1
|
Villagomez FR, Lang J, Nunez-Avellaneda D, Behbakht K, Dimmick HL, Webb PG, Nephew KP, Neville M, Woodruff ER, Bitler BG. Claudin-4 Stabilizes the Genome via Nuclear and Cell-Cycle Remodeling to Support Ovarian Cancer Cell Survival. CANCER RESEARCH COMMUNICATIONS 2025; 5:39-53. [PMID: 39625235 PMCID: PMC11705808 DOI: 10.1158/2767-9764.crc-24-0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
SIGNIFICANCE High-grade serous ovarian carcinoma is marked by chromosomal instability, which can serve to promote disease progression and allow cancer to evade therapeutic insults. The report highlights the role of claudin-4 in regulating genomic instability and proposes a novel therapeutic approach to exploit claudin-4-mediated regulation.
Collapse
Affiliation(s)
- Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel Nunez-Avellaneda
- Deputy Directorate of Technological Development, Linkage, and Innovation, National Council of Humanities, Sciences, and Technologies, Mexico City, Mexico
| | - Kian Behbakht
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hannah L. Dimmick
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Patricia G. Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, Indiana
| | - Margaret Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
Wang L, Yi X, Zhou Y, Gongga L, Yu S, Guo X, Pan X, Su X, Wang P. Hypoxia adaptation mechanism in rats' peripheral auditory system in high altitude migration: a time series transcriptome analysis. Sci Rep 2024; 14:26909. [PMID: 39505982 PMCID: PMC11541580 DOI: 10.1038/s41598-024-78169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
High altitude is characterized by low oxygen, low pressure, and high radiation. When migrates from low to high altitudes, the body's tissues and organs experience hypoxic stress and will present acoustic adaptation as the protective response. However, the mechanisms of acoustic adaptation at high altitudes remain unclear. In this study, cochlear tissues from Wistar rats were collected at 15, 30, 60, 120, and 180 days after high-altitude migration. Transcriptome sequencing was conducted and DESeq algorithm revealed expression patterns of Differentially Expressed Genes(DEGs) after high altitude migration. Day 60 is a critical stage for cochlear tissue "damage" and "repair" in high-altitude conditions. Transmission Electron Microscopy (TEM) observations of structures also support the findings. A time-series gene co-expression network algorithm was used to investigate gene regulatory patterns and key genes after migration. Immunofluorescence, immunohistochemistry, and qPCR were per-formed for key gene validation and localization. At Day 60, the peak DEG count occurs in rats migrating to high altitude, aligning with the critical phase for cochlear tissue damage and repair at high altitudes. Repair hinges on synaptic plasticity and myelination-linked processes, influencing modules M4 to M6. Module M4's activation gradually diminishes from its peak. However, the 'damage' effect is orchestrated by inflammation-related processes in modules M3 to M5, with module M3's activation also waning. Key gene module M4, pivotal for repair during this pivotal phase, encompasses Sptbn5, Cldn1, Gfra2, and Lims2 as its core genes. Immunohistochemistry reveals Sptbn5's presence in cochlear neurons, hair cells, Schwann cells and stria vascularis tissue. Cldn1 and Gfra2 predominantly localize within the cochlear neuron region. These results may suggest new directions for future research on acoustic acclimatization to high altitude.
Collapse
Affiliation(s)
- Luoying Wang
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Jilin, 130021, China
| | - Xingcheng Yi
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yulai Zhou
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Jilin, 130021, China
| | - Lanzi Gongga
- Tibet University Medical College, Lhasa, Tibet, 850000, China
| | - Shuyuan Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xinyi Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoqiang Pan
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, 341000, China
| | - Xiaoyun Su
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Jilin, 130021, China.
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
3
|
Feng G, Yang X, Shuai W, Wang G, Ouyang L. Update on JNK inhibitor patents: 2015 to present. Expert Opin Ther Pat 2024; 34:907-927. [PMID: 39223788 DOI: 10.1080/13543776.2024.2400167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION c-Jun N-terminal kinase (JNK) regulates various biological processes through the phosphorylation cascade and is closely associated with numerous diseases, including inflammation, cardiovascular diseases, and neurological disorders. Therefore, JNKs have emerged as potential targets for disease treatment. AREAS COVERED This review compiles the patents and literatures concerning JNK inhibitors through retrieving relevant information from the SciFinder, Google Patents databases, and PubMed from 2015 to the present. It summarizes the structure-activity relationship (SAR) and biological activity profiles of JNK inhibitors, offering valuable perspectives on their potential therapeutic applications. EXPERT OPINION The JNK kinase serves as a novel target for the treatment of neurodegenerative disorders, pulmonary fibrosis, and other illnesses. A variety of small-molecule inhibitors targeting JNKs have demonstrated promising therapeutic potential in preclinical studies, which act upon JNK kinases via distinct mechanisms, encompassing traditional ATP competitive inhibition, covalent inhibition, and bidentate inhibition. Among them, several JNK inhibitors from PregLem SA, Celegene SA, and Xigen SA have accomplished the early stage of clinical trials, and their results will guide the development and indications of future JNK inhibitors.
Collapse
Affiliation(s)
| | | | | | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China second Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China second Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Villagomez FR, Lang J, Nunez-Avellaneda D, Behbakht K, Dimmick HL, Webb P, Nephew KP, Neville M, Woodruff ER, Bitler BG. Claudin-4 remodeling of nucleus-cell cycle crosstalk maintains ovarian tumor genome stability and drives resistance to genomic instability-inducing agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611120. [PMID: 39282307 PMCID: PMC11398366 DOI: 10.1101/2024.09.04.611120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
During cancer development, the interplay between the nucleus and the cell cycle leads to a state of genomic instability, often accompanied by observable morphological aberrations. These aberrations can be controlled by tumor cells to evade cell death, either by preventing or eliminating genomic instability. In epithelial ovarian cancer (EOC), overexpression of the multifunctional protein claudin-4 is a key contributor to therapy resistance through mechanisms associated with genomic instability. However, the molecular mechanisms underlying claudin-4 overexpression in EOC remain poorly understood. Here, we altered claudin-4 expression and employed a unique claudin-4 targeting peptide (CMP) to manipulate the function of claudin-4. We found that claudin-4 facilitates genome maintenance by linking the nuclear envelope and cytoskeleton dynamics with cell cycle progression. Claudin-4 caused nuclei constriction by excluding lamin B1 and promoting perinuclear F-actin accumulation, associated with remodeling nuclear architecture, thus altering nuclear envelope dynamics. Consequently, cell cycle modifications due to claudin-4 overexpression resulted in fewer cells entering the S-phase and reduced genomic instability. Importantly, disrupting biological interactions of claudin-4 using CMP and forskolin altered oxidative stress cellular response and increased the efficacy of PARP inhibitor treatment. Our data indicate that claudin-4 protects tumor genome integrity by remodeling the crosstalk between the nuclei and the cell cycle, leading to resistance to genomic instability formation and the effects of genomic instability-inducing agents.
Collapse
Affiliation(s)
- Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Daniel Nunez-Avellaneda
- Deputy Directorate of Technological Development, Linkage, and Innovation, National Council of Humanities, Sciences, and Technologies, Mexico City, Mexico
| | - Kian Behbakht
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hannah L. Dimmick
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Patricia Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana
| | - Margaret Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
5
|
Jie H, Jie W, Yingxue G, Xin Z, Runnan X, Wenjie H, Jianxiong M, Bodong L. Cldn4 overexpression promotes penile cavernous smooth muscle cell fibrotic response via the JNK signaling pathway. J Sex Med 2024; 21:511-521. [PMID: 38477100 DOI: 10.1093/jsxmed/qdae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Erectile dysfunction (ED), defined as the inability to achieve or maintain a penile erection sufficient to satisfy sexual behavior, is prevalent worldwide. AIM Using previous research, bioinformatics, and experimental confirmation, we aimed to discover genes that contribute to ED through regulating hypoxia in corpus cavernosum smooth muscle cells (CCSMCs). METHODS We used the Gene Expression Omnibus to acquire the sequencing data of the corpus cavernosum transcriptome for diabetic ED and nerve injury type ED rats. We intersected the common differentially expressed genes. Further verification was performed using single cell sequencing. Real-time quantitative polymerase chain reaction and immunofluorescence were used to investigate whether the differentially expressed genes are found in the corpus cavernosum. We used induced hypoxia to assess cell viability changes, and we developed a lentivirus overexpressing Cldn4 for in vitro and in vivo experiments to measure changes in JNK signaling, fibrosis, hypoxia, and erectile function. OUTCOMES Our results indicate that targeting the JNK pathway and decreasing local hypoxia may be better options for therapeutic intervention to improve erectile function. RESULTS We identified Cldn4 and found its expression increased in the corpora cavernosa of the 2 datasets. In addition, we found that hypoxia can increase the expression of Cldn4, activate the JNK signaling pathway, and exacerbate fibrosis in CCSMCs. Cldn4 overexpression in CCSMCs activated the JNK signaling pathway and increased fibrotic protein expression. Last, rat corpus cavernosum overexpressing Cldn4 activated the JNK signaling pathway, increased local fibrosis, and impaired erectile function. CLINICAL IMPLICATIONS Through bioinformatics and in vitro and in vivo experiments, we found that Cldn4 has a negative effect on ED, and targeting Cldn4 may provide new ideas for ED treatment. STRENGTHS AND LIMITATIONS Although we have identified Cldn4 as a potential target for ED treatment, we have only conducted preliminary validation on CCMSCs, and we still need to further validate in other cell lines. CONCLUSION CCSMC hypoxia leads to increased Cldn4, in both nerve injury and diabetic ED rat models, and promotes fibrosis by activating the JNK signaling pathway.
Collapse
Affiliation(s)
- Huang Jie
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Wang Jie
- Department of Urology, Zhejiang Hospital, Hangzhou City, Zhejiang Province, China
| | - Guo Yingxue
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Zhang Xin
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Xu Runnan
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Huang Wenjie
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Ma Jianxiong
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Lv Bodong
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Zhejiang Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Sexual Dysfunction, Zhejiang Chinese Medical University, Hangzhou Zhejiang, China
| |
Collapse
|
6
|
Xu Y, Sa Y, Zhang C, Wang J, Shao Q, Liu J, Wang S, Zhou J. A preventative role of nitrate for hypoxia-induced intestinal injury. Free Radic Biol Med 2024; 213:457-469. [PMID: 38281627 DOI: 10.1016/j.freeradbiomed.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Studying effective interventions for hypoxia-induced injury is crucial, particularly in high-altitude areas. Symptoms stemming from intestinal injuries have a significant impact on the health of individuals transitioning from plains to plateau regions. This research explores the effects and mechanisms of nitrate supplementation in preventing hypoxia-induced intestinal injury. METHODS A hypoxia survival mouse model was established using 7% O2 conditions. The intervention with 4 mM sodium nitrate (NaNO3) in drinking water commenced 7 days prior to hypoxia exposure. Weight monitoring, hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), and intestinal permeability assays were employed for physiological, histological, and functional analyses. Quantitative PCR (qPCR), Western blot, and immunofluorescence were utilized to analyze the levels of tight junction (TJ) proteins and hypoxia-inducible factor 1α (Hif 1α). RNA sequencing (RNA-seq) identified nitrate's target, and chromatin immunoprecipitation (ChIP) verified the transcriptional impact of Hif 1α on TJ proteins. Villin-cre mice infected with AAV9-FLEX-EGFP-Hif 1α were used for mechanism validation. RESULTS The results demonstrated that nitrate supplementation significantly alleviated small intestinal epithelial cell necrosis, intestinal permeability, disruption of TJs, and weight loss under hypoxia. Moreover, the nitrate-triggered enhancement of TJs is mediated by Hif 1α nuclear translocation and its subsequent transcriptional function. The effect of nitrate supplementation on TJs was largely attributed to the stimulation of the EGFR/PI3K/AKT/mTOR/Hif 1α signaling pathways. CONCLUSION Nitrate serves as a novel approach in preventing hypoxia-induced intestinal injury, acting through Hif 1α activation to promote the transcription of TJ proteins. Furthermore, our study provides new and compelling evidence for the protective effects of nitrate in hypoxic conditions, especially at high altitudes.
Collapse
Affiliation(s)
- Yifan Xu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Yunqiong Sa
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China
| | - Jinsong Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Qianqian Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China; Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China; Research Units of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing China.
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China; Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
7
|
Yi H, Han Y, Li Q, Lin R, Zhang J, Yang Y, Wang X, Zhang L. Prognostic impact of the combination of HIF‑1α and GLUT1 in patients with oesophageal squamous cell carcinoma. Oncol Lett 2023; 26:404. [PMID: 37600334 PMCID: PMC10433721 DOI: 10.3892/ol.2023.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 09/16/2022] [Indexed: 08/22/2023] Open
Abstract
Oesophageal squamous cell carcinoma (ESCC) is a common type of carcinoma. Hypoxia is associated with chemo- and radio-resistance, which may lead to a poor prognosis. Hypoxia-inducible factor-1α (HIF-1α) is the main transcriptional regulator of the cellular response to low oxygen levels. Moreover, it can trigger the expression of critical genes, including glucose transporter protein type 1 (GLUT1). The aim of the present study was to evaluate the roles of HIF-1α and GLUT1 in ESCC and their usefulness as prognostic markers. HIF-1α and GLUT1 were measured in four ESCC cell lines, namely Eca109, KYSE150, TE-1 and TE-10, by western blotting following culture under normoxic and hypoxic conditions. In addition, xenograft tumors were established in mice using normoxic and hypoxic Eca109 cells and the chemosensitivity of the xenografts to 5-fluorouracil (5-FU) was evaluated. Furthermore, HIF-1α and GLUT1 were analysed by immunochemistry in the tumor tissues of patients with ESCC and the associations of their expression levels with clinicopathological parameters were investigated. The results revealed that HIF-1α and GLUT1 protein expression was weak in all four cell lines under a normoxic atmosphere but increased following culture in a hypoxic environment. In vivo, 5-FU inhibited tumor growth more strongly in normoxic Eca109 ×enografts than hypoxic Eca109 ×enografts. Higher levels of apoptosis were also detected in the normoxic Eca109 ×enografts via western blotting and TUNEL analysis. In patients with ESCC, HIF-1α expression was associated with advanced ESCC while GLUT1 expression was associated with the sex of the patients. Multivariate analysis demonstrated that HIF-1α and GLUT1 were negatively associated with progression-free survival (PFS) and overall survival (OS). Additionally, a combination of HIF-1α and GLUT1 expression was a predictor of RFS and OS in patients with ESCC without lymph node metastasis but not those with lymph node metastasis. The study demonstrated that HIF-1α and GLUT1 were strongly expressed in vitro and in xenograft models when cells were exposed to hypoxia. The simultaneous high expression of HIF-1α and GLUT1 was associated with poorer survival, and may play an important role in ESCC chemoresistance and the prognosis of ESCC.
Collapse
Affiliation(s)
- Hanjie Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
- Department of Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yongqin Han
- Department of Oncology, Shangrao People's Hospital, Shangrao, Jiangxi 334000, P.R. China
| | - Qin Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Runduan Lin
- Department of Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jia Zhang
- Department of Laboratory Medicine, The Third Hospital of Changsha, Changsha, Hunan 410015, P.R. China
| | - Yun Yang
- Department of Laboratory Medicine, The 921st Hospital of The Joint Logistics Support Force of The Chinese People's Liberation Army, Changsha, Hunan 410003, P.R. China
| | - Xueping Wang
- Department of Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Lin Zhang
- Department of Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Department of Laboratory Medicine, Yunfu People's Hospital, Yunfu, Guangdong 527300, P.R. China
| |
Collapse
|
8
|
Dong Y, Jin Q, Sun M, Qi D, Qu H, Wang X, Quan C. CLDN6 inhibits breast cancer metastasis through WIP-dependent actin cytoskeleton-mediated autophagy. J Exp Clin Cancer Res 2023; 42:68. [PMID: 36935496 PMCID: PMC10026481 DOI: 10.1186/s13046-023-02644-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/11/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND As a breast cancer suppressor gene, CLDN6 overexpression was found to inhibit breast cancer metastasis in our previous studies, but the specific mechanism remains unclear. This study aimed to clarify the role and mechanism of CLDN6 in inhibiting breast cancer metastasis. METHODS Western blot, immunofluorescence and transmission electron microscopy were performed to detect autophagy. Wound healing, transwell assays and lung metastasis mouse models were used to examine breast cancer metastasis. Phalloidin staining and immunofluorescent staining were used to observe actin cytoskeleton. mRNA seq, RT-PCR, western blot, chromatin immunoprecipitation, dual luciferase reporter assay, co-immunoprecipitation and immunofluorescence were performed to define the molecular mechanism. The expression levels and clinical implication of CLDN6, WIP and LC3 in breast cancer tissues were evaluated using immunohistochemistry. RESULTS We demonstrated that CLDN6 inhibited breast cancer metastasis through autophagy in vitro and vivo. We unraveled a novel mechanism that CLDN6 regulated autophagy via WIP-dependent actin cytoskeleton assembly. Through its PDZ-binding motif, overexpressed CLDN6 interacted with JNK and upregulated JNK/c-Jun pathway. C-Jun promoted WIP expression at the transcriptional level. Notably, we observed c-Jun transcriptionally upregulated CLDN6 expression, and there was a positive feedback loop between CLDN6 and JNK/c-Jun. Finally, we found that CLDN6, WIP and LC3 expression correlated with each other, and WIP expression was significantly associated with lymph node metastasis of breast cancer patients. CONCLUSIONS The data provide a new insight into the inhibitory effects of CLDN6-mediated autophagy on breast cancer metastasis, and revealed the new mechanism of CLDN6 regulating autophagy through WIP-dependent actin cytoskeleton. Our findings enrich the theoretical basis for CLDN6 as a potential biomarker for breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Minghao Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Xinqi Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China.
| |
Collapse
|
9
|
Fujiwara-Tani R, Mori S, Ogata R, Sasaki R, Ikemoto A, Kishi S, Kondoh M, Kuniyasu H. Claudin-4: A New Molecular Target for Epithelial Cancer Therapy. Int J Mol Sci 2023; 24:5494. [PMID: 36982569 PMCID: PMC10051602 DOI: 10.3390/ijms24065494] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Claudin-4 (CLDN4) is a key component of tight junctions (TJs) in epithelial cells. CLDN4 is overexpressed in many epithelial malignancies and correlates with cancer progression. Changes in CLDN4 expression have been associated with epigenetic factors (such as hypomethylation of promoter DNA), inflammation associated with infection and cytokines, and growth factor signaling. CLDN4 helps to maintain the tumor microenvironment by forming TJs and acts as a barrier to the entry of anticancer drugs into tumors. Decreased expression of CLDN4 is a potential marker of epithelial-mesenchymal transition (EMT), and decreased epithelial differentiation due to reduced CLDN4 activity is involved in EMT induction. Non-TJ CLDN4 also activates integrin beta 1 and YAP to promote proliferation, EMT, and stemness. These roles in cancer have led to investigations of molecular therapies targeting CLDN4 using anti-CLDN4 extracellular domain antibodies, gene knockdown, clostridium perfringens enterotoxin (CPE), and C-terminus domain of CPE (C-CPE), which have demonstrated the experimental efficacy of this approach. CLDN4 is strongly involved in promoting malignant phenotypes in many epithelial cancers and is regarded as a promising molecular therapeutic target.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 6-1 Yamadaoka, Suita 565-0871, Japan;
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara 634-8521, Japan; (S.M.); (R.O.); (R.S.); (A.I.); (S.K.)
| |
Collapse
|