1
|
Vial Y, Nardelli J, Bonnard AA, Rousselot J, Souyri M, Gressens P, Cavé H, Drunat S. Mcph1, mutated in primary microcephaly, is also crucial for erythropoiesis. EMBO Rep 2024; 25:2418-2440. [PMID: 38605277 PMCID: PMC11094029 DOI: 10.1038/s44319-024-00123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Microcephaly is a common feature in inherited bone marrow failure syndromes, prompting investigations into shared pathways between neurogenesis and hematopoiesis. To understand this association, we studied the role of the microcephaly gene Mcph1 in hematological development. Our research revealed that Mcph1-knockout mice exhibited congenital macrocytic anemia due to impaired terminal erythroid differentiation during fetal development. Anemia's cause is a failure to complete cell division, evident from tetraploid erythroid progenitors with DNA content exceeding 4n. Gene expression profiling demonstrated activation of the p53 pathway in Mcph1-deficient erythroid precursors, leading to overexpression of Cdkn1a/p21, a major mediator of p53-dependent cell cycle arrest. Surprisingly, fetal brain analysis revealed hypertrophied binucleated neuroprogenitors overexpressing p21 in Mcph1-knockout mice, indicating a shared pathophysiological mechanism underlying both erythroid and neurological defects. However, inactivating p53 in Mcph1-/- mice failed to reverse anemia and microcephaly, suggesting that p53 activation in Mcph1-deficient cells resulted from their proliferation defect rather than causing it. These findings shed new light on Mcph1's function in fetal hematopoietic development, emphasizing the impact of disrupted cell division on neurogenesis and erythropoiesis - a common limiting pathway.
Collapse
Affiliation(s)
- Yoann Vial
- Université Paris Cité, Institut de Recherche Saint-Louis, Inserm UMR_S1131, F-75010, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France
| | | | - Adeline A Bonnard
- Université Paris Cité, Institut de Recherche Saint-Louis, Inserm UMR_S1131, F-75010, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France
| | - Justine Rousselot
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France
| | - Michèle Souyri
- Université Paris Cité, Institut de Recherche Saint-Louis, Inserm UMR_S1131, F-75010, Paris, France
| | - Pierre Gressens
- Université Paris Cité, NeuroDiderot, Inserm, F-75019, Paris, France
| | - Hélène Cavé
- Université Paris Cité, Institut de Recherche Saint-Louis, Inserm UMR_S1131, F-75010, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France
| | - Séverine Drunat
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France.
- Université Paris Cité, NeuroDiderot, Inserm, F-75019, Paris, France.
| |
Collapse
|
2
|
Poyil PK, Siraj AK, Padmaja D, Parvathareddy SK, Thangavel S, Alobaisi K, Diaz R, Begum R, Haqawi W, Al‐Sobhi SS, Al‐Dayel F, Al‐Kuraya KS. PLK1 and FoxM1 expressions positively correlate in papillary thyroid carcinoma and their combined inhibition results in synergistic anti-tumor effects. Mol Oncol 2024; 18:691-706. [PMID: 38361222 PMCID: PMC10920088 DOI: 10.1002/1878-0261.13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024] Open
Abstract
Polo-like kinase 1 (PLK1; also known as serine/threonine-protein kinase PLK1) serves as a central player in cell proliferation, exerting critical regulatory roles in mitotic processes and cell survival. We conducted an analysis of PLK1 protein expression in a large cohort of samples from papillary thyroid carcinoma (PTC) patients and examined its functional significance in PTC cell lines, both in vitro and in vivo. PLK1 overexpression was noted in 54.2% of all PTC and was significantly associated with aggressive clinicopathological parameters; it was also found to be an independent prognostic marker for shorter recurrence-free survival. Given the significant association between PLK1 and forkhead box protein M1 (FoxM1), and their concomitant overexpression in a large proportion of PTC samples, we explored their correlation and their combined inhibitions in PTC in vitro and in vivo. Inhibition of PLK1 expression indeed suppressed cell proliferation, leading to cell cycle arrest and apoptosis in PTC cell lines. Significantly, the downregulation of PLK1 reduced the self-renewal capability of spheroids formed from PTC cells. Immunoprecipitation analysis shows that PLK1 binds to FoxM1 and vice versa in vitro. Mechanistically, PLK1 knockdown suppresses FoxM1 expression, whereas inhibition of FoxM1 does not affect PLK1 expression, which suggests that PLK1 acts through the FoxM1 pathway. The combined treatment of a PLK1 inhibitor (volasertib) and a FoxM1 inhibitor (thiostrepton) demonstrated a synergistic effect in reducing PTC cell growth in vitro and delaying tumor growth in vivo. This study highlights the important role of PLK1 in PTC tumorigenesis and prognosis. It also highlights the synergistic therapeutic potential of dual-targeting PLK1 and FoxM1 in PTC, unveiling a potential innovative therapeutic strategy for managing aggressive forms of PTC.
Collapse
Affiliation(s)
- Pratheesh Kumar Poyil
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Abdul K. Siraj
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Divya Padmaja
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | | | - Saravanan Thangavel
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Khadija Alobaisi
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Roxanne Diaz
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Rafia Begum
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Wael Haqawi
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Saif S. Al‐Sobhi
- Department of SurgeryKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Fouad Al‐Dayel
- Department of PathologyKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Khawla S. Al‐Kuraya
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| |
Collapse
|
3
|
Abstract
The centrosome, consisting of centrioles and the associated pericentriolar material, is the main microtubule-organizing centre (MTOC) in animal cells. During most of interphase, the two centrosomes of a cell are joined together by centrosome cohesion into one MTOC. The most dominant element of centrosome cohesion is the centrosome linker, an interdigitating, fibrous network formed by the protein C-Nap1 anchoring a number of coiled-coil proteins including rootletin to the proximal end of centrioles. Alternatively, centrosomes can be kept together by the action of the minus end directed kinesin motor protein KIFC3 that works on interdigitating microtubules organized by both centrosomes and probably by the actin network. Although cells connect the two interphase centrosomes by several mechanisms into one MTOC, the general importance of centrosome cohesion, particularly for an organism, is still largely unclear. In this article, we review the functions of the centrosome linker and discuss how centrosome cohesion defects can lead to diseases.
Collapse
Affiliation(s)
- Hairuo Dang
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg 69120, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and
| |
Collapse
|
4
|
Xiaoshuai L, Qiushi W, Rui W. Advantages of CRISPR-Cas9 combined organoid model in the study of congenital nervous system malformations. Front Bioeng Biotechnol 2022; 10:932936. [PMID: 36118578 PMCID: PMC9478582 DOI: 10.3389/fbioe.2022.932936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
In the past 10 years, gene-editing and organoid culture have completely changed the process of biology. Congenital nervous system malformations are difficult to study due to their polygenic pathogenicity, the complexity of cellular and neural regions of the brain, and the dysregulation of specific neurodevelopmental processes in humans. Therefore, the combined application of CRISPR-Cas9 in organoid models may provide a technical platform for studying organ development and congenital diseases. Here, we first summarize the occurrence of congenital neurological malformations and discuss the different modeling methods of congenital nervous system malformations. After that, it focuses on using organoid to model congenital nervous system malformations. Then we summarized the application of CRISPR-Cas9 in the organoid platform to study the pathogenesis and treatment strategies of congenital nervous system malformations and finally looked forward to the future.
Collapse
Affiliation(s)
- Li Xiaoshuai
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wang Qiushi
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wang Rui
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
- *Correspondence: Wang Rui,
| |
Collapse
|