Qiwei Yang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaohai Hu
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiang Fu
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenya Li
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yi Ren, ; Wenya Li,
| | - Yi Ren
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, China
- *Correspondence: Yi Ren, ; Wenya Li,
| |
Collapse
|
21
|
Affatato R, Chiappa M, Guffanti F, Ricci F, Formenti L, Fruscio R, Jaconi M, Ridinger M, Erlander M, Damia G. Onvansertib and paclitaxel combined in platinum-resistant ovarian carcinomas. Ther Adv Med Oncol 2022; 14:17588359221095064. [PMID: 35665077 PMCID: PMC9160919 DOI: 10.1177/17588359221095064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background Ovarian carcinoma is extremely sensitive to (platinum-based) chemotherapy; however, most patients will relapse with platinum-resistant disease, badly affecting their prognosis. Effective therapies for relapsing resistant tumors are urgently needed. Methods We used patient-derived xenografts (PDXs) of ovarian carcinoma resistant to cisplatin (DDP) to test in vivo the combination of paclitaxel (15 mg/kg i.v. once a week for 3 weeks) and onvansertib, a plk1 inhibitor, (50 mg/kg orally 4 days a week for 3 weeks). The PDX models were subcutaneously (s.c.) or orthotopically transplanted in nude mice and antitumor efficacy was evaluated as tumor growth inhibition and survival advantages of the combination over untreated and single agent treatment. Results The combination of onvansertib and paclitaxel was very well tolerated with weight loss no greater than 15% in the combination group compared with the control group. In the orthotopically transplanted PDXs, single onvansertib and paclitaxel treatments prolonged survival; however, the combined treatment was much more active, with median survival from three- to six-fold times that of untreated mice. Findings were similar with the s.c. transplanted PDX, though there was greater heterogeneity in tumor response. Ex vivo tumors treated with the combination showed greater induction of γH2AX, marker of apoptosis and DNA damage, and pSer10H3, a marker of mitotic block. Conclusion The efficacy of onvansertib and paclitaxel combination in these preclinical ovarian cancer models supports the clinical translatability of this combination as an effective therapeutic approach for platinum-resistant high-grade ovarian carcinoma.
Collapse
Affiliation(s)
- Roberta Affatato
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Michela Chiappa
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Federica Guffanti
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Francesca Ricci
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Laura Formenti
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, San Gerardo Hospital, University of Milan Bicocca, Monza, Italy
| | - Marta Jaconi
- Department of Pathology, San Gerardo Hospital, Monza, Italy
| | | | | | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, Milan 20157, Italy
| |
Collapse
|
22
|
Combinations of ATR, Chk1 and Wee1 Inhibitors with Olaparib Are Active in Olaparib Resistant Brca1 Proficient and Deficient Murine Ovarian Cells. Cancers (Basel) 2022; 14:cancers14071807. [PMID: 35406579 PMCID: PMC8997432 DOI: 10.3390/cancers14071807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Poly(ADP-ribose) polymerases inhibitors (PARPis), including olaparib, have been recently approved for ovarian carcinoma treatment and PARPi resistance has already been observed in the clinics. With the aim of dissecting the molecular mechanisms of PARPi resistance, we generated olaparib resistant cells lines, both in a homologous recombination (HR)-deficient and -proficient background by continuous in vitro drug treatment. In the HR proficient background, olaparib resistance was caused by overexpression of multidrug resistance 1 gene (MDR1), while multiple heterogeneous co-existing mechanisms were found in olaparib resistant HR-deficient cells, including overexpression of MDR1, a decrease in PARP1 protein level and partial reactivation of HR repair. We found that combinations of ATR, Chk1 and Wee1 inhibitors with olaparib were synergistic in sensitive and resistant sublines, regardless of the HR status. These new olaparib resistant models will be instrumental to screen new therapeutic options for PARPi-resistant ovarian tumors. Abstract Background. Poly(ADP-ribose) polymerases inhibitor (PARPi) have shown clinical efficacy in ovarian carcinoma, especially in those harboring defects in homologous recombination (HR) repair, including BRCA1 and BRCA2 mutated tumors. There is increasing evidence however that PARPi resistance is common and develops through multiple mechanisms. Methods. ID8 F3 (HR proficient) and ID8 Brca1-/- (HR deficient) murine ovarian cells resistant to olaparib, a PARPi, were generated through stepwise drug concentrations in vitro. Both sensitive and resistant cells lines were pharmacologically characterized and the molecular mechanisms underlying olaparib resistance. Results. In ID8, cells with a HR proficient background, olaparib resistance was mainly caused by overexpression of multidrug resistance 1 gene (MDR1), while multiple heterogeneous co-existing mechanisms were found in ID8 Brca1-/- HR-deficient cells resistant to olaparib, including overexpression of MDR1, a decrease in PARP1 protein level and partial reactivation of HR repair. Importantly, combinations of ATR, Chk1 and Wee1 inhibitors with olaparib were synergistic in sensitive and resistant sublines, regardless of the HR cell status. Conclusion. Olaparib-resistant cell lines were generated and displayed multiple mechanisms of resistance, which will be instrumental in selecting new possible therapeutic options for PARPi-resistant ovarian tumors.
Collapse
|
23
|
Anastasia A, Dellavedova G, Ramos-Montoya A, James NH, Chiorino G, Russo M, Baakza H, Wilson J, Ghilardi C, Cadogan EB, Giavazzi R, Bani MR. The DNA-PK inhibitor AZD7648 sensitizes patient derived ovarian cancer xenografts to pegylated liposomal doxorubicin and olaparib preventing abdominal metastases. Mol Cancer Ther 2022; 21:555-567. [PMID: 35149547 DOI: 10.1158/1535-7163.mct-21-0420] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/21/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is the deadliest gynaecological cancer, with a 5 year survival rate of 30%, when the disease has spread throughout the peritoneal cavity. We investigated the efficacy to delay disease progression by the DNA-dependent protein kinase (DNA-PKcs)inhibitor AZD7648, administered in combination with two of the therapeutic options for patient management: either pegylated liposomal doxorubicin (PLD) or the poly(adenosine diphosphate-ribose)polymerase (PARP) inhibitor olaparib. Patient-derived ovarian cancer xenografts (OC-PDXs) were transplanted subcutaneously to evaluate the effect of treatment on tumour growth, or orthotopically in the peritoneal cavity to evaluate the effect on metastatic spread. AZD7648 was administered orally (po)in combination with PLD (dosed intravenously) or with olaparib (po). To prove the inhibition of DNA-PK in the tumours, we measured pDNA-PKcs, pRPA32 and γH2AX, biomarkers of DNA-PK activity. AZD7648 enhanced the therapeutic efficacy of PLD in all the OC-PDXs tested, regardless of their BRCA status, sensitivity to cisplatin or PLD. The treatment caused disease stabilization, that persisted despite therapy discontinuation for tumours growing subcutaneously, and significantly impaired the abdominal metastatic dissemination, prolonging the lifespan of mice implanted orthotopically. AZD7648 potentiated the efficacy of olaparib in BRCA-deficient OC-PDXs, but did not sensitize BRCA-proficient OC-PDXs to olaparib, despite an equivalent inhibition of DNA-PK, suggesting the need of a pre-existing olaparib activity to benefit from the addition of AZD7648. This work suggests that AZD7648, an inhibitor of DNA-PK, dosed in combination with PLD or olaparib is an exciting therapeutic option that could benefit ovarian cancer patients and should be explored in clinical trials.
Collapse
Affiliation(s)
- Alessia Anastasia
- Oncology, Institute for Pharmacological Research Mario Negri - IRCCS
| | | | | | - Neil H James
- Bioscience, Oncology, R, AstraZeneca (United Kingdom)
| | | | - Massimo Russo
- Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy, Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | | | - Joanne Wilson
- Department of Oncology, AstraZeneca (United Kingdom)
| | - Carmen Ghilardi
- Cancer Metastasis Therapeutics - Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS
| | | | - Raffaella Giavazzi
- Cancer Metastasis Therapeutics, Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS
| | | |
Collapse
|
24
|
Prados-Carvajal R, Irving E, Lukashchuk N, Forment JV. Preventing and Overcoming Resistance to PARP Inhibitors: A Focus on the Clinical Landscape. Cancers (Basel) 2021; 14:44. [PMID: 35008208 PMCID: PMC8750220 DOI: 10.3390/cancers14010044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are now a first-line maintenance treatment in ovarian cancer and have been approved in other cancer types, including breast, pancreatic and prostate. Despite their efficacy, and as is the case for other targeted therapies, resistance to PARPi has been reported clinically and is generating a growing patient population of unmet clinical need. Here, we discuss the mechanisms of resistance that have been described in pre-clinical models and focus on those that have been already identified in the clinic, highlighting the key challenges to fully characterise the clinical landscape of PARPi resistance and proposing ways of preventing and overcoming it.
Collapse
Affiliation(s)
- Rosario Prados-Carvajal
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK; (R.P.-C.); (E.I.)
| | - Elsa Irving
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK; (R.P.-C.); (E.I.)
| | - Natalia Lukashchuk
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK;
| | - Josep V. Forment
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK; (R.P.-C.); (E.I.)
| |
Collapse
|