1
|
Kang J, Li CM, Kim N, Baek J, Jung YK. Non-autophagic Golgi-LC3 lipidation facilitates TFE3 stress response against Golgi dysfunction. EMBO J 2024; 43:5085-5113. [PMID: 39284911 DOI: 10.1038/s44318-024-00233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Lipidated ATG8/LC3 proteins are recruited to single membrane compartments as well as autophagosomes, supporting their functions. Although recent studies have shown that Golgi-LC3 lipidation follows Golgi damage, its molecular mechanism and function under Golgi stress remain unknown. Here, by combining DLK1 overexpression as a new strategy for induction of Golgi-specific LC3 lipidation, and the application of Golgi-damaging reagents, we unravel the mechanism and role of Golgi-LC3 lipidation. Upon DLK1 overexpression, LC3 is lipidated on the Golgi apparatus in an ATG12-ATG5-ATG16L1 complex-dependent manner; a post-Golgi trafficking blockade is the primary cause of this lipidation. During Golgi stress, ATG16L1 is recruited through its interaction with V-ATPase for Golgi-LC3 lipidation. After post-Golgi trafficking inhibition, TFE3, a key regulator of the Golgi stress response, is translocated to the nucleus. Defects in LC3 lipidation disrupt this translocation, leading to an attenuation of the Golgi stress response. Together, our results reveal the mechanism and unexplored function of Golgi-LC3 lipidation in the Golgi stress response.
Collapse
Affiliation(s)
- Jaemin Kang
- School of biological sciences, Seoul National University, Seoul, 08826, Korea
| | - Cathena Meiling Li
- School of biological sciences, Seoul National University, Seoul, 08826, Korea
| | - Namhoon Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, 08826, Korea
| | - Jongyeon Baek
- School of biological sciences, Seoul National University, Seoul, 08826, Korea
| | - Yong-Keun Jung
- School of biological sciences, Seoul National University, Seoul, 08826, Korea.
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
2
|
Khan AA, Sabatasso S. Autophagy in myocardial ischemia and ischemia/reperfusion. Cardiovasc Pathol 2024:107691. [PMID: 39218167 DOI: 10.1016/j.carpath.2024.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Myocardial infarction (MI) is a life-threatening condition that leads to loss of viable heart tissue. The best way to treat acute MI and limit the infarct size is to re-open the occluded coronary artery and restore the supply of oxygenated and nutrient-rich blood, but reperfusion can cause additional damage. Autophagy is an intracellular process that recycles damaged cytoplasmic components (molecules and organelles) by loading them into autophagosomes and degrading them in autolysosomes. Autophagy is increased in in vivo animal models of permanent ischemia and ischemia/reperfusion but by different molecular mechanisms. While autophagy is protective during permanent ischemia, it is detrimental during ischemia/reperfusion. Its modulation is being investigated as a potential target to reduce reperfusion injury. This review provides a synopsis of the current knowledge about autophagy, summarizes findings specifically in permanent ischemia and ischemia/reperfusion, and briefly discusses the potential implication of experimental findings.
Collapse
Affiliation(s)
- Aleksandra Aljakna Khan
- Faculty Unit of Anatomy and Morphology, University Centre of Legal Medicine, Lausanne-Geneva, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Sara Sabatasso
- Faculty Unit of Anatomy and Morphology, University Centre of Legal Medicine, Lausanne-Geneva, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Unit of Forensic medicine, University Centre of Legal Medicine, Lausanne-Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| |
Collapse
|
3
|
Chen H, Moriceau S, Joseph A, Mailliet F, Li S, Tolle V, Duriez P, Dardennes R, Durand S, Carbonnier V, Stoll G, Sauvat A, Lachkar S, Aprahamian F, Alves Costa Silva C, Pan H, Montégut L, Anagnostopoulos G, Lambertucci F, Motiño O, Nogueira-Recalde U, Bourgin M, Mao M, Pan Y, Cerone A, Boedec E, Gouveia ZL, Marmorino F, Cremolini C, Derosa L, Zitvogel L, Kepp O, López-Otín C, Maiuri MC, Perez F, Gorwood P, Ramoz N, Oury F, Martins I, Kroemer G. Acyl-CoA binding protein for the experimental treatment of anorexia. Sci Transl Med 2024; 16:eadl0715. [PMID: 39141698 DOI: 10.1126/scitranslmed.adl0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/25/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Extracellular acyl-coenzyme A binding protein [ACBP encoded by diazepam binding inhibitor (DBI)] is a phylogenetically ancient appetite stimulator that is secreted in a nonconventional, autophagy-dependent fashion. Here, we show that low ACBP/DBI plasma concentrations are associated with poor prognosis in patients with anorexia nervosa, a frequent and often intractable eating disorder. In mice, anorexia induced by chronic restraint stress (CRS) is accompanied by a reduction in circulating ACBP/DBI concentrations. We engineered a chemical-genetic system for the secretion of ACBP/DBI through a biotin-activatable, autophagy-independent pathway. In transgenic mice expressing this system in hepatocytes, biotin-induced elevations in plasma ACBP/DBI concentrations prevented anorexia induced by CRS or chemotherapeutic agents including cisplatin, doxorubicin, and paclitaxel. ACBP/DBI reversed the CRS or cisplatin-induced increase in plasma lipocalin-2 concentrations and the hypothalamic activation of anorexigenic melanocortin 4 receptors, for which lipocalin-2 is an agonist. Daily intravenous injections of recombinant ACBP/DBI protein or subcutaneous implantation of osmotic pumps releasing recombinant ACBP/DBI mimicked the orexigenic effects of the chemical-genetic system. In conclusion, the supplementation of extracellular and peripheral ACBP/DBI might constitute a viable strategy for treating anorexia.
Collapse
Affiliation(s)
- Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Stéphanie Moriceau
- Institut Imagine, Platform for Neurobehavioral and Metabolism, Structure Fédérative de Recherche Necker, 26 INSERM US24/CNRS UAR, 3633, 75015 Paris, France
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Service de Réanimation Médicale, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, 75010 Paris, France
| | - Francois Mailliet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015 Paris, France
| | - Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Virginie Tolle
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
| | - Philibert Duriez
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Roland Dardennes
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Gautier Stoll
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Sylvie Lachkar
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, 94800 Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Hui Pan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Uxía Nogueira-Recalde
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Rheumatology Research Group (GIR), Biomedical Research Institute of A Coruña (INIBIC), Professor Novoa Santos Foundation, 15006 A Coruña, Spain
| | - Mélanie Bourgin
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Misha Mao
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, Zhejiang, China
| | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Alexandra Cerone
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Erwan Boedec
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Biochemistry and Biophysics (B&B) Core Facility, 75014 Paris, France
| | - Zelia L Gouveia
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, 75005 Paris, France
| | - Federica Marmorino
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Lisa Derosa
- Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, 94800 Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, 94800 Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, 28248 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Franck Perez
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, 75005 Paris, France
| | - Philip Gorwood
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Nicolas Ramoz
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Franck Oury
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015 Paris, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| |
Collapse
|
4
|
Tang J, Fang D, Zhong J, Li M. Missing WD40 Repeats in ATG16L1 Delays Canonical Autophagy and Inhibits Noncanonical Autophagy. Int J Mol Sci 2024; 25:4493. [PMID: 38674078 PMCID: PMC11050548 DOI: 10.3390/ijms25084493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Canonical autophagy is an evolutionarily conserved process that forms double-membrane structures and mediates the degradation of long-lived proteins (LLPs). Noncanonical autophagy (NCA) is an important alternative pathway involving the formation of microtubule-associated protein 1 light chain 3 (LC3)-positive structures that are independent of partial core autophagy proteins. NCA has been defined by the conjugation of ATG8s to single membranes (CASM). During canonical autophagy and NCA/CASM, LC3 undergoes a lipidation modification, and ATG16L1 is a crucial protein in this process. Previous studies have reported that the WDR domain of ATG16L1 is not necessary for canonical autophagy. However, our study found that WDR domain deficiency significantly impaired LLP degradation in basal conditions and slowed down LC3-II accumulation in canonical autophagy. We further demonstrated that the observed effect was due to a reduced interaction between ATG16L1 and FIP200/WIPI2, without affecting lysosome function or fusion. Furthermore, we also found that the WDR domain of ATG16L1 is crucial for chemical-induced NCA/CASM. The results showed that removing the WDR domain or introducing the K490A mutation in ATG16L1 significantly inhibited the NCA/CASM, which interrupted the V-ATPase-ATG16L1 axis. In conclusion, this study highlights the significance of the WDR domain of ATG16L1 for both canonical autophagy and NCA functions, improving our understanding of its role in autophagy.
Collapse
Affiliation(s)
- Jiuge Tang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Dongmei Fang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Jialing Zhong
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Min Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| |
Collapse
|
5
|
Li J, Wang H, Chen H, Li X, Liu Y, Hou H, Hu Q. Cell death induced by nicotine in human neuroblastoma SH-SY5Y cells is mainly attributed to cytoplasmic vacuolation originating from the trans-Golgi network. Food Chem Toxicol 2024; 185:114431. [PMID: 38176581 DOI: 10.1016/j.fct.2023.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Humans are usually exposed to nicotine through the use of tobacco products. Although it is generally believed that nicotine is relatively harmless in tobacco consumption, it is, in fact, a toxic substance that warrants careful consideration of its potential toxicity. However, the current understanding of the neurotoxicity of nicotine is still very limited. In this study, we aim to reveal the toxic risk of nicotine to key target neuronal cells and its potential toxic mechanisms. The results showed that nicotine induced cell death, ROS increase, mitochondrial membrane potential decrease, and DNA damage in SH-SY5Y human neuroblastoma cells at millimolar concentrations, but did not cause toxic effects at the physiological concentration. These toxic effects were accompanied by cytoplasmic vacuolation. The inhibition of cytoplasmic vacuolation by bafilomycin A1 greatly reduced nicotine-induced cell death, indicating that cytoplasmic vacuolation is the key driving factor of cell death. These cytoplasmic vacuoles originated from the trans-Golgi network (TGN) and expressed microtubule-associated protein 1 light chain 3-II (LC3-II) and lysosomal associated membrane protein 1(LAMP1). The presence of LC3-II and LAMP1 within these vacuoles serves as evidence of compromised TGN structure and function. These findings provide valuable new insights into the potential neurotoxic risk and mechanisms of nicotine.
Collapse
Affiliation(s)
- Jun Li
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China; University of Science and Technology of China, Hefei, 230000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Hongjuan Wang
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Huan Chen
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Xiao Li
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China.
| | - Qingyuan Hu
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China; University of Science and Technology of China, Hefei, 230000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China.
| |
Collapse
|
6
|
Zhou J, Ma J, Yang C, Zhu X, Li J, Zheng X, Li X, Chen S, Feng L, Wang P, Ho MI, Ma W, Liao J, Li F, Wang C, Zhuang X, Jiang L, Kang BH, Gao C. A non-canonical role of ATG8 in Golgi recovery from heat stress in plants. NATURE PLANTS 2023; 9:749-765. [PMID: 37081290 DOI: 10.1038/s41477-023-01398-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Above-optimal growth temperatures, usually referred to as heat stress (HS), pose a challenge to organisms' survival as they interfere with essential physiological functions and disrupt cellular organization. Previous studies have elucidated the complex transcriptional regulatory networks involved in plant HS responses, but the mechanisms of organellar remodelling and homeostasis during plant HS adaptations remain elusive. Here we report a non-canonical function of ATG8 in regulating the restoration of plant Golgi damaged by HS. Short-term acute HS causes vacuolation of the Golgi apparatus and translocation of ATG8 to the dilated Golgi membrane. The inactivation of the ATG conjugation system, but not of the upstream autophagic initiators, abolishes the targeting of ATG8 to the swollen Golgi, causing a delay in Golgi recovery after HS. Using TurboID-based proximity labelling, we identified CLATHRIN LIGHT CHAIN 2 (CLC2) as an interacting partner of ATG8 via the AIM-LDS interface. CLC2 is recruited to the cisternal membrane by ATG8 to facilitate Golgi reassembly. Collectively, our study reveals a hitherto unanticipated process of Golgi stack recovery from HS in plant cells and uncovers a previously unknown mechanism of organelle resilience involving ATG8.
Collapse
Affiliation(s)
- Jun Zhou
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
| | - Juncai Ma
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Chao Yang
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiu Zhu
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jing Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Xuanang Zheng
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xibao Li
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Siyu Chen
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lei Feng
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Man Ip Ho
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Wenlong Ma
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Jun Liao
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chao Wang
- College of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China.
| | - Caiji Gao
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
7
|
Deng J, Tian AL, Pan H, Sauvat A, Leduc M, Liu P, Zhao L, Zhang S, Chen H, Taly V, Laurent-Puig P, Senovilla L, Li Y, Kroemer G, Kepp O. Everolimus and plicamycin specifically target chemoresistant colorectal cancer cells of the CMS4 subtype. Cell Death Dis 2021; 12:978. [PMID: 34675191 PMCID: PMC8531384 DOI: 10.1038/s41419-021-04270-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancers (CRC) can be classified into four consensus molecular subtypes (CMS), among which CMS1 has the best prognosis, contrasting with CMS4 that has the worst outcome. CMS4 CRC is notoriously resistant against therapeutic interventions, as demonstrated by preclinical studies and retrospective clinical observations. Here, we report the finding that two clinically employed agents, everolimus (EVE) and plicamycin (PLI), efficiently target the prototypic CMS4 cell line MDST8. As compared to the prototypic CMS1 cell line LoVo, MDST8 cells treated with EVE or PLI demonstrated stronger cytostatic and cytotoxic effects, increased signs of apoptosis and autophagy, as well as a more pronounced inhibition of DNA-to-RNA transcription and RNA-to-protein translation. Moreover, nontoxic doses of EVE and PLI induced the shrinkage of MDST8 tumors in mice, yet had only minor tumor growth-reducing effects on LoVo tumors. Altogether, these results suggest that EVE and PLI should be evaluated for their clinical activity against CMS4 CRC.
Collapse
Affiliation(s)
- Jiayin Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Université Paris Sud, Paris Saclay, Faculty of Medicine, Kremlin Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France
| | - Ai-Ling Tian
- Université Paris Sud, Paris Saclay, Faculty of Medicine, Kremlin Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France
| | - Hui Pan
- Université Paris Sud, Paris Saclay, Faculty of Medicine, Kremlin Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France
| | - Allan Sauvat
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France
| | - Marion Leduc
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France
| | - Peng Liu
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France
| | - Liwei Zhao
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France
| | - Shuai Zhang
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France
| | - Hui Chen
- Université Paris Sud, Paris Saclay, Faculty of Medicine, Kremlin Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France
| | - Valérie Taly
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Laura Senovilla
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Yingqiu Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France.
- Pôle de Biologie, Institut du Cancer Paris Carpem, APHP, Hôpital Européen Georges Pompidou, Paris, France.
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, China.
- Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138 and CNRS SNC 5096, Institut Universitaire de France, Paris, France.
| |
Collapse
|
8
|
Sauvat A, Cerrato G, Humeau J, Leduc M, Kepp O, Kroemer G. High-throughput label-free detection of DNA-to-RNA transcription inhibition using brightfield microscopy and deep neural networks. Comput Biol Med 2021; 133:104371. [PMID: 33845268 DOI: 10.1016/j.compbiomed.2021.104371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022]
Abstract
Drug discovery is in constant evolution and major advances have led to the development of in vitro high-throughput technologies, facilitating the rapid assessment of cellular phenotypes. One such phenotype is immunogenic cell death, which occurs partly as a consequence of inhibited RNA synthesis. Automated cell-imaging offers the possibility of combining high-throughput with high-content data acquisition through the simultaneous computation of a multitude of cellular features. Usually, such features are extracted from fluorescence images, hence requiring labeling of the cells using dyes with possible cytotoxic and phototoxic side effects. Recently, deep learning approaches have allowed the analysis of images obtained by brightfield microscopy, a technique that was for long underexploited, with the great advantage of avoiding any major interference with cellular physiology or stimulatory compounds. Here, we describe a label-free image-based high-throughput workflow that accurately detects the inhibition of DNA-to-RNA transcription. This is achieved by combining two successive deep convolutional neural networks, allowing (1) to automatically detect cellular nuclei (thus enabling monitoring of cell death) and (2) to classify the extracted nuclear images in a binary fashion. This analytical pipeline is R-based and can be easily applied to any microscopic platform.
Collapse
Affiliation(s)
- Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France.
| | - Giulia Cerrato
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France; Faculty of Medicine, Université Paris Saclay, Kremlin-Bicêtre, France
| | - Juliette Humeau
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Marion Leduc
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Po^le de Biologie, Ho^pital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Cerrato G, Kepp O, Sauvat A, Kroemer G. A genome-wide RNA interference screen disentangles the Golgi tropism of LC3. Autophagy 2020; 17:820-822. [PMID: 33300447 DOI: 10.1080/15548627.2020.1861836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Oleate, the most abundantly occurring cis-unsaturated fatty acid, has the particularity to induce the accumulation of MAP1LC3B/LC3 (microtubule associated protein 1 light chain 3 beta) at the trans-Golgi apparatus. A genome-wide RNA interference screen designed to identify the mechanisms of this LC3 redistribution led to the identification of a BECN1-PIK3C3-independent pathway that, however, requires the ATG12-ATG5 and ATG7-dependent conjugation system, and several genes/proteins involved in endoplasmic reticulum (ER)-to-Golgi anterograde protein transport, as well as the unfolded protein response, including the integrated stress response that results in the phosphorylation of EIF2A/eIF2α (eukaryotic translation initiation factor 2A). Functional experiments revealed that oleate blocks conventional protein secretion, stalling the process at the level of the trans-Golgi network. Oleate-induced blockade of protein secretion occurred even after depletion of ATG5, suggesting that it does not rely on the recruitment of LC3 to the Golgi apparatus (which does require ATG5). Rather, it appears that oleate and other pharmacological inhibitors of protein secretion with a similar mode of action provoke a perturbation of the trans-Golgi compartment that secondarily results in the local enrichment of LC3.
Collapse
Affiliation(s)
- Giulia Cerrato
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Faculty of Medicine, Université Paris Sud, Paris Saclay, Kremlin Bicêtre, France
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Allan Sauvat
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|