1
|
Li Z, Xin S, Huang L, Tian Y, Chen W, Liu X, Ye B, Bai R, Yang G, Wang W, Ye L. BEX4 inhibits the progression of clear cell renal cell carcinoma by stabilizing SH2D4A, which is achieved by blocking SIRT2 activity. Oncogene 2024:10.1038/s41388-024-03235-6. [PMID: 39639172 DOI: 10.1038/s41388-024-03235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignancies. Recently, the role of brain-expressed X-linked 4 (BEX4) in cancer progression has received increasing attention. This study aimed to investigate the function of BEX4 in ccRCC and to reveal the underlying mechanisms. We first confirmed that BEX4 was significantly downregulated in ccRCC by bioinformatics analysis and that patients with low BEX4 expression tended to have prolonged overall survival time. Subsequently, we confirmed that BEX4 inhibited ccRCC cell proliferation in vitro and tumorigenesis in vivo through a series of cell function assays and the establishment of a nude mouse xenograft model, respectively. Mechanistically, we found that BEX4 positively regulates the expression of Src homology 2 domain-containing 4A (SH2D4A), an inhibitor of the NOTCH pathway, which further promoted the tumor-suppressive effects of BEX4. In addition, our study confirmed that the promoting effect of BEX4 on SH2D4A was achieved by inhibiting the deacetylase sirtuin 2 (SIRT2) activity. On this basis, we found that there was a competition between acetylation and ubiquitination modifications at the K69 site of SH2DA4 and that BEX4-induced upregulation of acetylation at the k69 site stabilizes SH2D4A protein expression by inhibiting ubiquitination at the same site. In addition, dual-luciferase assays showed that the transcriptional activity of BEX4 was positively regulated by activation transcription factor 3 (ATF3). Our study suggests that BEX4 plays a role in inhibiting tumor progression in ccRCC and maybe a new diagnostic and therapeutic target for ccRCC patients.
Collapse
Affiliation(s)
- Ziyao Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Electrical Engineering of Zhengzhou University, Zhengzhou, China
- Center for Frontier Medical Engineering of Chiba University, Chiba, Japan
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ye Tian
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Weihua Chen
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Liu
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bowen Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Bai
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Wenwen Wang
- Department of Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Yang T, Li C, Xu D, Quan R, Wang L, Ren Y, Zhang Z, Yu R. Bioinformatics analysis of SH2D4A in glioblastoma multiforme to evaluate immune features and predict prognosis. Transl Cancer Res 2024; 13:4242-4256. [PMID: 39262462 PMCID: PMC11384316 DOI: 10.21037/tcr-23-2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/30/2024] [Indexed: 09/13/2024]
Abstract
Background Glioblastoma multiforme (GBM) is the most common and aggressive primary brain cancer in adults. This study aimed to obtain data on immune cell infiltration based on public datasets and to examine the prognostic significance of SH2 domain containing 4A (SH2D4A) for GBM. Methods SH2D4A expression in GBM was analyzed using a Tumor Immunity Estimation Resource (TIMER) 2.0 dataset, and a gene expression profile interaction analysis (GEPIA), and the results were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The Chinese Glioma Genome Atlas (CGGA) dataset was used to assess the effect of SH2D4A on GBM patient survival. The SH2D4A co-expression network of the LinkedOmics dataset and GeneMANIA dataset was also investigated. Least absolute shrinkage and selection operator (LASSO) regression models and a nomogram were constructed to assess the prognosis of GBM patients. A Gene Set Enrichment Analysis (GSEA) was performed using The Cancer Genome Atlas (TCGA) dataset to find functional differences. The relationship between SH2D4A expression and tumor-infiltrating immune cells was analyzed using xCELL, the Cell Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm, and the TIMER dataset. Results We discovered that SH2D4A expression was upregulated in GBM patients, and elevated SH2D4A expression was also substantially correlated with tumor grade. The survival curve analysis and multivariate Cox regression analysis showed that high SH2D4A expression was a significant independent predictor of poor overall survival (OS) in GBM patients. The immunoassay results suggested that altered SH2D4A expression may affect the immune infiltration of GBM tissues and thus the survival outcomes of GBM patients. Conclusions In addition to being a possible prognostic marker and therapeutic target for GBM, SH2D4A may also accelerate the progression of GBM.
Collapse
Affiliation(s)
- Tian Yang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Chujun Li
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Duo Xu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Rui Quan
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Lansheng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yanhong Ren
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Zhengkui Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Shi H, Luo J, Ye L, Duan C, Zhang M, Ran H, Li C, Wu Q, Shao Y. SH2D4A inhibits esophageal squamous cell carcinoma progression through FAK/PI3K/AKT signaling pathway. Cell Signal 2024; 114:110997. [PMID: 38043670 DOI: 10.1016/j.cellsig.2023.110997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC), one of the most common malignant tumors, is now afflicting approximately 80% of patients diagnosed with esophageal cancers. The therapeutic effect and prognosis of ESCC remain inadequate due to the unusual early symptoms and rapid malignant progression. SH2 Domain containing 4 A (SH2D4A) is downregulated in malignancies and is closely associated with tumor progression. However, neither the biological functions nor the fundamental mechanisms of SH2D4A on ESCC are known. In this study, it was found that SH2D4A is downregulated in ESCC tissues and cell lines. Incorporating immunohistochemistry and clinicopathological findings, we determined that decreased SH2D4A expression was substantially associated with adverse clinical outcomes. Overexpression of SH2D4A inhibited cell proliferation and migration, whereas suppressing SH2D4A has the opposite effect. SH2D4A mechanistically inhibited cells from proliferating and migrating through the FAK/PI3K/AKT signaling pathway. Furthermore, the results of xenograft tumor growth confirmed the preceding findings. In conclusion, our findings reveal that SH2D4A is a gene which can serve as a cancer suppressor in ESCC and may inhibits the ESCC progression by interfering with the FAK/PI3K/AKT signaling pathway. SH2D4A could act as a target for diagnostic or therapeutic purpose in ESCC.
Collapse
Affiliation(s)
- Haoming Shi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Jun Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Liu Ye
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Changzhu Duan
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016 Chongqing, China..
| | - Min Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Haoyu Ran
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Changying Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China..
| | - Yue Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China..
| |
Collapse
|
4
|
Yuki R, Ikeda Y, Yasutake R, Saito Y, Nakayama Y. SH2D4A promotes centrosome maturation to support spindle microtubule formation and mitotic progression. Sci Rep 2023; 13:2067. [PMID: 36739326 PMCID: PMC9899277 DOI: 10.1038/s41598-023-29362-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 02/06/2023] Open
Abstract
Mitotic progression requires the precise formation of spindle microtubules based on mature centrosomes. During the G2/M transition, centrosome maturation progresses, and associated microtubules bundle to form mitotic spindle fibers and capture the chromosomes for alignment at the cell equator. Mitotic kinases-induced phosphorylation signaling is necessary for these processes. Here, we identified SH2 domain-containing protein 4A (SH2D4A/PPP1R38) as a new mitotic regulator. SH2D4A knockdown delays mitotic progression. The time-lapse imaging analysis showed that SH2D4A specifically contributes to the alignment of chromosomes. The cold treatment assay and microtubule regrowth assay indicated that SH2D4A promotes microtubule nucleation to support kinetochore-microtubule attachment. This may be due to the centrosome maturation by SH2D4A via centrosomal recruitment of pericentriolar material (PCM) such as cep192, γ-tubulin, and PLK1. SH2D4A was found to be a negative regulator of PP1 phosphatase. Consistently, treatment with a PP1 inhibitor rescues SH2D4A-knockdown-induced phenotypes, including the microtubule nucleation and centrosomal recruitment of active PLK1. These results suggest that SH2D4A is involved in PCM recruitment to centrosomes and centrosome maturation through attenuation of PP1 phosphatases, accelerating the spindle formation and supporting mitotic progression.
Collapse
Affiliation(s)
- Ryuzaburo Yuki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Yuki Ikeda
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Ryuji Yasutake
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|