1
|
Gilyazova I, Ivanova E, Izmailov A, Sharifgaliev I, Karunas A, Pudova E, Kobelyatskaya A, Gilyazova G, Izmailova A, Pavlov V, Khusnutdinova E. MicroRNA Expression Signatures in Clear Cell Renal Cell Carcinoma: High-Throughput Searching for Key miRNA Markers in Patients from the Volga-Ural Region of Eurasian Continent. Int J Mol Sci 2023; 24:ijms24086909. [PMID: 37108073 PMCID: PMC10139074 DOI: 10.3390/ijms24086909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by high molecular genetic heterogeneity, metastatic activity and unfavorable prognosis. MicroRNAs (miRNA) are 22-nucleotide noncoding RNAs that are aberrantly expressed in cancer cells and have gained serious consideration as non-invasive cancer biomarkers. We investigated possible differential miRNA signatures that may differentiate high-grade ccRCC from primary disease stages. High-throughput miRNAs expression profiling, using TaqMan OpenArray Human MicroRNA panel, was performed in a group of 21 ccRCC patients. The obtained data was validated in 47 ccRCC patients. We identified nine dysregulated miRNAs (miRNA-210, -642, -18a, -483-5p, -455-3p, -487b, -582-3p, -199b and -200c) in tumor ccRCC tissue compared to normal renal parenchyma. Our results show that the combination of miRNA-210, miRNA-483-5p, miRNA-455 and miRNA-200c is able to distinguish low and high TNM ccRCC stages. Additionally, miRNA-18a, -210, -483-5p and -642 showed statistically significant differences between the low stage tumor ccRCC tissue and normal renal tissue. Contrariwise, the high stages of the tumor process were accompanied by alteration in the expression levels of miRNA-200c, -455-3p and -582-3p. Although the biological roles of these miRNAs in ccRCC are not totally clear, our findings need additional investigations into their involvement in the pathogenesis of ccRCC. Prospective studies with large study cohorts of ccRCC patients are important to further establish the clinical validity of our miRNA markers to predict ccRCC.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elizaveta Ivanova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Adel Izmailov
- Republican Clinical Oncological Dispensary, 450054 Ufa, Russia
| | | | - Alexandra Karunas
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Elena Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Gulshat Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Angelina Izmailova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| |
Collapse
|
2
|
Gilyazova I, Ivanova E, Sinelnikov M, Pavlov V, Khusnutdinova E, Gareev I, Beilerli A, Mikhaleva L, Liang Y. The potential of miR-153 as aggressive prostate cancer biomarker. Noncoding RNA Res 2022; 8:53-59. [PMID: 36329790 PMCID: PMC9626891 DOI: 10.1016/j.ncrna.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Prostate cancer (PC) is one of the most frequently diagnosed cancers in males. MiR-153, as a member of the microRNA (miRNA) family, plays an important role in PC. This study aims to explore the expression and possible molecular mechanisms of the miR-153 action. METHODS Formalin-fixed paraffin-embedded (FFPE) tissues were collected from prostatectomy specimens of 29 metastatic and 32 initial stage PC patients. Expression levels of miR-153 were measured using real-time reverse transcription polymerase chain reaction (qRT-PCR). 2-ΔΔCT method was used for quantitative gene expression assessment. The candidate target genes for miR-153 were predicted by TargetScan. Mutations in target genes of miR-153 were identified using exome sequencing. Protein-protein interaction (PPI) networks, Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the potential molecular mechanisms of miR-153 in PC. RESULTS MiR-153 was significantly up-regulated in PC tissues compared to non-cancerous tissues. The analysis of correlation between the expression level of miR-153 and clinicopathological factors revealed a statistically significant correlation with the stage of the tumor process according to tumor, node, metastasis (TNM) staging system (p = 0.0256). ROC curve analysis was used to evaluate the predictive ability of miR-153 for metastasis development and it revealed miR-153 as a potential prognostic marker (AUC = 0.85; 95%CI 0.75-0.95; sensitivity = 0.72, specificity = 0.86)). According to logistic regression model the high expression of miR-153 increased the risk of metastasis development (odds ratios = 3.14, 95% CI 1.62-8.49; p-value = 0.006). Whole exome sequencing revealed nonsynonymous somatic mutations in collagen type IV alpha 1 (COL4A1), collagen type IV alpha 3 (COL4A3), forkhead box protein O1 (FOXO1), 2-hydroxyacyl-CoA lyase 1 (HACL1), hypoxia-inducible factor 1-alpha (HIF-1A), and nidogen 2 (NID2) genes. Moreover, KEGG analysis revealed that the extracellular matrix-receptor (ECM-receptor) interaction pathway is mainly involved in PC. CONCLUSION MiR-153 is up-regulated in PC tissues and may play an important role in aggressive PC by targeting potential target genes.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia,Corresponding author.
| | - Elizaveta Ivanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Mikhail Sinelnikov
- Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | | | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Ilgiz Gareev
- Bashkir State Medical University, 450008, Ufa, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Ludmila Mikhaleva
- Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery", 117418, Moscow, Russia
| | - Yanchao Liang
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
3
|
MicroRNA Expression in Clear Cell Renal Cell Carcinoma Cell Lines and Tumor Biopsies: Potential Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23105604. [PMID: 35628416 PMCID: PMC9147802 DOI: 10.3390/ijms23105604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
This study was carried out to quantitate the expression levels of microRNA-17, -19a, -34a, -155, and -210 (miRs) expressed in nine clear cell renal cell carcinoma (ccRCC) and one chromophobe renal cell carcinoma cell line with and without sarcomatoid differentiation, and in six primary kidney tumors with matching normal kidney tissues. The data in the five non-sarcomatoid ccRCC cell lines-RC2, CAKI-1, 786-0, RCC4, and RCC4/VHL-and in the four ccRCC with sarcomatoid differentiation-RCJ41T1, RCJ41T2, RCJ41M, and UOK-127-indicated that miR-17 and -19a were expressed at lower levels relative to miR-34a, -155, and -210. Compared with RPTEC normal epithelial cells, miR-34a, miR-155, and miR-210 were expressed at higher levels, independent of the sarcomatoid differentiation status and hypoxia-inducible factors 1α and 2α (HIFs) isoform expression. In the one chromophobe renal cell carcinoma cell line, namely, UOK-276 with sarcomatoid differentiation, and expressing tumor suppressor gene TP53, miR-34a, which is a tumor suppressor gene, was expressed at higher levels than miR-210, -155, -17, and -19a. The pilot results generated in six tumor biopsies with matching normal kidney tissues indicated that while the expression of miR-17 and -19a were similar to the normal tissue expression profile, miR-210, -155, -and 34a were expressed at a higher level. To confirm that differences in the expression levels of the five miRs in the six tumor biopsies were statistically significant, the acquisition of a larger sample size is required. Data previously generated in ccRCC cell lines demonstrating that miR-210, miR-155, and HIFs are druggable targets using a defined dose and schedule of selenium-containing molecules support the concept that simultaneous and concurrent downregulation of miR-210, miR-155, and HIFs, which regulate target genes associated with increased tumor angiogenesis and drug resistance, may offer the potential for the development of a novel mechanism-based strategy for the treatment of patients with advanced ccRCC.
Collapse
|
4
|
MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes (Basel) 2021. [DOI: 10.3390/pr9122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence of urologic cancers, including kidney, upper tract urothelial, and bladder malignancies, is increasing globally, with a high percentage of cases showing metastasis upon diagnosis and low five-year survival rates. MicroRNA (miRNA), a small non-coding RNA, was found to regulate the expression of oncogenes and tumor suppressor genes in several tumors, including cancers of the urinary system. In the current review, we comprehensively discuss the recently reported up-or down-regulated miRNAs as well as their possible targets and regulated pathways involved in the development, progression, and metastasis of urinary tract cancers. These miRNAs represent potential therapeutic targets and diagnostic/prognostic biomarkers that may help in efficient and early diagnosis in addition to better treatment outcomes.
Collapse
|
5
|
Tong J, Meng X, Lv Q, Yuan H, Li W, Xiao W, Zhang X. The Downregulation of Prognosis- and Immune Infiltration-Related Gene CYFIP2 Serves as a Novel Target in ccRCC. Int J Gen Med 2021; 14:6587-6599. [PMID: 34703279 PMCID: PMC8523908 DOI: 10.2147/ijgm.s335713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/06/2021] [Indexed: 01/18/2023] Open
Abstract
Background Increasing evidence indicated that the aberrant expression of the cytoplasmic FMR1-interacting protein (CYFIP) family might possess critical role and potential functions in cancer. But the role of CYFIP2 in clear cell renal cell carcinoma (ccRCC) is still uncharacteristic. Methods We investigated the Cancer Genome Atlas Kidney Clear Cell Carcinoma (TCGA-KIRC) database for the expression profile, clinicopathological variables, clinical prognosis information, and promoter methylation levels of CYFIPs in ccRCC. The aberrant CYFIP2 protein expression was validated by the Human Protein Atlas (HPA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to uncover CYFIP2 mRNA levels in 28 pairs of ccRCC cancer tissues. Kaplan–Meier analysis, univariate and multivariate Cox proportional hazard regression were performed to assess CYFIPs’ prognosis value. Gene set enrichment analysis (GSEA) was used to determined hallmark functions, gene ontology of CYFIP2. TIMER database was utilized to assess the correlation with immune infiltration in ccRCC. Results Results showed CYFIP2 was downregulated in ccRCC, relative to paired normal tissues in TCGA-KIRC database and 28 pairs of clinical samples (P < 0.0001). Similarly, a decreased CYFIP2 protein expression was confirmed by ccRCC tissues. The results showed CYFIP2 was negatively regulated by promoter DNA methylation. Survival analysis results showed CYFIP2 could be an independent biomarker for ccRCC and its reduction predicted a poor overall survival (OS) and disease-free survival (DFS). GSEA showed CYFIP2 was involved in metabolic pathways and epithelial–mesenchymal transition (EMT). Immune infiltration analysis revealed that a list of immune markers was significantly correlated with CYFIP2 expression especially with CD4+ cells and CD8+ cells in ccRCC. Conclusion These results show that CYFIP2 was downregulated in ccRCC patients and predicted an unfavorable prognosis. CYFIP2 might be a potential novel prognostic molecule, and related to immune infiltration, the metabolism, as well as EMT process in ccRCC. CYFIP2 could act as tumor suppressor gene in ccRCC and positive modulation of CYFIP2 might lead to development of a novel strategy for ccRCC treatment.
Collapse
Affiliation(s)
- Junwei Tong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, People's Republic of China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiangui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, People's Republic of China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, People's Republic of China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hongwei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, People's Republic of China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, People's Republic of China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, People's Republic of China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, People's Republic of China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
6
|
Millet-Boureima C, He S, Le TBU, Gamberi C. Modeling Neoplastic Growth in Renal Cell Carcinoma and Polycystic Kidney Disease. Int J Mol Sci 2021; 22:3918. [PMID: 33920158 PMCID: PMC8070407 DOI: 10.3390/ijms22083918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) and autosomal dominant polycystic kidney disease (ADPKD) share several characteristics, including neoplastic cell growth, kidney cysts, and limited therapeutics. As well, both exhibit impaired vasculature and compensatory VEGF activation of angiogenesis. The PI3K/AKT/mTOR and Ras/Raf/ERK pathways play important roles in regulating cystic and tumor cell proliferation and growth. Both RCC and ADPKD result in hypoxia, where HIF-α signaling is activated in response to oxygen deprivation. Primary cilia and altered cell metabolism may play a role in disease progression. Non-coding RNAs may regulate RCC carcinogenesis and ADPKD through their varied effects. Drosophila exhibits remarkable conservation of the pathways involved in RCC and ADPKD. Here, we review the progress towards understanding disease mechanisms, partially overlapping cellular and molecular dysfunctions in RCC and ADPKD and reflect on the potential for the agile Drosophila genetic model to accelerate discovery science, address unresolved mechanistic aspects of these diseases, and perform rapid pharmacological screens.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Thi Bich Uyen Le
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
- Haematology-Oncology Research Group, National University Cancer Institute, Singapore 119228, Singapore
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29528-6054, USA
| |
Collapse
|
7
|
Liu J, Song X, Ren Z. The effect of microRNA-330 replacement on inhibition of growth and migration in renal cancer cells. Biotechnol Appl Biochem 2021; 69:558-566. [PMID: 33605482 DOI: 10.1002/bab.2132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/06/2021] [Indexed: 12/26/2022]
Abstract
This study was conducted to scrutinize microRNA-330 (miR-330) role in growth, migration, and the expression of metastatic genes in renal cell carcinoma (RCC) in vitro. Following transfection of the cells with miR-330 mimic, cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cell migration by wound healing assay, and apoptosis by flow cytometry were evaluated. Quantitative real-time PCR was conducted to assess expression levels of matrix metalloproteinase 2 (MMP2), MMP9, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), Kirsten rat sarcoma virus (K-Ras), cellular Myc (c-Myc), and C-X-C chemokine receptor type 4 (CXCR-4) as metastatic genes in the progression of RCC. Results showed that miR-330 was downregulated in the Caki-1 cells compared with HK-2 cells (p < 0.001). Upregulation of miR-330 obstructed in vitro expansion and migration, while it intensified apoptosis rate in the Caki-1 cells. Moreover, it was found that miR-330 transfection negatively modulated the expression of MMP2, MMP9, ADAMTS, K-Ras, c-Myc, and CXCR-4 in the Caki-1 cells. Our findings revealed that overexpression of miR-330 might provide an auxiliary treatment approach for overcoming invasion, progression, and metastasis in patients with RCC by enhancing cell apoptosis.
Collapse
Affiliation(s)
- Jun Liu
- Urology Department, Tianjin Hospital, Tianjin, People's Republic of China
| | - Xin Song
- Urology Department, Tianjin Hospital, Tianjin, People's Republic of China
| | - Zhongwei Ren
- Urology Department, Tianjin Hospital, Tianjin, People's Republic of China
| |
Collapse
|
8
|
Ghafouri-Fard S, Shirvani-Farsani Z, Branicki W, Taheri M. MicroRNA Signature in Renal Cell Carcinoma. Front Oncol 2020; 10:596359. [PMID: 33330087 PMCID: PMC7734191 DOI: 10.3389/fonc.2020.596359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) includes 2.2% of all diagnosed cancers and 1.8% of cancer-related mortalities. The available biomarkers or screening methods for RCC suffer from lack of sensitivity or high cost, necessitating identification of novel biomarkers that facilitate early diagnosis of this cancer especially in the susceptible individuals. MicroRNAs (miRNAs) have several advantageous properties that potentiate them as biomarkers for cancer detection. Expression profile of miRNAs has been assessed in biological samples from RCC patients. Circulatory or urinary levels of certain miRNAs have been proposed as markers for RCC diagnosis or follow-up. Moreover, expression profile of some miRNAs has been correlated with response to chemotherapy, immunotherapy or targeted therapeutic options such as sunitinib. In the current study, we summarize the results of studies that assessed the application of miRNAs as biomarkers, therapeutic targets or modulators of response to treatment modalities in RCC patients.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Clerici S, Boletta A. Role of the KEAP1-NRF2 Axis in Renal Cell Carcinoma. Cancers (Basel) 2020; 12:E3458. [PMID: 33233657 PMCID: PMC7699726 DOI: 10.3390/cancers12113458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
NRF2 is a transcription factor that coordinates the antioxidant response in many different tissues, ensuring cytoprotection from endogenous and exogenous stress stimuli. In the kidney, its function is essential in appropriate cellular response to oxidative stress, however its aberrant activation supports progression, metastasis, and resistance to therapies in renal cell carcinoma, similarly to what happens in other nonrenal cancers. While at the moment direct inhibitors of NRF2 are not available, understanding the molecular mechanisms that regulate its hyperactivation in specific tumor types is crucial as it may open new therapeutic perspectives. Here, we focus our attention on renal cell carcinoma, describing how NRF2 hyperactivation can contribute to tumor progression and chemoresistance. Furthermore, we highlight the mechanism whereby the many pathways that are generally altered in these tumors converge to dysregulation of the KEAP1-NRF2 axis.
Collapse
Affiliation(s)
| | - Alessandra Boletta
- IRCCS San Raffaele Scientific Institute, Molecular Basis of Cystic Kidney Diseases, Division of Genetics and Cell Biology, 20132 Milan, Italy;
| |
Collapse
|
10
|
Liu Q, Gu J, Zhang E, He L, Yuan ZX. Targeted Delivery of Therapeutics to Urological Cancer Stem Cells. Curr Pharm Des 2020; 26:2038-2056. [PMID: 32250210 DOI: 10.2174/1381612826666200403131514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Urological cancer refers to cancer in organs of the urinary system and the male reproductive system. It mainly includes prostate cancer, bladder cancer, renal cancer, etc., seriously threatening patients' survival. Although there are many advances in the treatment of urological cancer, approved targeted therapies often result in tumor recurrence and therapy failure. An increasing amount of evidence indicated that cancer stem cells (CSCs) with tumor-initiating ability were the source of treatment failure in urological cancer. The development of CSCstargeted strategy can provide a possibility for the complete elimination of urological cancer. This review is based on a search of PubMed, Google scholar and NIH database (http://ClinicalTrials.gov/) for English language articles containing the terms: "biomarkers", "cancer stem cells", "targeting/targeted therapy", "prostate cancer", bladder cancer" and "kidney cancer". We summarized the biomarkers and stem cell features of the prostate, bladder and renal CSCs, outlined the targeted strategies for urological CSCs from signaling pathways, cytokines, angiogenesis, surface markers, elimination therapy, differentiation therapy, immunotherapy, microRNA, nanomedicine, etc., and highlighted the prospects and future challenges in this research field.
Collapse
Affiliation(s)
- Qiang Liu
- Yaopharma Co., Ltd. Chongqing, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - E Zhang
- Officers college of PAP, Chengdu, Sichuan, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Can miRNAs Be Considered as Diagnostic and Therapeutic Molecules in Ischemic Stroke Pathogenesis?-Current Status. Int J Mol Sci 2020; 21:ijms21186728. [PMID: 32937836 PMCID: PMC7555634 DOI: 10.3390/ijms21186728] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death worldwide. Clinical manifestations of stroke are long-lasting and causing economic burden on the patients and society. Current therapeutic modalities to treat ischemic stroke (IS) are unsatisfactory due to the intricate pathophysiology and poor functional recovery of brain cellular compartment. MicroRNAs (miRNA) are endogenously expressed small non-coding RNA molecules, which can act as translation inhibitors and play a pivotal role in the pathophysiology associated with IS. Moreover, miRNAs may be used as potential diagnostic and therapeutic tools in clinical practice; yet, the complete role of miRNAs is enigmatic during IS. In this review, we explored the role of miRNAs in the regulation of stroke risk factors viz., arterial hypertension, metabolic disorders, and atherosclerosis. Furthermore, the role of miRNAs were reviewed during IS pathogenesis accompanied by excitotoxicity, oxidative stress, inflammation, apoptosis, angiogenesis, neurogenesis, and Alzheimer's disease. The functional role of miRNAs is a double-edged sword effect in cerebral ischemia as they could modulate pathological mechanisms associated with risk factors of IS. miRNAs pertaining to IS pathogenesis could be potential biomarkers for stroke; they could help researchers to identify a particular stroke type and enable medical professionals to evaluate the severity of brain injury. Thus, ascertaining the role of miRNAs may be useful in deciphering their diagnostic role consequently it is plausible to envisage a suitable therapeutic modality against IS.
Collapse
|