1
|
Komitova KS, Dimitrov LD, Stancheva GS, Kyurkchiyan SG, Petkova V, Dimitrov SI, Skelina SP, Kaneva RP, Popov TM. A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma. Int J Mol Sci 2024; 25:13468. [PMID: 39769234 PMCID: PMC11676902 DOI: 10.3390/ijms252413468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
During the past decade, a vast number of studies were dedicated to unravelling the obscurities of non-coding RNAs in all fields of the medical sciences. A great amount of data has been accumulated, and consequently a natural need for organization and classification in all subfields arises. The aim of this review is to summarize all reports on microRNAs that were delineated as prognostic biomarkers in laryngeal carcinoma. Additionally, we attempt to allocate and organize these molecules according to their association with key pathways and oncogenes affected in laryngeal carcinoma. Finally, we critically analyze the common shortcomings and biases of the methodologies in some of the published papers in this area of research. A literature search was performed using the PubMed and MEDLINE databases with the keywords "laryngeal carcinoma" OR "laryngeal cancer" AND "microRNA" OR "miRNA" AND "prognostic marker" OR "prognosis". Only research articles written in English were included, without any specific restrictions on study type. We have found 43 articles that report 39 microRNAs with prognostic value associated with laryngeal carcinoma, and all of them are summarized along with the major characteristics and methodology of the respective studies. A second layer of the review is structural analysis of the outlined microRNAs and their association with oncogenes and pathways connected with the cell cycle (p53, CCND1, CDKN2A/p16, E2F1), RTK/RAS/PI3K cascades (EGFR, PI3K, PTEN), cell differentiation (NOTCH, p63, FAT1), and cell death (FADD, TRAF3). Finally, we critically review common shortcomings in the methodology of the papers and their possible effect on their results.
Collapse
Affiliation(s)
| | | | | | | | - Veronika Petkova
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | | | | | - Radka P. Kaneva
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | - Todor M. Popov
- Department of ENT, Medical University, 1000 Sofia, Bulgaria
| |
Collapse
|
2
|
Yadav V, Singh T, Sharma D, Garg VK, Chakraborty P, Ghatak S, Satapathy SR. Unraveling the Regulatory Role of HuR/microRNA Axis in Colorectal Cancer Tumorigenesis. Cancers (Basel) 2024; 16:3183. [PMID: 39335155 PMCID: PMC11430344 DOI: 10.3390/cancers16183183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health burden with high incidence and mortality. MicroRNAs (miRNAs) are small non-protein coding transcripts, conserved throughout evolution, with an important role in CRC tumorigenesis, and are either upregulated or downregulated in various cancers. RNA-binding proteins (RBPs) are known as essential regulators of miRNA activity. Human antigen R (HuR) is a prominent RBP known to drive tumorigenesis with a pivotal role in CRC. In this review, we discuss the regulatory role of the HuR/miRNA axis in CRC. Interestingly, miRNAs can directly target HuR, altering its expression and activity. However, HuR can also stabilize or degrade miRNAs, forming complex feedback loops that either activate or block CRC-associated signaling pathways. Dysregulation of the HuR/miRNA axis contributes to CRC initiation and progression. Additionally, HuR-miRNA regulation by other small non-coding RNAs, circular RNA (circRNAs), or long-non-coding RNAs (lncRNAs) is also explored here. Understanding this HuR-miRNA interplay could reveal novel biomarkers with better diagnostic or prognostic accuracy.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Lund University, 221 00 Malmö, Sweden;
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, University of Delhi, New Delhi 110021, India; (T.S.); (D.S.)
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS-DRDO), New Delhi 110054, India
| | - Deepika Sharma
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, University of Delhi, New Delhi 110021, India; (T.S.); (D.S.)
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Payel Chakraborty
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, West Bengal, India; (P.C.); (S.G.)
| | - Souvik Ghatak
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, West Bengal, India; (P.C.); (S.G.)
| | - Shakti Ranjan Satapathy
- Department of Translational Medicine, Clinical Research Centre, Lund University, 221 00 Malmö, Sweden;
| |
Collapse
|
3
|
Ye W, Lu J, Yang Z, Yang B, Zhu G, Xue C. Long Non-Coding RNA B3GALT5-AS1 Suppresses Keloid Progression by Regulating the β-Trcp1-Mediated Ubiquitination of HuR. Clin Cosmet Investig Dermatol 2024; 17:967-979. [PMID: 38707608 PMCID: PMC11069380 DOI: 10.2147/ccid.s447772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
Background lncRNA β‑1,3‑galactosyltransferase 5‑AS1 (B3GALT5-AS1) plays a vital regulatory role in colon and gastric cancers. However, the biological functions and regulatory mechanisms of B3GALT5-AS1 in keloid progression remain unknown. This study aims to investigate the molecular mechanisms in the B3GALT5-AS1-regulated keloid proliferation and invasion. Methods Secondary mining of the lncRNA sequencing data from GSE158395 was conducted to screen differentially expressed lncRNAs between keloid and normal tissues. MTT, cell migration and invasion assays were performed to detect the effects of B3GALT5-AS1 on keloid fibroblasts (KFs) proliferation and metastasis. The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were also determined to evaluate glycolysis in KFs. RNA pull-down and RNA-protein immunoprecipitation assays were used to confirm the interaction between B3GALT5-AS1 and Hu-Antigen R (HuR). Further ubiquitination and rescue experiments were performed to elucidate the regulatory relationship between B3GALT5-AS1 and HuR. Results B3GALT5-AS1 was significantly down-regulated in keloid tissues and fibroblasts. B3GALT5-AS1 overexpression significantly inhibited KFs proliferation, glycolysis, invasion, and migration and promoted cell apoptosis, whereas silencing B3GALT5-AS1 inhibited these effects. Moreover, B3GALT5-AS1 binds to HuRand reduces its stability through β-Transducin repeats-containing protein 1 (β-Trcp1)-mediated ubiquitination. Overexpression of HuR reversed the inhibition of B3GALT5-AS1 on cell proliferation, migration, and invasion in KFs, where glycolysis pathway was involved. Conclusion Our findings illustrate that B3GALT5-AS1 has great effect on inhibition of keloid formation, which provides a potential target for keloid therapy.
Collapse
Affiliation(s)
- Wei Ye
- Department of Burn Surgery, the First Clinical Medical College of Guangdong Medical University, Huizhou, 516001, People’s Republic of China
| | - Junwen Lu
- Department of Burn Surgery, the First Clinical Medical College of Guangdong Medical University, Huizhou, 516001, People’s Republic of China
| | - Zuxian Yang
- Department of Burn Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, People’s Republic of China
| | - Ben Yang
- Department of Burn Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, People’s Republic of China
| | - Guanya Zhu
- Department of Burn Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, People’s Republic of China
| | - Chunli Xue
- Department of Burn Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, People’s Republic of China
| |
Collapse
|
4
|
Lu Q, Liang Y, Meng X, Zhao Y, Fan H, Hou S. The Role of Long Noncoding RNAs in Intestinal Health and Diseases: A Focus on the Intestinal Barrier. Biomolecules 2023; 13:1674. [PMID: 38002356 PMCID: PMC10669616 DOI: 10.3390/biom13111674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The gut is the body's largest immune organ, and the intestinal barrier prevents harmful substances such as bacteria and toxins from passing through the gastrointestinal mucosa. Intestinal barrier dysfunction is closely associated with various diseases. However, there are currently no FDA-approved therapies targeting the intestinal epithelial barriers. Long noncoding RNAs (lncRNAs), a class of RNA transcripts with a length of more than 200 nucleotides and no coding capacity, are essential for the development and regulation of a variety of biological processes and diseases. lncRNAs are involved in the intestinal barrier function and homeostasis maintenance. This article reviews the emerging role of lncRNAs in the intestinal barrier and highlights the potential applications of lncRNAs in the treatment of various intestinal diseases by reviewing the literature on cells, animal models, and clinical patients. The aim is to explore potential lncRNAs involved in the intestinal barrier and provide new ideas for the diagnosis and treatment of intestinal barrier damage-associated diseases in the clinical setting.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
5
|
Fan Y, Liao J, Wang Y, Wang Z, Zheng H, Wang Y. miR-132-3p regulates antibody-mediated complement-dependent cytotoxicity in colon cancer cells by directly targeting CD55. Clin Exp Immunol 2023; 211:57-67. [PMID: 36571232 PMCID: PMC9993456 DOI: 10.1093/cei/uxac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/18/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
The overexpression of membrane-bound complement regulatory proteins (mCRPs) on tumour cells helps them survive complement attacks by suppressing antibody-mediated complement-dependent cytotoxicity (CDC). Consequently, mCRP overexpression limits monoclonal antibody drug immune efficacy. CD55, an mCRP, plays an important role in inhibiting antibody-mediated CDC. However, the mechanisms regulating CD55 expression in tumour cells remain unclear. Here, the aim was to explore CD55-targeting miRNAs. We previously constructed an in vitro model comprising cancer cell lines expressing α-gal and serum containing natural antibodies against α-gal and complement. This was used to simulate antibody-mediated CDC in colon cancer cells. We screened microRNAs that directly target CD55 using LoVo and Ls-174T colon cell lines, which express CD55 at low and high levels, respectively. miR-132-3p expression was dramatically lower in Ls-174T cells than in LoVo cells. miR-132-3p overexpression or inhibition transcriptionally regulated CD55 expression by specifically targeting its mRNA 3'-untranslated regions. Further, miR-132-3p modulation regulated colon cancer cell sensitivity to antibody-mediated CDC through C5a release and C5b-9 deposition. Moreover, miR-132-3p expression was significantly reduced, whereas CD55 expression was increased, in colon cancer tissues compared to levels in adjacent normal tissues. CD55 protein levels were negatively correlated with miR-132-3p expression in colon cancer tissues. Our results indicate that miR-132-3p regulates colon cancer cell sensitivity to antibody-mediated CDC by directly targeting CD55. In addition, incubating the LoVo human tumour cell line, stably transfected with the xenoantigen α-gal, with human serum containing natural antibodies comprises a stable and cheap in vitro model to explore the mechanisms underlying antibody-mediated CDC.
Collapse
Affiliation(s)
- Yu Fan
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juan Liao
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhu Wang
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zheng
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Wang
- Correspondence: Yanping Wang, 5# Gongxing Street, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
LncRNA OIP5-AS1 Mitigates Bupivacaine-Induced Neurotoxicity in Dorsal Root Ganglion Neurons Through Regulating NFAT5 Expression via Sponging miR-34b. Neurotox Res 2022; 40:2253-2263. [PMID: 36074257 DOI: 10.1007/s12640-022-00567-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 12/31/2022]
Abstract
Bupivacaine (BUP), which is widely used in anesthesia, can cause neurotoxicity and neurological abnormalities. This work intended to study the function of long non-coding RNA (lncRNA) OIP5 antisense RNA 1 (OIP5-AS1) in BUP-triggered neurotoxicity. OIP5-AS1, microRNA (miR)-34b, and nuclear factor of activated T cells 5 (NFAT5) levels were examined via real-time quantitative PCR (RT-qPCR). Cell proliferation, caspase-3 activity, and apoptosis were assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), caspase-3 activity, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. The regulatory relationships between miR-34b and OIP5-AS1 or NFAT5 were validated via RNA binding protein immunoprecipitation (RIP) and dual-luciferase reporter assays. Our data demonstrated that OIP5-AS1 and NFAT5 levels were downregulated and miR-34b was upregulated upon exposure to BUP. Functional assays implied that the OIP5-AS1 deficiency impeded cell proliferation and enhanced the apoptosis of DRG neurons, while OIP5-AS1 addition reversed these changes. Moreover, OIP5-AS1 could bind to miR-34b and OIP5-AS1 regulated BUP-induced neurotoxicity via miR-34b. Besides, miR-34b could directly interact with NFAT5. Augmentation of miR-34b impeded cell proliferation and expedited the apoptosis and caspase-3 activity, while NFAT5 addition neutralized these impacts. Finally, it was verified that OIP5-AS1 could upregulate NFAT5 through sponging miR-34b. In sum, our results disclosed that OIP5-AS1 ameliorated BUP-caused neurotoxicity via regulating the miR-34b/NFAT5 axis, suggesting that OIP5-AS1 might be a promising therapeutic target for the treatment of BUP-induced neurotoxicity.
Collapse
|
7
|
Bai X, Zheng L, Xu Y, Liang Y, Li D. Role of microRNA-34b-5p in cancer and injury: how does it work? Cancer Cell Int 2022; 22:381. [PMID: 36457043 PMCID: PMC9713203 DOI: 10.1186/s12935-022-02797-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of noncoding single-stranded RNAs that can regulate gene expression by binding to the untranslated sequences at the 3 ' end of messenger RNAs. The microRNA-34 family is dysregulated in various human diseases. It is considered as a tumor-suppressive microRNA because of its synergistic effect with the well-known tumor suppressor p53. As a member of the miRNA-34 family, miR-34b-5p serves as a powerful regulator of a suite of cellular activities, including cell growth, multiplication, development, differentiation, and apoptosis. It promotes or represses disease occurrence and progression by participating in some important signaling pathways. This review aimed to provide an overview and update on the differential expression and function of miR-34b-5p in pathophysiologic processes, especially cancer and injury. Additionally, miR-34b-5p-mediated clinical trials have indicated promising consequences for the therapies of carcinomatosis and injury. With the application of the first tumor-targeted microRNA drug based on miR-34a mimics, it can be inferred that miR-34b-5p may become a crucial factor in the therapy of various diseases. However, further studies on miR-34b-5p should shed light on its involvement in disease pathogenesis and treatment options.
Collapse
Affiliation(s)
- Xuechun Bai
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Lianwen Zheng
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Ying Xu
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Yan Liang
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Dandan Li
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
8
|
Li Y, Lu Y, Du K, Yin Y, Hu T, Fu Q, Zhang Y, Wen D, Wu X, Xia X. RNA-sequencing analysis reveals the long noncoding RNA profile in the mouse myopic retina. Front Genet 2022; 13:1014031. [PMID: 36313450 PMCID: PMC9606684 DOI: 10.3389/fgene.2022.1014031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2023] Open
Abstract
Aim: Myopia is a prevalent public health problem. The long noncoding RNA (lncRNA) mechanisms for dysregulated retinal signaling in the myopic eye have remained elusive. The aim of this study was to analyze the expression profiles and possible pathogenic roles of lncRNAs in mouse form-deprived myopia (FDM) retinas. Methods: A mouse FDM model was induced and retinas from the FDM right eyes and the contralateral eyes were collected for RNA sequencing. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and lncRNA-mRNA coexpression network analyses were conducted to explore the biological functions of the differentially expressed lncRNAs. In addition, the levels of differentially expressed lncRNAs in the myopic retinas were validated by quantitative real-time PCR (qRT-PCR). Fluorescence in situ hybridization (FISH) was used to detect the localization of lncRNAs in mouse retinas. Results: FDM eyes exhibited reduced refraction and increased ocular axial length compared to control fellow eyes. RNA sequencing revealed that there were 655 differentially expressed lncRNAs between the FDM and control retinas. Functional enrichment analysis indicated that the differentially expressed RNAs were mostly enriched in cellular processes, cytokine-cytokine receptor interactions, retinol metabolism, and rhythmic processes. Differentially expressed lncRNAs were validated by qRT-PCR. Additionally, RNA FISH showed that XR_384718.4 (Gm35369) localized in the ganglion cell (GCL) and inner nuclear layers (INL). Conclusion: This study identified the differential expression profiles of lncRNAs in myopic mouse retinas. Our results provide scientific evidence for investigations of myopia and the development of putative interventions in the future.
Collapse
Affiliation(s)
- Yuanjun Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Lu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kaixuan Du
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yewei Yin
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tu Hu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuman Fu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yanni Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wen
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoying Wu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Sobolewski C, Dubuquoy L, Legrand N. MicroRNAs, Tristetraprolin Family Members and HuR: A Complex Interplay Controlling Cancer-Related Processes. Cancers (Basel) 2022; 14:cancers14143516. [PMID: 35884580 PMCID: PMC9319505 DOI: 10.3390/cancers14143516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary AU-rich Element Binding Proteins (AUBPs) represent important post-transcriptional regulators of gene expression by regulating mRNA decay and/or translation. Importantly, AUBPs can interfere with microRNA-dependent regulation by (i) competing with the same binding sites on mRNA targets, (ii) sequestering miRNAs, thereby preventing their binding to their specific targets or (iii) promoting miRNA-dependent regulation. These data highlight a new paradigm where both miRNA and RNA binding proteins form a complex regulatory network involved in physiological and pathological processes. However, this interplay is still poorly considered, and our current models do not integrate this level of complexity, thus potentially giving misleading interpretations regarding the role of these regulators in human cancers. This review summarizes the current knowledge regarding the crosstalks existing between HuR, tristetraprolin family members and microRNA-dependent regulation. Abstract MicroRNAs represent the most characterized post-transcriptional regulators of gene expression. Their altered expression importantly contributes to the development of a wide range of metabolic and inflammatory diseases but also cancers. Accordingly, a myriad of studies has suggested novel therapeutic approaches aiming at inhibiting or restoring the expression of miRNAs in human diseases. However, the influence of other trans-acting factors, such as long-noncoding RNAs or RNA-Binding-Proteins, which compete, interfere, or cooperate with miRNAs-dependent functions, indicate that this regulatory mechanism is much more complex than initially thought, thus questioning the current models considering individuals regulators. In this review, we discuss the interplay existing between miRNAs and the AU-Rich Element Binding Proteins (AUBPs), HuR and tristetraprolin family members (TTP, BRF1 and BRF2), which importantly control the fate of mRNA and whose alterations have also been associated with the development of a wide range of chronic disorders and cancers. Deciphering the interplay between these proteins and miRNAs represents an important challenge to fully characterize the post-transcriptional regulation of pro-tumorigenic processes and design new and efficient therapeutic approaches.
Collapse
|
10
|
Wang X, Zhang H, Lu X, Li S, Kong X, Liu L, Li L, Xu S, Wang T, Wang J, Wang L. LncRNA OIP5-AS1 modulates the proliferation and apoptosis of Jurkat cells by sponging miR-181c-5p to regulate IL-7 expression in myasthenia gravis. PeerJ 2022; 10:e13454. [PMID: 35602889 PMCID: PMC9121865 DOI: 10.7717/peerj.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/27/2022] [Indexed: 01/14/2023] Open
Abstract
Background Myasthenia gravis (MG) is an antibody-mediated autoimmune disease. In recent years, accumulating evidence has indicated that long non-coding RNAs (lncRNAs) can function as competing endogenous RNAs (ceRNAs), contributing to the progression of various autoimmune diseases. Nevertheless, the regulatory roles of ceRNAs in MG pathogenesis remain unclear. In this study, we aimed to elucidate the role of lncRNA OIP5-AS1 as a ceRNA associated with MG progression. Methods Real-time PCR was used to detect OIP5-AS1 levels in peripheral blood mononuclear cells (PBMCs) from patients with MG. Luciferase reporter assays were performed to validate the relationship between OIP5-AS1 and miR-181c-5p. CCK-8 and flow cytometry were performed to test the proliferation and apoptotic abilities of OIP5-AS1 in Jurkat cells. Furthermore, real-time PCR and Western blot assays were performed to explore the interactions between OIP5-AS1, miR-181c-5p, and IL-7. Results The expression of OIP5-AS1 was up-regulated in patients with MG. Luciferase reporter assay indicated that OIP5-AS1 targeted the miR-181c-5p. Functional assays showed that OIP5-AS1 suppressed Jurkat cell apoptosis and promoted cell proliferation by sponging miR-181c-5p. Mechanistically, knockdown of OIP5-AS1 inhibited IL-7 expression at both the mRNA and protein levels in Jurkat cells, whereas the miR-181c-5p inhibitor blocked the reduction of IL-7 expression induced by OIP5-AS1 suppression. Conclusions We confirmed that OIP5-AS1 serves as an endogenous sponge for miR-181c-5p to regulate the expression of IL-7. Our findings provide novel insights into MG processes and suggests potential therapeutic targets for patients with MG.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lifang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianfeng Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Zhou Z, Ren X, Zheng L, Li A, Zhou W. LncRNA NEAT1 stabilized Wnt3a via U2AF2 and activated Wnt/β-catenin pathway to alleviate ischemia stroke induced injury. Brain Res 2022; 1788:147921. [PMID: 35452660 DOI: 10.1016/j.brainres.2022.147921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ischaemic stroke is the leading cause of mortality and disability in the world. LncRNA NEAT1 has been shown to play an important role in ischaemic injury, but the molecular mechanism remains unclear. METHODS qRT-PCR was used to determine the expression of lncRNA NEAT1 in OGD/R-induced BV-2 cells. Cell viability was assessed by an MTT assay, and cell apoptosis was assessed by flow cytometry. The expression of related proteins was evaluated by Western blotting and ELISA. The interactions among lncRNA NEAT1, U2AF2 and Wnt3a mRNA was demonstrated by RIP and RNA pulldown assays. XAV-939 was used as an inhibitor of the Wnt/β-catenin pathway. RESULTS LncRNA NEAT1 was found to be downregulated in OGD/R-induced BV-2 cells. Overexpression of lncRNA NEAT1 protected BV-2 cells against OGD/R-induced injury. LncRNA NEAT1 enhanced the stability of Wnt3a mRNA via U2AF2. Knockdown of Wnt3a or blockade of the Wnt/β-catenin pathway rescued the effect of lncRNA NEAT1. CONCLUSIONS LncRNA NEAT1 protected cells against OGD/R-induced apoptosis and the inflammatory response by activating the Wnt/β-catenin pathway through upregulation of Wnt3a in a U2AF2-dependent manner. LncRNA NEAT1 could be a promising therapeutic candidate for ischaemic stroke treatment in the future.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, PR China
| | - Xiang Ren
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, PR China
| | - Lijun Zheng
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, PR China
| | - Aiping Li
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, PR China
| | - Wensheng Zhou
- Departments of Neurology, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, PR China.
| |
Collapse
|
12
|
Zheng C, Chu M, Chen Q, Chen C, Wang ZW, Chen X. The role of lncRNA OIP5-AS1 in cancer development and progression. Apoptosis 2022; 27:311-321. [PMID: 35316453 DOI: 10.1007/s10495-022-01722-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/23/2022]
Abstract
OIP5-AS1, a conserved lncRNA, has been reported to be involved in several biological and pathological processes, including oncogenesis. OIP5-AS1 exerts its oncogenic or antitumor functions via regulation of different miRNAs in various cancer types. In this review, we describe the dysregulation of OIP5-AS1 expression in a variety of human cancers. Moreover, we discuss the multiple functions of OIP5-AS1 in cancer, including in proliferation, apoptosis, autophagy, ferroptosis, cell cycle, migration, metastasis, invasion, epithelial to mesenchymal transition, angiogenesis, cancer stem cells and drug resistance. Furthermore, we provide a future perspective for OIP5-AS1 research. We conclude that targeting OIP5-AS1 might be a promising cancer therapy approach.
Collapse
Affiliation(s)
- Cheng Zheng
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Man Chu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Qiuli Chen
- Department of Research and Development, Zhengjiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
- The School of Public Health, The University of Queensland, Brisbane, Australia
| | - Cheng Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xiao Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
13
|
Wooten S, Smith KN. Long non-coding RNA OIP5-AS1 (Cyrano): A context-specific regulator of normal and disease processes. Clin Transl Med 2022; 12:e706. [PMID: 35040588 PMCID: PMC8764876 DOI: 10.1002/ctm2.706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding (lnc) RNAs have been implicated in a plethora of normal biological functions, and have also emerged as key molecules in various disease processes. OIP5-AS1, also commonly known by the alias Cyrano, is a lncRNA that displays broad expression across multiple tissues, with significant enrichment in particular contexts including within the nervous system and skeletal muscle. Thus far, this multifaceted lncRNA has been found to have regulatory functions in normal cellular processes including cell proliferation and survival, as well as in the development and progression of a myriad disease states. These widespread effects on normal and disease states have been found to be mediated through context-specific intermolecular interactions with dozens of miRNAs and proteins identified to date. This review explores recent studies to highlight OIP5-AS1's contextual yet pleiotropic roles in normal homeostatic functions as well as disease oetiology and progression, which may influence its utility in the generation of future theranostics.
Collapse
Affiliation(s)
- Serena Wooten
- Department of GeneticsUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| | - Keriayn N. Smith
- Department of GeneticsUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| |
Collapse
|