1
|
Liu W, Liu X, Li L, Tai Z, Li G, Liu JX. EPC1/2 regulate hematopoietic stem and progenitor cell proliferation by modulating H3 acetylation and DLST. iScience 2024; 27:109263. [PMID: 38439957 PMCID: PMC10910311 DOI: 10.1016/j.isci.2024.109263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Enhancers of polycomb 1 (EPC1) and 2 (EPC2) are involved in multiple biological processes as components of histone acetyltransferases/deacetylase complexes and transcriptional cofactors, and their dysfunction was associated with developmental defects and diseases. However, it remains unknown how their dysfunction induces hematopoietic stem and progenitor cell (HSPC) defects. Here, we show that depletion of EPC1/2 significantly reduced the number of hematopoietic stem and progenitor cells (HSPCs) in the aorta-gonad mesonephros and caudal hematopoietic tissue regions by impairing HSPC proliferation, and consistently downregulated the expression of HSPC genes in K562 cells. This study demonstrates the functions of EPC1/2 in regulating histone H3 acetylation, and in regulating DLST (dihydrolipoamide S-succinyltransferase) via H3 acetylation and cooperating with transcription factors serum response factor and FOXR2 together, and in the subsequent HSPC emergence and proliferation. Our results demonstrate the essential roles of EPC1/2 in regulating H3 acetylation, and DLST as a linkage between EPC1 and EPC2 with mitochondria metabolism, in HSPC emergence and proliferation.
Collapse
Affiliation(s)
- WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - ZhiPeng Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - GuoLiang Li
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Luo J, Zhang M, Chen Y, Zhang G, Zhou T, Kang L, Chen X, Guan H. Comprehensive analysis of the miRNA-mRNA regulatory network involved in spontaneous recovery of an H 2O 2-induced zebrafish cataract model. Exp Eye Res 2024; 240:109820. [PMID: 38340946 DOI: 10.1016/j.exer.2024.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE To identify the hub miRNAs and mRNAs contributing to the spontaneous recovery of an H2O2-induced zebrafish cataract model. METHODS Zebrafishes were divided into three groups, i.e., Group A, which included normal control fish (day 0), and Groups B and C, where fish were injected with 2.5% hydrogen peroxide into the anterior chamber and reared for 14 and 30 days, respectively. Fish eyes were examined by stereomicroscope photography and optical coherence tomography (OCT). RNA profiles of fish lenses were detected by RNA sequencing. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) were identified among three groups. The DEGs and DEmiRs, which changed in opposite positions between "B vs. A" and "C vs. B" were defined as ODGs (opposite positions changed DEGs) and ODmiRs (opposite positions changed DEmiRs). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analysis were carried out by R language. The protein-protein interaction network (PPI) was constructed using STRING. Potential targets of miRNAs were obtained using miRanda. miRNA-mRNA networks were constructed by Cytoscape. RESULTS The fish lens opacity formed on day 14 and recovered to transparent on day 30 after injection. Compared to group B, 1366 DEGs and 54 DEmiRs were identified in group C. "C vs. B" DEGs were enriched in gene clusters related to development and oxidative phosphorylation. Target genes of DEmiRs were enriched in clusters such as development and cysteine metabolism. Among three groups, 786 ODGs and 27 ODmiRs were identified, and 480 ODGs were predicted as targets of ODmiRs. Target ODGs were enriched in pathways related to methionine metabolism, ubiquitin, sensory system development, and structural constituents of the eye lens. In addition, we established an ODmiRs-ODGs regulation network. CONCLUSION We identified several hub mRNAs and altered miRNAs in the formation and reversal of zebrafish cataracts. These hub miRNAs/mRNAs could be potential targets for the non-surgical treatment of ARC.
Collapse
Affiliation(s)
- Jiawei Luo
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Mu Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yanhua Chen
- Nantong Center for Disease Control and Prevention, Nantong, 226001, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianqiu Zhou
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaoqing Chen
- Department of Party Committee Personnel Work, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
3
|
Shi L, Zhang A, Liu H, Wang H. Deletion of the foxO4 Gene Increases Hypoxia Tolerance in Zebrafish. Int J Mol Sci 2023; 24:ijms24108942. [PMID: 37240290 DOI: 10.3390/ijms24108942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Oxygen homeostasis is an important organizing principle for understanding development, physiology, disease, and evolution. Under various physiological and pathological states, organisms experience oxygen deficiency or hypoxia. FoxO4 has been recognized as an important transcriptional regulator involved in a variety of cellular functions, including proliferation, apoptosis, differentiation, and stress resistance, but its role in hypoxia adaptation mechanisms in animals is not so clear. To explore the role of foxO4 in the hypoxia response, we detected the expression of foxO4 and the regulatory relationship between Hif1α and foxO4 under hypoxic conditions. It was found that the expression of foxO4 was up-regulated in ZF4 cells and zebrafish tissues after hypoxia treatment, and Hif1α could directly target the HRE of the foxO4 promoter to regulate foxO4 transcription, indicating that foxO4 was involved in the hypoxia response by the Hif1α-mediated pathway. Furthermore, we obtained foxO4 knockout zebrafish and found that the disruption of foxO4 increased the tolerance to hypoxia. Further research found that the oxygen consumption and locomotor activity of foxO4-/- zebrafish were lower than those of WT zebrafish, as was true for NADH content, NADH/NAD+ rate, and expression of mitochondrial respiratory chain complex-related genes. This suggests that disruption of foxO4 reduced the oxygen demand threshold of the organism, which explained why the foxO4-/- zebrafish were more tolerant to hypoxia than WT zebrafish. These results will provide a theoretical basis for further study of the role of foxO4 in the hypoxia response.
Collapse
Affiliation(s)
- Linlin Shi
- Key Lab of Freshwater Animal Breeding/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan 430070, China
| | - Axin Zhang
- Key Lab of Freshwater Animal Breeding/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
4
|
Hu YX, Jing Q. Zebrafish: a convenient tool for myelopoiesis research. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:2. [PMID: 36595106 PMCID: PMC9810781 DOI: 10.1186/s13619-022-00139-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/29/2022] [Indexed: 04/18/2023]
Abstract
Myelopoiesis is the process in which the mature myeloid cells, including monocytes/macrophages and granulocytes, are developed. Irregular myelopoiesis may cause and deteriorate a variety of hematopoietic malignancies such as leukemia. Myeloid cells and their precursors are difficult to capture in circulation, let alone observe them in real time. For decades, researchers had to face these difficulties, particularly in in-vivo studies. As a unique animal model, zebrafish possesses numerous advantages like body transparency and convenient genetic manipulation, which is very suitable in myelopoiesis research. Here we review current knowledge on the origin and regulation of myeloid development and how zebrafish models were applied in these studies.
Collapse
Affiliation(s)
- Yang-Xi Hu
- Department of Cardiology, Changzheng Hospital, Shanghai, 200003, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| |
Collapse
|
5
|
He Y, Liu Y, Yang Y, Liu Y, Jia X, Shen Y, Xu X, Li J. elk1/miR-462-731 Feedback Loop Regulates Macrophages Polarization and Phagocytosis in Grass Carp (Ctenopharyngodon idella). Front Immunol 2022; 13:946857. [PMID: 35911773 PMCID: PMC9330907 DOI: 10.3389/fimmu.2022.946857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNA clusters are microRNAs (miRNAs) that are distributed in close proximity on chromosomes. In this study, we report a miRNA cluster identified from grass carp (Ctenopharyngodon idella), miR-462-731, which plays a positive role in host antibacterial immunity. The expression of miR-462-731 was disrupted after infection by Aeromonas hydrophila. Transcription factor ETS transcription factor ELK1 was identified to bind to the promoter of the miR-462-731 cluster and suppress its expression. In addition, miR-731 negatively regulates the expression of elk1, forms an elk1/miR-462-731 double negative feedback loop. In addition, we found that miR-731 directly targets ezrin a (ezra), participates in inducing PI3K/AKT signaling in macrophage, to induce macrophage polarization to the M1 phenotype with stronger phagocytosis. Our results demonstrate a novel elk1/miR-462-731 feedback loop. The data deepen our understanding of the relationship between macrophage polarization and phagocytosis in teleost fish.
Collapse
Affiliation(s)
- Yan He
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yuting Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yuyue Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yang Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xuewen Jia
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- *Correspondence: Xiaoyan Xu, ; Jiale Li,
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- *Correspondence: Xiaoyan Xu, ; Jiale Li,
| |
Collapse
|
6
|
Huang Y, Wang WF, Huang CX, Li XH, Liu H, Wang HL. miR-731 modulates the zebrafish heart morphogenesis via targeting Calcineurin/Nfatc3a pathway. Biochim Biophys Acta Gen Subj 2022; 1866:130133. [PMID: 35346765 DOI: 10.1016/j.bbagen.2022.130133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Zebrafish miR-731 is orthologous of human miR-425, which has been demonstrated to have cardio-protective roles by a variety of mechanisms. The miR-731 morphants show pericardium enlargement, and many DEGs (differentially expressed genes) are enriched in 'Cardiac muscle contraction' and 'Calcium signaling pathway', implying that miR-731 plays a potential role in heart function and development. However,the in vivo physiological role of miR-731 in the heart needs to be fully defined. METHODS Zebrafish miR-731 morphants were generated by morpholino knockdown, and miR-731 knockout zebrafish was generated by CRISRP/Cas9. We observed cardiac morphogenesis based on whole-mount in situ hybridization. Furthermore, RNA-seq and qRT-PCR were used to elucidate the molecular mechanism and analyze the gene expression. Double luciferase verification and Western blot were used to verify the target gene. RESULTS The depletion of miR-731 in zebrafish embryos caused the deficiency of cardiac development and function, which was associated with reduced heart rate, ventricular enlargement and heart looping disorder. In addition, mechanistic study demonstrated that Calcineurin/Nfatc3a signaling involved in miR-731 depletion induced abnormal cardiac function and developmental defects. CONCLUSION MiR-731 regulates cardiac function and morphogenesis through Calcineurin/Nfatc3a signaling. GENERAL SIGNIFICANCE Our studies highlight the potential importance of miR-731 in cardiac development.
Collapse
Affiliation(s)
- Yan Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Wei-Feng Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chun-Xiao Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xuan-Hui Li
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| |
Collapse
|
7
|
Smith NC, Wajnberg G, Chacko S, Woldemariam NT, Lacroix J, Crapoulet N, Ayre DC, Lewis SM, Rise ML, Andreassen R, Christian SL. Characterization of miRNAs in Extracellular Vesicles Released From Atlantic Salmon Monocyte-Like and Macrophage-Like Cells. Front Immunol 2020; 11:587931. [PMID: 33262769 PMCID: PMC7686242 DOI: 10.3389/fimmu.2020.587931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Cell-derived extracellular vesicles (EVs) participate in cell-cell communication via transfer of molecular cargo including genetic material like miRNAs. In mammals, it has previously been established that EV-mediated transfer of miRNAs can alter the development or function of immune cells, such as macrophages. Our previous research revealed that Atlantic salmon head kidney leukocytes (HKLs) change their morphology, phagocytic ability and miRNA profile from primarily “monocyte-like” at Day 1 to primarily “macrophage-like” at Day 5 of culture. Therefore, we aimed to characterize the miRNA cargo packaged in EVs released from these two cell populations. We successfully isolated EVs from Atlantic salmon HKL culture supernatants using the established Vn96 peptide-based pull-down. Isolation was validated using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. RNA-sequencing identified 19 differentially enriched (DE) miRNAs packaged in Day 1 versus Day 5 EVs. Several of the highly abundant miRNAs, including those that were DE (e.g. ssa-miR-146a, ssa-miR-155 and ssa-miR-731), were previously identified as DE in HKLs and are associated with macrophage differentiation and immune response in other species. Interestingly, the abundance relative of the miRNAs in EVs, including the most abundant miRNA (ssa-miR-125b), was different than the miRNA abundance in HKLs, indicating selective packaging of miRNAs in EVs. Further study of the miRNA cargo in EVs derived from fish immune cells will be an important next step in identifying EV biomarkers useful for evaluating immune cell function, fish health, or response to disease.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | | | - Simi Chacko
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Nardos T Woldemariam
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | | | | | - D Craig Ayre
- Department of Molecular Sciences, University of Medicine and Health Sciences, Basseterre, Saint Kitts and Nevis
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, NB, Canada.,Department of Chemistry & Biochemistry, Université de Moncton, Moncton, NB, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Rune Andreassen
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Sherri L Christian
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.,Department of Biochemistry, Memorial University, St. John's, NL, Canada
| |
Collapse
|
8
|
Wu TS, Lin YT, Huang YT, Yu FY, Liu BH. Ochratoxin A triggered intracerebral hemorrhage in embryonic zebrafish: Involvement of microRNA-731 and prolactin receptor. CHEMOSPHERE 2020; 242:125143. [PMID: 31675585 DOI: 10.1016/j.chemosphere.2019.125143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Ochratoxin A (OTA), a mycotoxin widely found in foodstuffs, reportedly damages multiple brain regions in developing rodents, but the corresponding mechanisms have not been elucidated. In this study, zebrafish embryos at 6 h post fertilization (hpf) were exposed to various concentrations of OTA and the phenomenon associated with intracerebral hemorrhage was observed at 72 hpf. Exposure of embryos to OTA significantly increased their hemorrhagic rate in a dose-dependent manner. Large numbers of extravagated erythrocytes were observed in the midbrain/hindbrain areas of Tg(fli-1a:EGFP; gata1:DsRed) embryos following exposure to OTA. OTA also disrupted the vascular patterning, especially the arch-shaped central arteries (CtAs), in treated embryos. Histological analysis revealed a cavity-like pattern in their hindbrain ventricles, implying the possibility of cerebral edema. OTA-induced intracerebral hemorrhage and CtA vessel defects were partially reversed by the presence of miR-731 antagomir or the overexpression of prolactin receptor a (prlra); prlra is a downstream target of miR-731. These results suggest that exposure to OTA has a negative effect on cerebral vasculature development by interfering with the miR-731/PRLR axis in zebrafish.
Collapse
Affiliation(s)
- Ting-Shuan Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Lin
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Huang Y, Huang CX, Wang WF, Liu H, Wang HL. Zebrafish miR-462-731 is required for digestive organ development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100679. [PMID: 32200130 DOI: 10.1016/j.cbd.2020.100679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs), as important regulators of post-transcriptional gene expression, play important roles in the occurrence and function of organs. In this study, morpholino (MO) knockdown of miR-462/miR-731 was used to investigate the potential mechanisms of the miR-462-731 cluster during zebrafish liver development. The results showed significant reduction of digestive organs, especially liver and exocrine pancreas after the miR-462/miR-731 knockdown, and those phenotypes could be partially rescued by corresponding miRNA duplex. Acinar cells of the exocrine pancreas were also severely affected with pancreatic insufficiency. In particular, knockdown of miR-462 caused pancreas morphogenesis abnormity with specific bilateral exocrine pancreas. Additionally, it was found that miR-731 played a role in liver and exocrine pancreas development by directly targeting dkk3b, instead of the down-regulation of Wnt/β-catenin signaling. These findings contribute significantly to our understanding of molecular mechanisms of miR-462-731 cluster in development of digestive organs.
Collapse
Affiliation(s)
- Yan Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chun-Xiao Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Wei-Feng Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| |
Collapse
|