1
|
Lotz R, Osterburg C, Chaikuad A, Weber S, Akutsu M, Machel AC, Beyer U, Gebel J, Löhr F, Knapp S, Dobbelstein M, Lu X, Dötsch V. Alternative splicing in the DBD linker region of p63 modulates binding to DNA and iASPP in vitro. Cell Death Dis 2025; 16:4. [PMID: 39762243 PMCID: PMC11704248 DOI: 10.1038/s41419-024-07320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2024] [Revised: 11/28/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
The transcription factor p63 is expressed in many different isoforms as a result of differential promoter use and splicing. Some of these isoforms have very specific physiological functions in the development and maintenance of epithelial tissues and surveillance of genetic integrity in oocytes. The ASPP family of proteins is involved in modulating the transcriptional activity of the p53 protein family members, including p63. In particular, iASPP plays an important role in the development and differentiation of epithelial tissues. Here we characterize the interaction of iASPP with p63 and show that it binds to the linker region between the DNA binding domain and the oligomerization domain. We further demonstrate that this binding site is removed in a splice variant of p63 where a stretch of five amino acids is replaced with a single alanine residue. This stretch contains a degenerate class II SH3 domain binding motif that is responsible for interaction with iASPP, as well as two positively charged amino acids. Moreover, the concomitant loss of the charged amino acids in the alternatively spliced version decreases the affinity of p63 to its cognate DNA element two- to threefold. mRNAs encoding full-length p63, as well as its alternatively spliced version, are present in all tissues that we investigated, albeit in differing ratios. We speculate that, through the formation of hetero-complexes of both isoforms, the affinity to DNA, as well as the interaction with iASPP, can be fine-tuned in a tissue-specific manner.
Collapse
Affiliation(s)
- Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University, 60438, Frankfurt, Germany
- Structural Genomics Consortium (SGC), Goethe University, 60438, Frankfurt, Germany
| | - Sabrina Weber
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Masato Akutsu
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438, Frankfurt, Germany
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Anne Christin Machel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Ulrike Beyer
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Jakob Gebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, 60438, Frankfurt, Germany
- Structural Genomics Consortium (SGC), Goethe University, 60438, Frankfurt, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.
| |
Collapse
|
2
|
Lotz R, Osterburg C, Schäfer B, Lu X, Dötsch V. Cardiocutaneous syndrome is caused by aggregation of iASPP mutants. Cell Death Discov 2024; 10:497. [PMID: 39695191 DOI: 10.1038/s41420-024-02265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
The ASPP (apoptosis-stimulating protein of p53) family of proteins is involved in many cellular interactions and is starting to emerge as a major scaffolding hub for numerous proteins involved in cancer biology, inflammation and cellular integrity. It consists of the three members ASPP1, ASPP2 and iASPP which are best known for modulating the apoptotic function of p53, thereby directing cell fate decision. Germline mutations in iASPP have been shown to cause cardiocutaneous syndromes, a combination of heart and skin defects usually leading to death before the age of five. Mutations in iASPP causing these syndromes do not cluster in hot spots but are distributed throughout the protein. To understand the molecular mechanism(s) of how mutations in iASPP cause the development of cardiocutaneous syndromes we analysed the stability and solubility of iASPP mutants, characterized their interaction with chaperones and investigated their influence on NF-ĸB activity. Here we show that three different mechanisms are responsible for loss of function of iASPP: loss of the complete C-terminal domain, mutations resulting in increased auto-inhibition and aggregation due to destabilization of the C-terminal domain. In contrast to these germline mutations causing cardiocutaneous syndromes, missense mutations found in cancer do not result in aggregation.
Collapse
Affiliation(s)
- Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.
| | - Birgit Schäfer
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.
| |
Collapse
|
3
|
He W, Tang M, Gu R, Wu X, Mu X, Nie X. The Role of p53 in Regulating Chronic Inflammation and PANoptosis in Diabetic Wounds. Aging Dis 2024; 16:AD.2024.0212. [PMID: 38377027 PMCID: PMC11745441 DOI: 10.14336/ad.2024.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/25/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
Diabetic wounds represent a formidable challenge in the clinical management of diabetes mellitus, markedly diminishing the patient's quality of life. These wounds arise from a multifaceted etiology, with the pathophysiological underpinnings remaining elusive and complex. Diabetes precipitates neuropathies and vasculopathies in the lower extremities, culminating in infections, ulcerations, and extensive tissue damage. The hallmarks of non-healing diabetic wounds include senescence, persistent inflammation, heightened apoptosis, and attenuated cellular proliferation. The TP53 gene, a pivotal tumor suppressor frequently silenced in human malignancies, orchestrates cellular proliferation, senescence, DNA repair, and apoptosis. While p53 is integral in cell cycle regulation, its role in initial tissue repair appears to be deleterious. In typical cutaneous wounds, p53 levels transiently dip, swiftly reverting to baseline. Yet in diabetic wounds, protracted p53 activation impedes healing via two distinct pathways: i) activating the p53-p21-Retinoblastoma (RB) axis, which halts the cell cycle, and ii) upregulating the cGAS-STING and nuclear factor-kappaB (NF-κB) cascades, instigating ferroptosis and pyroptosis. Furthermore, p53 intersects with various metabolic pathways, including glycolysis, gluconeogenesis, oxidative phosphorylation, and autophagy. In diabetic wounds, p53 may drive metabolic reprogramming, thus potentially derailing macrophage polarization. This review synthesizes case studies investigating the therapeutic modulation of p53 in diabetic wounds care. In summation, p53 modulates chronic inflammation and cellular aging within diabetic cutaneous wounds and is implicated in a novel cell death modality, encompassing ferroptosis and pyroptosis, which hinders the reparative process.
Collapse
Affiliation(s)
- Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Ming Tang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis 38105, USA.
| | - Rifang Gu
- School Medical Office, Zunyi Medical University, Zunyi 563006, China.
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xinrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
4
|
Tulbah S, Alruwaili N, Alhashem A, Aljohany A, Alhadeq F, Brotons DCA, Alwadai A, Al-Hassnan ZN. Variable phenotype of a null PPP1R13L allele in children with dilated cardiomyopathy. Am J Med Genet A 2024; 194:59-63. [PMID: 37698259 DOI: 10.1002/ajmg.a.63402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Childhood-onset cardiomyopathy is a genetically heterogeneous group of conditions with several genes implicated. Recently, biallelic loss-of-function variants in PPP1R13L have been reported in association with a syndromic form of dilated cardiomyopathy (DCM). In addition, affected children manifest skin and hair abnormalities, cleft lip and palate (CLP), and eye findings. Here, we delineate the condition further by describing the phenotype associated with a homozygous frameshift variant (p.Arg330 ProfsTer76) in PPP1R13L detected in two sibships in a consanguineous family with six affected children. The index case had DCM and wooly hair, two of his siblings had DCM and CLP while three cousins had, in addition, glaucoma. Global developmental delay was observed in one child. All the children, except one, died during early childhood. Whole exome sequencing and whole genome sequencing did not reveal any other plausible variant. We provide further evidence that implicates PPP1R13L in a variable syndromic form of severe childhood-onset DCM and suggests expanding the spectrum of this condition to include glaucoma. Given the variability of the phenotype associated with PPP1R13-related DCM, a thorough evaluation of each case is highly recommended even in the presence of an apparently isolated DCM.
Collapse
Affiliation(s)
- Sahar Tulbah
- Cardiovascular Genetics Program, Department of Translational Genomics, Center for Genomic Medicine, Riyadh, Saudi Arabia
| | - Nadiah Alruwaili
- Heart Center, King Faisal Specialist Hospital & Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| | - Amal Alhashem
- Division of Medical Genetics, Department of Pediatrics, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Arwa Aljohany
- King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faten Alhadeq
- Cardiovascular Genetics Program, Department of Translational Genomics, Center for Genomic Medicine, Riyadh, Saudi Arabia
| | - Dimpna C Albert Brotons
- Heart Center, King Faisal Specialist Hospital & Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| | - Abdullah Alwadai
- Heart Failure and Transplant Program, Prince Sultan Cardiac Center, Riyadh, Saudi Arabia
| | - Zuhair N Al-Hassnan
- Cardiovascular Genetics Program, Department of Translational Genomics, Center for Genomic Medicine, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Akama-Garren EH, Miller P, Carroll TM, Tellier M, Sutendra G, Buti L, Zaborowska J, Goldin RD, Slee E, Szele FG, Murphy S, Lu X. Regulation of immunological tolerance by the p53-inhibitor iASPP. Cell Death Dis 2023; 14:84. [PMID: 36746936 PMCID: PMC9902554 DOI: 10.1038/s41419-023-05567-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Paul Miller
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Thomas M Carroll
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Gopinath Sutendra
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Ludovico Buti
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Charles River Laboratories, Leiden, Netherlands
| | - Justyna Zaborowska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Robert D Goldin
- Centre for Pathology, St. Mary's Hospital, Imperial College, London, W2 1NY, UK
| | - Elizabeth Slee
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
6
|
Al Moussawi K, Chung K, Carroll TM, Osterburg C, Smirnov A, Lotz R, Miller P, Dedeić Z, Zhong S, Oti M, Kouwenhoven EN, Asher R, Goldin R, Tellier M, Murphy S, Zhou H, Dötsch V, Lu X. Mutant Ras and inflammation-driven skin tumorigenesis is suppressed via a JNK-iASPP-AP1 axis. Cell Rep 2022; 41:111503. [PMID: 36261000 PMCID: PMC9597577 DOI: 10.1016/j.celrep.2022.111503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2021] [Revised: 06/29/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
Concurrent mutation of a RAS oncogene and the tumor suppressor p53 is common in tumorigenesis, and inflammation can promote RAS-driven tumorigenesis without the need to mutate p53. Here, we show, using a well-established mutant RAS and an inflammation-driven mouse skin tumor model, that loss of the p53 inhibitor iASPP facilitates tumorigenesis. Specifically, iASPP regulates expression of a subset of p63 and AP1 targets, including genes involved in skin differentiation and inflammation, suggesting that loss of iASPP in keratinocytes supports a tumor-promoting inflammatory microenvironment. Mechanistically, JNK-mediated phosphorylation regulates iASPP function and inhibits iASPP binding with AP1 components, such as JUND, via PXXP/SH3 domain-mediated interaction. Our results uncover a JNK-iASPP-AP1 regulatory axis that is crucial for tissue homeostasis. We show that iASPP is a tumor suppressor and an AP1 coregulator.
Collapse
Affiliation(s)
- Khatoun Al Moussawi
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Kathryn Chung
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Thomas M Carroll
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Artem Smirnov
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Paul Miller
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Zinaida Dedeić
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Shan Zhong
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Martin Oti
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Evelyn N Kouwenhoven
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Ruth Asher
- Cellular Pathology, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Histopathology, University Hospital Wales, Cardiff CF14 4XW, UK
| | - Robert Goldin
- Department of Pathology, Imperial College London, Faculty of Medicine at St Mary's, Norfolk Place, London W2 1PG, UK
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Huiqing Zhou
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Radboud University Medical Centre, Department of Human Genetics, Radboud Institute for Molecular Life Sciences, 6500 Nijmegen, the Netherlands
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
7
|
Beacham GM, Wei DT, Beyrent E, Zhang Y, Zheng J, Camacho MMK, Florens L, Hollopeter G. The Caenorhabditis elegans ASPP homolog APE-1 is a junctional protein phosphatase 1 modulator. Genetics 2022; 222:iyac102. [PMID: 35792852 PMCID: PMC9434228 DOI: 10.1093/genetics/iyac102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2022] [Accepted: 06/28/2022] [Indexed: 08/19/2023] Open
Abstract
How serine/threonine phosphatases are spatially and temporally tuned by regulatory subunits is a fundamental question in cell biology. Ankyrin repeat, SH3 domain, proline-rich-region-containing proteins are protein phosphatase 1 catalytic subunit binding partners associated with cardiocutaneous diseases. Ankyrin repeat, SH3 domain, proline-rich-region-containing proteins localize protein phosphatase 1 catalytic subunit to cell-cell junctions, but how ankyrin repeat, SH3 domain, proline-rich-region-containing proteins localize and whether they regulate protein phosphatase 1 catalytic subunit activity in vivo is unclear. Through a Caenorhabditis elegans genetic screen, we find that loss of the ankyrin repeat, SH3 domain, proline-rich-region-containing protein homolog, APE-1, suppresses a pathology called "jowls," providing us with an in vivo assay for APE-1 activity. Using immunoprecipitations and mass spectrometry, we find that APE-1 binds the protein phosphatase 1 catalytic subunit called GSP-2. Through structure-function analysis, we discover that APE-1's N-terminal half directs the APE-1-GSP-2 complex to intercellular junctions. Additionally, we isolated mutations in highly conserved residues of APE-1's ankyrin repeats that suppress jowls yet do not preclude GSP-2 binding, implying APE-1 does more than simply localize GSP-2. Indeed, in vivo reconstitution of APE-1 suggests the ankyrin repeats modulate phosphatase output, a function we find to be conserved among vertebrate homologs.
Collapse
Affiliation(s)
| | - Derek T Wei
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Erika Beyrent
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jian Zheng
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Mari M K Camacho
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Gunther Hollopeter
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Kalayinia S, Mahdavi M, Houshmand G, Hesami M, Pourirahim M, Maleki M. Novel homozygous stop-gain pathogenic variant of PPP1R13L gene leads to arrhythmogenic cardiomyopathy. BMC Cardiovasc Disord 2022; 22:359. [PMID: 35933355 PMCID: PMC9356459 DOI: 10.1186/s12872-022-02802-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
Background Arrhythmogenic cardiomyopathy (ACM) is a heritable cardiac disease with two main features: electric instability and myocardial fibro-fatty replacement. There is no defined treatment except for preventing arrhythmias and sudden death. Detecting causative mutations helps identify the disease pathogenesis and family members at risk. We used whole-exome sequencing to determine a genetic explanation for an ACM-positive patient from a consanguineous family. Methods After clinical analysis, cardiac magnetic resonance, and pathology, WES was performed on a two-year-old ACM proband. Variant confirmation and segregation of available pedigree members were performed by PCR and Sanger sequencing. The PPP1R13L gene was also analyzed for possible causative variants and their hitherto reported conditions. Results We found a novel homozygous stop-gain pathogenic variant, c.580C > T: p.Gln194Ter, in the PPP1R13L gene, which was confirmed and segregated by PCR and Sanger sequencing. This variant was not reported in any databases. Conclusions WES is valuable for the identification of novel candidate genes. To our knowledge, this research is the first report of the PPP1R13L c.580C > T variant. The PPP1R13L variant was associated with ACM as confirmed by cardiac magnetic resonance and pathology. Our findings indicate that PPP1R13L should be included in ACM genetic testing to improve the identification of at-risk family members and the diagnostic yield. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02802-7.
Collapse
Affiliation(s)
- Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Houshmand
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourirahim
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Royer C, Sandham E, Slee E, Schneider F, Lagerholm CB, Godwin J, Veits N, Hathrell H, Zhou F, Leonavicius K, Garratt J, Narendra T, Vincent A, Jones C, Child T, Coward K, Graham C, Fritzsche M, Lu X, Srinivas S. ASPP2 maintains the integrity of mechanically stressed pseudostratified epithelia during morphogenesis. Nat Commun 2022; 13:941. [PMID: 35177595 PMCID: PMC8854694 DOI: 10.1038/s41467-022-28590-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2020] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
During development, pseudostratified epithelia undergo large scale morphogenetic events associated with increased mechanical stress. Using a variety of genetic and imaging approaches, we uncover that in the mouse E6.5 epiblast, where apical tension is highest, ASPP2 safeguards tissue integrity. It achieves this by preventing the most apical daughter cells from delaminating apically following division events. In this context, ASPP2 maintains the integrity and organisation of the filamentous actin cytoskeleton at apical junctions. ASPP2 is also essential during gastrulation in the primitive streak, in somites and in the head fold region, suggesting that it is required across a wide range of pseudostratified epithelia during morphogenetic events that are accompanied by intense tissue remodelling. Finally, our study also suggests that the interaction between ASPP2 and PP1 is essential to the tumour suppressor function of ASPP2, which may be particularly relevant in the context of tissues that are subject to increased mechanical stress. The early embryo maintains its structure in the face of large mechanical stresses during morphogenesis. Here they show that ASPP2 acts to preserve epithelial integrity in regions of high apical tension during early development.
Collapse
Affiliation(s)
- Christophe Royer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| | - Elizabeth Sandham
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Elizabeth Slee
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Falk Schneider
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Translational Imaging Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Christoffer B Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jonathan Godwin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Nisha Veits
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Holly Hathrell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Felix Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Karolis Leonavicius
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Jemma Garratt
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Tanaya Narendra
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Anna Vincent
- Oxford Fertility, Institute of Reproductive Sciences, Oxford Business Park North, Oxford, OX4 2HW, UK
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Tim Child
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.,Oxford Fertility, Institute of Reproductive Sciences, Oxford Business Park North, Oxford, OX4 2HW, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Chris Graham
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, OX3 7LF, UK.,Rosalind Franklin Institute, Didcot, OX11 0QS, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| |
Collapse
|
10
|
Nunomura S, Nanri Y, Lefebvre V, Izuhara K. Epithelial SOX11 regulates eyelid closure during embryonic eye development. Biochem Biophys Res Commun 2021; 549:27-33. [PMID: 33662665 PMCID: PMC8005361 DOI: 10.1016/j.bbrc.2021.02.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2021] [Accepted: 02/17/2021] [Indexed: 11/25/2022]
Abstract
Fibroblast growth factor (FGF10)-mediated signals are essential for embryonic eyelid closure in mammals. Systemic SOX11-deficient mice are born with unclosed eyelids, suggesting a possible role of SOX11 in eyelid closure. However, the underlying mechanisms of this process remain unclear. In this study, we show that epithelial deficiency of SOX11 causes a defect in the extension of the leading edge of the eyelid, leading to failure of embryonic eyelid closure. c-Jun in the eyelid is a transcription factor downstream of FGF10 required for the extension of the leading edge of the eyelid, and c-Jun level was decreased in epithelial SOX11-deficient embryos. These results suggest that epithelial SOX11 plays an important role in embryonic eyelid closure.
Collapse
Affiliation(s)
- Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopaedic Surgery, Translational Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, PA, USA
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| |
Collapse
|
11
|
Yagudin T, Zhao Y, Gao H, Zhang Y, Yang Y, Zhang X, Ma W, Daba TM, Ishmetov V, Kang K, Yang B, Pan Z. iASPP protects the heart from ischemia injury by inhibiting p53 expression and cardiomyocyte apoptosis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:102-111. [PMID: 33128543 DOI: 10.1093/abbs/gmaa104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2020] [Indexed: 11/12/2022] Open
Abstract
Currently, there remains a great need to elucidate the molecular mechanism of acute myocardial infarction in order to facilitate the development of novel therapy. Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is a member of the ASPP family proteins and an evolutionarily preserved inhibitor of p53 that is involved in many cellular processes, including apoptosis of cancer cells. The purpose of this study was to investigate the possible role of iASPP in acute myocardial infarction. The protein level of iASPP was markedly reduced in the ischemic hearts in vivo and hydrogen peroxide-exposed cardiomyocytes in vitro. Overexpression of iASPP reduced the infarct size and cardiomyocyte apoptosis of mice subjected to 24 h of coronary artery ligation. Echocardiography showed that cardiac function was improved as indicated by the increase in ejection fraction and fractional shortening. In contrast, knockdown of iASPP exacerbated cardiac injury as manifested by impaired cardiac function, increased infarct size, and apoptosis rate. Mechanistically, overexpression of iASPP inhibited, while knockdown of iASPP increased the expressions of p53 and Bax, the key regulators of apoptosis. Taken together, our results suggested that iASPP is an important regulator of cardiomyocyte apoptosis, which represents a potential target in the therapy of myocardial infarction.
Collapse
Affiliation(s)
- Timur Yagudin
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Department of Hospital Surgery, Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Yue Zhao
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Haiyu Gao
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yang Zhang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ying Yang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Xiaofang Zhang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Wenbo Ma
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Tolessa Muleta Daba
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Vladimir Ishmetov
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Department of Cardiovascular Surgery in Clinic, Hospital of Bashkir State Medical University, Ufa 450059, Russian Federation
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Baofeng Yang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zhenwei Pan
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
12
|
Sun Q, Wine Lee L, Hall EK, Choate KA, Elder RW. Hair and skin predict cardiomyopathies: Carvajal and erythrokeratodermia cardiomyopathy syndromes. Pediatr Dermatol 2021; 38:31-38. [PMID: 33275305 DOI: 10.1111/pde.14478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Carvajal and erythrokeratodermia cardiomyopathy syndromes (EKC) are rare, inherited cardiocutaneous disorders with potentially fatal consequences in young children. Some patients display features of congestive heart failure and rapidly deteriorate; others exhibit no evident warning signs until sudden death reveals underlying heart disease. We present two patients to illustrate the characteristic hair, skin, teeth, and nail abnormalities, which-especially when distinct from that of other family members-should prompt cardiac evaluation and genetic analysis. In this article, we discuss established treatments as well as a promising, novel therapeutic that has led to nearly complete resolution of the cutaneous and cardiac pathology in EKC syndrome.
Collapse
Affiliation(s)
- Qisi Sun
- Departments of Dermatology, Genetics, and Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Lara Wine Lee
- Medical University of South Carolina Health, Charleston, SC, USA
| | - E Kevin Hall
- Section of Cardiology, Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Keith A Choate
- Departments of Dermatology, Genetics, and Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Robert W Elder
- Section of Cardiology, Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Bai B, Zeng G, Chen R, Ai Y, Qiang H. Upregulation of iASPP ameliorates hypoxia/reoxygenation-induced apoptosis and oxidative stress in cardiomyocytes by upregulating Nrf2 signaling. J Biochem Mol Toxicol 2020; 35:e22686. [PMID: 33332723 DOI: 10.1002/jbt.22686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
The inhibitor of apoptosis-stimulating protein of p53 (iASPP) acts as a key modulator of cellular protection against oxidative stress. In the present work, we assessed the role of iASPP in the regulation of cardiomyocyte injury induced by hypoxia/reoxygenation (H/R). We found that H/R-exposed cardiomyocytes expressed decreased levels of iASPP. The upregulation of iASPP repressed H/R-induced injury by decreasing levels of apoptosis and reactive oxygen species production. The upregulation of iASPP increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation and enhanced Nrf2 activation. The overexpression of Kelch-like ECH-associated protein 1 reversed iASPP-mediated promotion of Nrf2 activation. Nrf2 inhibition abrogated iASPP-mediated cardioprotective effects in H/R-exposed cardiomyocytes. Our work demonstrates that the upregulation of iASPP ameliorates H/R-induced apoptosis and oxidative stress in cardiomyocytes via potentiating Nrf2 signaling via modulation of Keap1.
Collapse
Affiliation(s)
- Baobao Bai
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Cardiology, Second Affiliated Hospital, Military Medical University of The Air Force, Xi'an, China
| | - Guangwei Zeng
- Department of Cardiology, Second Affiliated Hospital, Military Medical University of The Air Force, Xi'an, China
| | - Ruirui Chen
- Department of Cardiology, Second Affiliated Hospital, Military Medical University of The Air Force, Xi'an, China
| | - Yongfei Ai
- Department of Cardiology, Second Affiliated Hospital, Military Medical University of The Air Force, Xi'an, China
| | - Hua Qiang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Robinson HK, Zaklyazminskaya E, Povolotskaya I, Surikova Y, Mallin L, Armstrong C, Mabin D, Benke PJ, Chrisant MR, McDonald M, Marboe CC, Agre KE, Deyle DR, McWalter K, Douglas G, Balashova MS, Kaimonov V, Shirokova N, Pomerantseva E, Turner CL, Ellard S. Biallelic variants in PPP1R13L cause paediatric dilated cardiomyopathy. Clin Genet 2020; 98:331-340. [PMID: 32666529 DOI: 10.1111/cge.13812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
Childhood dilated cardiomyopathy (DCM) is a leading cause of heart failure requiring cardiac transplantation and approximately 5% of cases result in sudden death. Knowledge of the underlying genetic cause can aid prognostication and clinical management and enables accurate recurrence risk counselling for the family. Here we used genomic sequencing to identify the causative genetic variant(s) in families with children affected by severe DCM. In an international collaborative effort facilitated by GeneMatcher, biallelic variants in PPP1R13L were identified in seven children with severe DCM from five unrelated families following exome or genome sequencing and inheritance-based variant filtering. PPP1R13L encodes inhibitor of apoptosis-stimulating protein of p53 protein (iASPP). In addition to roles in apoptosis, iASPP acts as a regulator of desmosomes and has been implicated in inflammatory pathways. DCM presented early (mean: 2 years 10 months; range: 3 months-9 years) and was progressive, resulting in death (n = 3) or transplant (n = 3), with one child currently awaiting transplant. Genomic sequencing technologies are valuable for the identification of novel and emerging candidate genes. Biallelic variants in PPP1R13L were previously reported in a single consanguineous family with paediatric DCM. The identification here of a further five families now provides sufficient evidence to support a robust gene-disease association between PPP1R13L and severe paediatric DCM. The PPP1R13L gene should be included in panel-based genetic testing for paediatric DCM.
Collapse
Affiliation(s)
- H K Robinson
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - E Zaklyazminskaya
- Medical Genetics Laboratory, Petrovsky National Research Centre of Surgery, Moscow, Russia.,NGS Laboratory
- Genotyping Laboratory
- Genetic Counseling Department, Centre of Genetics and Reproductive Medicine "Genetico", Moscow, Russia
| | - I Povolotskaya
- NGS Laboratory
- Genotyping Laboratory
- Genetic Counseling Department, Centre of Genetics and Reproductive Medicine "Genetico", Moscow, Russia
| | - Y Surikova
- Medical Genetics Laboratory, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - L Mallin
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - C Armstrong
- Paediatric Cardiac Service, Bristol Royal Hospital for Children, Bristol, UK
| | - D Mabin
- Paediatrics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - P J Benke
- Clinical Genetics Dpt, Joe DiMaggio Children's Hospital, Hollywood, Florida, USA.,Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - M R Chrisant
- Clinical Genetics Dpt, Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
| | - M McDonald
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - C C Marboe
- Department of Pathology and Cell Biology, Columbia University Medical Centre, New York, New York, USA
| | - K E Agre
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - D R Deyle
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - K McWalter
- Clinical Genomics, GeneDx Inc, Gaithersburg, Maryland, USA
| | - G Douglas
- Clinical Genomics, GeneDx Inc, Gaithersburg, Maryland, USA
| | - M S Balashova
- NGS Laboratory
- Genotyping Laboratory
- Genetic Counseling Department, Centre of Genetics and Reproductive Medicine "Genetico", Moscow, Russia.,Chair of Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - V Kaimonov
- NGS Laboratory
- Genotyping Laboratory
- Genetic Counseling Department, Centre of Genetics and Reproductive Medicine "Genetico", Moscow, Russia
| | - N Shirokova
- NGS Laboratory
- Genotyping Laboratory
- Genetic Counseling Department, Centre of Genetics and Reproductive Medicine "Genetico", Moscow, Russia
| | - E Pomerantseva
- NGS Laboratory
- Genotyping Laboratory
- Genetic Counseling Department, Centre of Genetics and Reproductive Medicine "Genetico", Moscow, Russia
| | - C L Turner
- Peninsula Clinical Genetics Service, Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - S Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.,Institute of Biomedical and Clinical Science, College of Medicine and Health, Exeter, UK
| |
Collapse
|
15
|
Poloni G, Calore M, Rigato I, Marras E, Minervini G, Mazzotti E, Lorenzon A, Li Mura IEA, Telatin A, Zara I, Simionati B, Perazzolo Marra M, Ponti J, Occhi G, Vitiello L, Daliento L, Thiene G, Basso C, Corrado D, Tosatto S, Bauce B, Rampazzo A, De Bortoli M. A targeted next-generation gene panel reveals a novel heterozygous nonsense variant in the TP63 gene in patients with arrhythmogenic cardiomyopathy. Heart Rhythm 2019; 16:773-780. [DOI: 10.1016/j.hrthm.2018.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/06/2018] [Indexed: 12/14/2022]
|