1
|
Salem DP, Bortolin LT, Gusenleitner D, Grosha J, Zabroski IO, Biette KM, Banerjee S, Sedlak CR, Byrne DM, Hamzeh BF, King MS, Cuoco LT, Santos-Heiman T, Barcaskey GN, Yang KS, Duff PA, Winn-Deen ES, Guettouche T, Mattoon DR, Huang EK, Schekman RW, Couvillon AD, Sedlak JC. Colocalization of Cancer-Associated Biomarkers on Single Extracellular Vesicles for Early Detection of Cancer. J Mol Diagn 2024:S1525-1578(24)00209-5. [PMID: 39326670 DOI: 10.1016/j.jmoldx.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Detection of cancer early, when it is most treatable, remains a significant challenge because of the lack of diagnostic methods sufficiently sensitive to detect nascent tumors. Early-stage tumors are small relative to their tissue of origin, heterogeneous, and infrequently manifest in clinical symptoms. Detection of their presence is made more difficult by a lack of abundant tumor-specific indicators (ie, protein biomarkers, circulating tumor DNA) that would enable detection using a noninvasive diagnostic assay. To overcome these obstacles, we have developed a liquid biopsy assay that interrogates circulating extracellular vesicles (EVs) to detect tumor-specific biomarkers colocalized on the surface of individual EVs. We demonstrate the technical feasibility of this approach in human cancer cell line-derived EVs, where we show strong correlations between assay signal and cell line gene/protein expression for the ovarian cancer-associated biomarkers bone marrow stromal antigen-2, folate receptor-α, and mucin-1. Furthermore, we demonstrate that detecting distinct colocalized biomarkers on the surface of EVs significantly improves discrimination performance relative to single biomarker measurements. Using this approach, we observe promising discrimination of high-grade serous ovarian cancer versus benign ovarian masses and healthy women in a proof-of-concept clinical study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher R Sedlak
- Mercy BioAnalytics Inc., Waltham, Massachusetts; Former Mercy BioAnalytics employee
| | | | | | | | | | | | | | | | | | | | | | | | | | - Randy W Schekman
- HHMI Investigator, Department of Molecular and Cell Biology, Li Ka Shing Center, University of California Berkeley, Berkeley, California
| | | | | |
Collapse
|
2
|
Yu H, Bian Q, Wang X, Wang X, Lai L, Wu Z, Zhao Z, Ban B. Bone marrow stromal cell antigen 2: Tumor biology, signaling pathway and therapeutic targeting (Review). Oncol Rep 2024; 51:45. [PMID: 38240088 PMCID: PMC10828922 DOI: 10.3892/or.2024.8704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Bone marrow stromal cell antigen 2 (BST2) is a type II transmembrane protein that serves critical roles in antiretroviral defense in the innate immune response. In addition, it has been suggested that BST2 is highly expressed in various types of human cancer and high BST2 expression is related to different clinicopathological parameters in cancer. The molecular mechanism underlying BST2 as a potential tumor biomarker in human solid tumors has been reported on; however, to the best of our knowledge, there has been no review published on the molecular mechanism of BST2 in human solid tumors. The present review focuses on human BST2 expression, structure and functions; the molecular mechanisms of BST2 in breast cancer, hepatocellular carcinoma, gastrointestinal tumor and other solid tumors; the therapeutic potential of BST2; and the possibility of BST2 as a potential marker. BST2 is involved in cell membrane integrity and lipid raft formation, which can activate epidermal growth factor receptor signaling pathways, providing a potential mechanistic link between BST2 and tumorigenesis. Notably, BST2 may be considered a universal tumor biomarker and a potential therapeutical target.
Collapse
Affiliation(s)
- Honglian Yu
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Qiang Bian
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xin Wang
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Xinzhe Wang
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Luhao Lai
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Zhichun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Zhankui Zhao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
3
|
Pastorino F, Capasso M, Brignole C, Giglio S, Bensa V, Cantalupo S, Lasorsa VA, Tondo A, Mura R, Sementa AR, Garaventa A, Ponzoni M, Amoroso L. Italian Precision Medicine in Pediatric Oncology: Moving beyond Actionable Alterations. Int J Mol Sci 2022; 23:ijms231911236. [PMID: 36232538 PMCID: PMC9570321 DOI: 10.3390/ijms231911236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor encountered in childhood. Although there has been significant improvement in the outcomes of patients with high-risk disease, the prognosis for patients with metastatic relapse or refractory disease is poor. Hence, the clinical integration of genome sequencing into standard clinical practice is necessary in order to develop personalized therapy for children with relapsed or refractory disease. The PeRsonalizEdMEdicine (PREME) project focuses on the design of innovative therapeutic strategies for patients suffering from relapsed NB. We performed whole exome sequencing (WES) of patient-matched tumor-normal samples to identify genetic variants amenable to precision medicine. Specifically, two patients were studied (First case: a three-year-old male with early relapsed NB; Second case: a 20-year-old male who relapsed 10 years after the first diagnosis of NB). Results were reviewed by a multi-disciplinary molecular tumor board (MTB) and clinical reports were issued to the ordering physician. WES revealed the mutation c.G320C in the CUL4A gene in case 1 and the mutation c.A484G in the PSMC2 gene in case 2. Both patients were treated according to these actionable alterations, with promising results. The effective treatment of NB is one of the main challenges in pediatric oncology. In the era of precision medicine, the need to design new therapeutic strategies for NB is fundamental. Our results demonstrate the feasibility of incorporating clinical WES into pediatric oncology practice.
Collapse
Affiliation(s)
- Fabio Pastorino
- Laboratorio di Terapie Sperimentali in Oncologia, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- These authors contributed equally to this work
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, 80131 Napoli, Italy
- These authors contributed equally to this work
| | - Chiara Brignole
- Laboratorio di Terapie Sperimentali in Oncologia, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Serena Giglio
- UOC Oncologia, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Veronica Bensa
- Laboratorio di Terapie Sperimentali in Oncologia, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Sueva Cantalupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, 80131 Napoli, Italy
| | | | - Annalisa Tondo
- Dipartimento di Oncoematologia, Ospedale Meyer, 50139 Firenze, Italy
| | - Rossella Mura
- Oncoematologia Pediatrica, Ospedale Pediatrico Microcitemico “Antonio Cao” Azienda Ospedaliera Brotzu, 09121 Cagliari, Italy
| | - Angela Rita Sementa
- Dipartimento di Patologia, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | | | - Mirco Ponzoni
- Laboratorio di Terapie Sperimentali in Oncologia, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Correspondence: ; Tel.: +39-0105-636-3539; Fax: +39-0103-779-820
| | - Loredana Amoroso
- UOC Oncologia, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- These authors contributed equally to this work
| |
Collapse
|