1
|
Spector B, Santana J, Pufall M, Price D. DFF-ChIP: a method to detect and quantify complex interactions between RNA polymerase II, transcription factors, and chromatin. Nucleic Acids Res 2024; 52:e88. [PMID: 39248105 PMCID: PMC11472042 DOI: 10.1093/nar/gkae760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Recently, we introduced a chromatin immunoprecipitation (ChIP) technique utilizing the human DNA Fragmentation Factor (DFF) to digest the DNA prior to immunoprecipitation (DFF-ChIP) that provides the precise location of transcription complexes and their interactions with neighboring nucleosomes. Here we expand the technique to new targets and provide useful information concerning purification of DFF, digestion conditions, and the impact of crosslinking. DFF-ChIP analysis was performed individually for subunits of Mediator, DSIF, and NELF that that do not interact with DNA directly, but rather interact with RNA polymerase II (Pol II). We found that Mediator was associated almost exclusively with preinitiation complexes (PICs). DSIF and NELF were associated with engaged Pol II and, in addition, potential intermediates between PICs and early initiation complexes. DFF-ChIP was then used to analyze the occupancy of a tight binding transcription factor, CTCF, and a much weaker binding factor, glucocorticoid receptor (GR), with and without crosslinking. These results were compared to those from standard ChIP-Seq that employs sonication and to CUT&RUN which utilizes MNase to fragment the genomic DNA. Our findings indicate that DFF-ChIP reveals details of occupancy that are not available using other methods including information revealing pertinent protein:protein interactions.
Collapse
Affiliation(s)
- Benjamin M Spector
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Juan F Santana
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Miles A Pufall
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - David H Price
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Lenk L, Baccelli I, Laqua A, Heymann J, Reimer C, Dietterle A, Winterberg D, Mary C, Corallo F, Taurelle J, Narbeburu E, Neyton S, Déramé M, Pengam S, Vogiatzi F, Bornhauser B, Bourquin JP, Raffel S, Dovhan V, Schüler T, Escherich G, den Boer ML, Boer JM, Wessels W, Peipp M, Alten J, Antić Ž, Bergmann AK, Schrappe M, Cario G, Brüggemann M, Poirier N, Schewe DM. The IL-7R antagonist lusvertikimab reduces leukemic burden in xenograft ALL via antibody-dependent cellular phagocytosis. Blood 2024; 143:2735-2748. [PMID: 38518105 PMCID: PMC11251409 DOI: 10.1182/blood.2023021088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024] Open
Abstract
ABSTRACT Acute lymphoblastic leukemia (ALL) arises from the uncontrolled proliferation of B-cell precursors (BCP-ALL) or T cells (T-ALL). Current treatment protocols obtain high cure rates in children but are based on toxic polychemotherapy. Novel therapies are urgently needed, especially in relapsed/refractory (R/R) disease, high-risk (HR) leukemias and T-ALL, in which immunotherapy approaches remain scarce. Although the interleukin-7 receptor (IL-7R) plays a pivotal role in ALL development, no IL-7R-targeting immunotherapy has yet reached clinical application in ALL. The IL-7Rα chain (CD127)-targeting IgG4 antibody lusvertikimab (LUSV; formerly OSE-127) is a full antagonist of the IL-7R pathway, showing a good safety profile in healthy volunteers. Here, we show that ∼85% of ALL cases express surface CD127. We demonstrate significant in vivo efficacy of LUSV immunotherapy in a heterogeneous cohort of BCP- and T-ALL patient-derived xenografts (PDX) in minimal residual disease (MRD) and overt leukemia models, including R/R and HR leukemias. Importantly, LUSV was particularly effective when combined with polychemotherapy in a phase 2-like PDX study with CD127high samples leading to MRD-negativity in >50% of mice treated with combination therapy. Mechanistically, LUSV targeted ALL cells via a dual mode of action comprising direct IL-7R antagonistic activity and induction of macrophage-mediated antibody-dependent cellular phagocytosis (ADCP). LUSV-mediated in vitro ADCP levels significantly correlated with CD127 expression levels and the reduction of leukemia burden upon treatment of PDX animals in vivo. Altogether, through its dual mode of action and good safety profile, LUSV may represent a novel immunotherapy option for any CD127+ ALL, particularly in combination with standard-of-care polychemotherapy.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Xenograft Model Antitumor Assays
- Receptors, Interleukin-7/antagonists & inhibitors
- Mice, SCID
- Phagocytosis/drug effects
- Interleukin-7 Receptor alpha Subunit
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Female
- Mice, Inbred NOD
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Cell Line, Tumor
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
Collapse
Affiliation(s)
- Lennart Lenk
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Anna Laqua
- Department of Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julia Heymann
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Claas Reimer
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Anna Dietterle
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dorothee Winterberg
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | | | | | | - Fotini Vogiatzi
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Beat Bornhauser
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Zurich, Switzerland
| | - Jean-Pierre Bourquin
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Zurich, Switzerland
| | - Simon Raffel
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vladyslava Dovhan
- Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Judith M. Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Wiebke Wessels
- Department of Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Julia Alten
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Željko Antić
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Anke K. Bergmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Monika Brüggemann
- Department of Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Denis M. Schewe
- Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
Liongue C, Ratnayake T, Basheer F, Ward AC. Janus Kinase 3 (JAK3): A Critical Conserved Node in Immunity Disrupted in Immune Cell Cancer and Immunodeficiency. Int J Mol Sci 2024; 25:2977. [PMID: 38474223 DOI: 10.3390/ijms25052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | | | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
4
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 2023; 8:204. [PMID: 37208335 DOI: 10.1038/s41392-023-01468-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Das Gupta D, Lohoff M. Puppet masters of B-cell progenitor acute lymphoblastic leukemia: The preB cell receptor and the interleukin 7 receptor α. Eur J Immunol 2023; 53:e2250093. [PMID: 36805963 DOI: 10.1002/eji.202250093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023]
Abstract
B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) is enriched for a preB cell phenotype, hinting at a specific vulnerability of this cell stage. Two signaling pathways via the preB cell receptor (preBCR) and the interleukin 7 receptor α (IL-7Rα) chain govern the balance between differentiation and proliferation at this stage and both receptor pathways are routinely altered in human BCP-ALL. Here, we review the immunobiology of both the preBCR as well as the IL-7Rα and analyze the human BCP-ALL spectrum in the light of these signaling complexes. Finally, we present a terminology for preBCR signaling modules that distinguishes a pro-proliferative "phase-I" module from a pro-differentiative "phase-II" module. This terminology might serve as a framework to better address shared oncogenic mechanics of preB cell stage BCP-ALL.
Collapse
Affiliation(s)
- Dennis Das Gupta
- Institute for Medical Microbiology & Hospital Hygiene, Philipps University Marburg, Marburg, Germany.,Medical Department II, Hematology and Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Michael Lohoff
- Institute for Medical Microbiology & Hospital Hygiene, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
6
|
Maffei R, Fiorcari S, Atene CG, Martinelli S, Mesini N, Pilato F, Lagreca I, Barozzi P, Riva G, Nasillo V, Paolini A, Forghieri F, Potenza L, Trenti T, Tagliafico E, Luppi M, Marasca R. The dynamic functions of IRF4 in B cell malignancies. Clin Exp Med 2022:10.1007/s10238-022-00968-0. [PMID: 36495369 PMCID: PMC10390622 DOI: 10.1007/s10238-022-00968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
AbstractThe trajectory of B cell development goes through subsequent steps governed by complex genetic programs, strictly regulated by multiple transcription factors. Interferon regulatory factor 4 (IRF4) regulates key points from pre-B cell development and receptor editing to germinal center formation, class-switch recombination and plasma cell differentiation. The pleiotropic ability of IRF4 is mediated by its “kinetic control”, allowing different IRF4 expression levels to activate distinct genetic programs due to modulation of IRF4 DNA-binding affinity. IRF4 is implicated in B cell malignancies, acting both as tumor suppressor and as tumor oncogene in different types of precursors and mature B cell neoplasia. Here, we summarize the complexity of IRF4 functions related to different DNA-binding affinity, multiple IRF4-specific target DNA motif, and interactions with transcriptional partners. Moreover, we describe the unique role of IRF4 in acute leukemias and B cell mature neoplasia, focusing on pathogenetic implications and possible therapeutic strategies in multiple myeloma and chronic lymphocytic leukemia.
Collapse
|
7
|
Childhood B-Cell Preleukemia Mouse Modeling. Int J Mol Sci 2022; 23:ijms23147562. [PMID: 35886910 PMCID: PMC9317949 DOI: 10.3390/ijms23147562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Leukemia is the most usual childhood cancer, and B-cell acute lymphoblastic leukemia (B-ALL) is its most common presentation. It has been proposed that pediatric leukemogenesis occurs through a “multi-step” or “multi-hit” mechanism that includes both in utero and postnatal steps. Many childhood leukemia-initiating events, such as chromosomal translocations, originate in utero, and studies so far suggest that these “first-hits” occur at a far higher frequency than the incidence of childhood leukemia itself. The reason why only a small percentage of the children born with such preleukemic “hits” will develop full-blown leukemia is still a mystery. In order to better understand childhood leukemia, mouse modeling is essential, but only if the multistage process of leukemia can be recapitulated in the model. Therefore, mouse models naturally reproducing the “multi-step” process of childhood B-ALL will be essential to identify environmental or other factors that are directly linked to increased risk of disease.
Collapse
|