1
|
Hua Y, Li X, Yin B, Lu S, Qian B, Zhou Y, Li Z, Meng Z, Ma Y. Genome-wide analysis of alternative splicing differences in hepatic ischemia reperfusion injury. Sci Rep 2024; 14:31349. [PMID: 39732885 DOI: 10.1038/s41598-024-82846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Alternative splicing (AS) contributes to transcript and protein diversity, affecting their structure and function. However, the specific transcriptional regulatory mechanisms underlying AS in the context of hepatic ischemia reperfusion (IR) injury in mice have not been extensively characterized. In this study, we investigated differentially alternatively spliced (DAS) genes and differentially expressed transcripts (DETs) in a mouse model of hepatic IR injury using the high throughput RNA sequencing (RNA-seq) analysis and replicate multivariate analysis of transcript splicing (rMATS) analysis. We further conducted Gene ontology (GO) term enrichment, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the protein-protein interaction (PPI) network. A total of 898 DAS genes (p ≤ 0.05) were screened out in the hepatic IR group compared to the sham group, while functional enrichment analysis revealed that DETs and DAS genes were significantly associated with the ATP-dependent chromain, splicesome and metabolic pathways. The expression level of the DAS genes: Gabpb2, Smg1, Tnrc6c, Mettl17, Smpd4, Kcnt2, D16Ertd472e, Rab3gap2, Echdc2 and Ssx2ip were verified by RT-PCR and qRT-PCR. Our findings provide a comprehensive genome-wide view of AS events in hepatic IR injury in mice, enhancing our understanding of AS dynamics and the molecular mechanisms governing alternative pre-mRNA splicing.
Collapse
Affiliation(s)
- Yongliang Hua
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Pediatric Surgery, Key Laboratory of Hepatosplenic Surgery, the Sixth Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Bing Yin
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Yongzhi Zhou
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Zhongyu Li
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Zhanzhi Meng
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Wang X, Yang C, Wei X, Zhang Y, Xiao Y, Wang J, Jiang Q, Ju Z, Gao Y, Li Y, Gao Y, Huang J. Single-cell RNA sequencing reveals the critical role of alternative splicing in cattle testicular spermatagonia. Biol Direct 2024; 19:145. [PMID: 39726007 DOI: 10.1186/s13062-024-00579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Spermatogonial stem cells (SSCs) form haploid gametes through the precisely regulated process of spermatogenesis. Within the testis, SSCs undergo self-renewal through mitosis, differentiation, and then enter meiosis to generate mature spermatids. This study utilized single-cell RNA sequencing on 26,888 testicular cells obtained from five Holstein bull testes, revealing the presence of five distinct germ cell types and eight somatic cell types in cattle testes. Gene expression profiling and enrichment analysis were utilized to uncover the varied functional roles of different cell types involved in cattle spermatogenesis. Additionally, unique gene markers specific to each testicular cell type were identified. Moreover, differentially expressed genes in spermatogonia exhibited notable enrichment in GO terms and KEGG pathway linked to alternative splicing. Notably, our study has shown that the activity of the YY1 regulation displays distinct expression patterns in spermatogonia, specifically targeting spliceosome proteins including RBM39, HNRNPA2B1, HNRNPH3, CPSF1, PCBP1, SRRM1, and SRRM2, which play essential roles in mRNA splicing. These results emphasize the importance of mRNA processing in spermatogonia within cattle testes, providing a basis for further investigation into their involvement in spermatogonial development.
Collapse
Affiliation(s)
- Xiuge Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Chunhong Yang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Xiaochao Wei
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Yaran Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Jinpeng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Qiang Jiang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Zhihua Ju
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Yaping Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Yanqin Li
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Yundong Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Jinming Huang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
| |
Collapse
|
3
|
Cao Y, Wang S, Liu J, Xu J, Liang Y, Ao F, Wei Z, Wang L. CARF regulates the alternative splicing and piwi/piRNA complexes during mouse spermatogenesis through PABPC1. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39696987 DOI: 10.3724/abbs.2024224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
ADP-ribosylation factor collaborator (CARF), which is also known as CDKN2AIP, was first recognized as an ADP-ribosylation factor-interacting protein that participates in the activation of the ARF-p53-p21 (WAF1) signaling pathway under different conditions, such as oxidative and oncogenic stresses. The activation of this pathway often leads to cell growth arrest and apoptosis as well as senescence. Previous studies revealed that CARF, an RNA-binding protein, is critical for maintaining stem cell pluripotency and somatic differentiation. Nevertheless, its involvement in spermatogenesis has not been well examined. In this study, we show that male mice deficient in Carf expression present impaired spermatogenesis and fertility. IP-MS and RNA-seq analyses reveal that CARF/ Carf interacts with multiple key splicing factors, such as PABPC1, and directly targets 356 different types of mRNAs in spermatocytes. Carf-associated mRNAs display aberrant splicing patterns when Carf expression is deficient. In addition, our results demonstrate that PIWIL1 expression and localization are altered in the Carf -/ - mouse model through the downregulation of PABPC1, which further affects the ratio of pachytene-piRNA. Our study suggests that CARF is critical for regulating alternative splicing in mammalian spermatogenesis and determining infertility in male mice.
Collapse
|
4
|
Jiang N, Li Y, Yin L, Yuan S, Wang F. The Intricate Functional Networks of Pre-mRNA Alternative Splicing in Mammalian Spermatogenesis. Int J Mol Sci 2024; 25:12074. [PMID: 39596142 PMCID: PMC11594017 DOI: 10.3390/ijms252212074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Spermatogenesis is a highly coordinated process that requires the precise expression of specific subsets of genes in different types of germ cells, controlled both temporally and spatially. Among these genes, those that can exert an indispensable influence in spermatogenesis via participating in alternative splicing make up the overwhelming majority. mRNA alternative-splicing (AS) events can generate various isoforms with distinct functions from a single DNA sequence, based on specific AS codes. In addition to enhancing the finite diversity of the genome, AS can also regulate the transcription and translation of certain genes by directly binding to their cis-elements or by recruiting trans-elements that interact with consensus motifs. The testis, being one of the most complex tissue transcriptomes, undergoes unparalleled transcriptional and translational activity, supporting the dramatic and dynamic transitions that occur during spermatogenesis. Consequently, AS plays a vital role in producing an extensive array of transcripts and coordinating significant changes throughout this process. In this review, we summarize the intricate functional network of alternative splicing in spermatogenesis based on the integration of current research findings.
Collapse
Affiliation(s)
| | | | | | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| |
Collapse
|
5
|
He L, Sun F, Wu Y, Li Z, Fu Y, Huang Q, Li J, Wang Z, Cai J, Feng C, Deng X, Gu H, He X, Yu J, Sun F. L(1)10Bb serves as a conservative determinant for soma-germline communications via cellular non-autonomous effects within the testicular stem cell niche. Mol Cell Endocrinol 2024; 591:112278. [PMID: 38795826 DOI: 10.1016/j.mce.2024.112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
The testicular stem cell niche is the central regulator of spermatogenesis in Drosophila melanogaster. However, the underlying regulatory mechanisms are unclear. This study demonstrated the crucial role of lethal (1) 10Bb [l(1)10Bb] in regulating the testicular stem cell niche. Dysfunction of l(1)10Bb in early-stage cyst cells led to male fertility disorders and compromised cyst stem cell maintenance. Moreover, the dysfunction of l(1)10Bb in early-stage cyst cells exerted non-autonomous effects on germline stem cell differentiation, independently of hub signals. Notably, our study highlights the rescue of testicular defects through ectopic expression of L(1)10Bb and the human homologous protein BUD31 homolog (BUD31). In addition, l(1)10Bb dysfunction in early-stage cyst cells downregulated the expression of spliceosome subunits in the Sm and the precursor RNA processing complexes. Collectively, our findings established l(1)10Bb as a pivotal factor in the modulation of Drosophila soma-germline communications within the testicular stem cell niche.
Collapse
Affiliation(s)
- Lei He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Feiteng Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yunhao Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Zhiran Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yangbo Fu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Zihan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jiaying Cai
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Chenrui Feng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xiaonan Deng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Han Gu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xuxin He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
6
|
Wang S, Cai Y, Li T, Wang Y, Bao Z, Wang R, Qin J, Wang Z, Liu Y, Liu Z, Chan W, Chen X, Lu G, Chen Z, Huang T, Liu H. CWF19L2 is Essential for Male Fertility and Spermatogenesis by Regulating Alternative Splicing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403866. [PMID: 38889293 PMCID: PMC11336944 DOI: 10.1002/advs.202403866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/12/2024] [Indexed: 06/20/2024]
Abstract
The progression of spermatogenesis along specific developmental trajectories depends on the coordinated regulation of pre-mRNA alternative splicing (AS) at the post-transcriptional level. However, the fundamental mechanism of AS in spermatogenesis remains to be investigated. Here, it is demonstrated that CWF19L2 plays a pivotal role in spermatogenesis and male fertility. In germline conditional Cwf19l2 knockout mice exhibiting male sterility, impaired spermatogenesis characterized by increased apoptosis and decreased differentiated spermatogonia and spermatocytes is observed. That CWF19L2 interacted with several spliceosome proteins to participate in the proper assembly and stability of the spliceosome is discovered. By integrating RNA-seq and LACE-seq data, it is further confirmed CWF19L2 directly bound and regulated the splicing of genes related to spermatogenesis (Znhit1, Btrc, and Fbxw7) and RNA splicing (Rbfox1, Celf1, and Rbm10). Additionally, CWF19L2 can indirectly amplify its effect on splicing regulation through modulating RBFOX1. Collectively, this research establishes that CWF19L2 orchestrates a splicing factor network to ensure accurate pre-mRNA splicing during the early steps of spermatogenesis.
Collapse
|
7
|
Wang X, Guo S, Xiong L, Wu X, Bao P, Kang Y, Cao M, Ding Z, Liang C, Pei J, Guo X. Complete characterization of the yak testicular development using accurate full-length transcriptome sequencing. Int J Biol Macromol 2024; 271:132400. [PMID: 38759851 DOI: 10.1016/j.ijbiomac.2024.132400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Alternative splicing is a prevalent phenomenon in testicular tissues. Due to the low assembly accuracy of short-read RNA sequencing technology in analyzing post-transcriptional regulatory events, full-length (FL) transcript sequencing is highly demanded to accurately determine FL splicing variants. In this study, we performed FL transcriptome sequencing of testicular tissues from 0.5, 1.5, 2.5, and 4-year-old yaks and 4-year-old cattle-yaks using Oxford Nanopore Technologies. The obtained sequencing data were predicted to have 47,185 open reading frames (ORFs), including 26,630 complete ORFs, detected 7645 fusion transcripts, 15,355 alternative splicing events, 25,798 simple sequence repeats, 7628 transcription factors, and 35,503 long non-coding RNAs. A total of 40,038 novel transcripts were obtained from the sequencing data, and the proportion was almost close to the number of known transcripts identified. Structural analysis and functional annotation of these novel transcripts resulted in the successful annotation of 9568 transcripts, with the highest and lowest annotation numbers in the Nr and KOG databases, respectively. Weighted gene co-expression network analysis revealed the key regulatory pathways and hub genes at various stages of yak testicular development. Our findings enhance our comprehension of transcriptome complexity, contribute to genome annotation refinement, and provide foundational data for further investigations into male sterility in cattle-yaks.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Lin Xiong
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Yandong Kang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Mengli Cao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Jie Pei
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China.
| | - Xian Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China.
| |
Collapse
|
8
|
Cui L, Zheng Y, Xu R, Lin Y, Zheng J, Lin P, Guo B, Sun S, Zhao X. Alternative pre-mRNA splicing in stem cell function and therapeutic potential: A critical review of current evidence. Int J Biol Macromol 2024; 268:131781. [PMID: 38657924 DOI: 10.1016/j.ijbiomac.2024.131781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Alternative splicing is a crucial regulator in stem cell biology, intricately influencing the functions of various biological macromolecules, particularly pre-mRNAs and the resultant protein isoforms. This regulatory mechanism is vital in determining stem cell pluripotency, differentiation, and proliferation. Alternative splicing's role in allowing single genes to produce multiple protein isoforms facilitates the proteomic diversity that is essential for stem cells' functional complexity. This review delves into the critical impact of alternative splicing on cellular functions, focusing on its interaction with key macromolecules and how this affects cellular behavior. We critically examine how alternative splicing modulates the function and stability of pre-mRNAs, leading to diverse protein expressions that govern stem cell characteristics, including pluripotency, self-renewal, survival, proliferation, differentiation, aging, migration, somatic reprogramming, and genomic stability. Furthermore, the review discusses the therapeutic potential of targeting alternative splicing-related pathways in disease treatment, particularly focusing on the modulation of RNA and protein interactions. We address the challenges and future prospects in this field, underscoring the need for further exploration to unravel the complex interplay between alternative splicing, RNA, proteins, and stem cell behaviors, which is crucial for advancing our understanding and therapeutic approaches in regenerative medicine and disease treatment.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuyu Sun
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
9
|
González-Iglesias A, Arcas A, Domingo-Muelas A, Mancini E, Galcerán J, Valcárcel J, Fariñas I, Nieto MA. Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche. Nat Commun 2024; 15:2837. [PMID: 38565566 PMCID: PMC10987655 DOI: 10.1038/s41467-024-47092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The adult mammalian brain retains some capacity to replenish neurons and glia, holding promise for brain regeneration. Thus, understanding the mechanisms controlling adult neural stem cell (NSC) differentiation is crucial. Paradoxically, adult NSCs in the subependymal zone transcribe genes associated with both multipotency maintenance and neural differentiation, but the mechanism that prevents conflicts in fate decisions due to these opposing transcriptional programmes is unknown. Here we describe intron detention as such control mechanism. In NSCs, while multiple mRNAs from stemness genes are spliced and exported to the cytoplasm, transcripts from differentiation genes remain unspliced and detained in the nucleus, and the opposite is true under neural differentiation conditions. We also show that m6A methylation is the mechanism that releases intron detention and triggers nuclear export, enabling rapid and synchronized responses. m6A RNA methylation operates as an on/off switch for transcripts with antagonistic functions, tightly controlling the timing of NSCs commitment to differentiation.
Collapse
Affiliation(s)
| | - Aida Arcas
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, 03550, Spain
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
| | - Ana Domingo-Muelas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Instituto de Biotecnología y Biomedicina, Universidad de Valencia, Burjassot, 46100, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
- Carlos Simon Foundation, 46980, Paterna, Valencia, Spain
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Igenomix Foundation, 46980, Paterna, Valencia, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Joan Galcerán
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, 03550, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Instituto de Biotecnología y Biomedicina, Universidad de Valencia, Burjassot, 46100, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, 03550, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
10
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
11
|
Sun L, Lv Z, Chen X, Ye R, Tian S, Wang C, Xie X, Yan L, Yao X, Shao Y, Cui S, Chen J, Liu J. Splicing factor SRSF1 is essential for homing of precursor spermatogonial stem cells in mice. eLife 2024; 12:RP89316. [PMID: 38271475 PMCID: PMC10945694 DOI: 10.7554/elife.89316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for continuous spermatogenesis and male fertility. The underlying mechanisms of alternative splicing (AS) in mouse SSCs are still largely unclear. We demonstrated that SRSF1 is essential for gene expression and splicing in mouse SSCs. Crosslinking immunoprecipitation and sequencing data revealed that spermatogonia-related genes (e.g. Plzf, Id4, Setdb1, Stra8, Tial1/Tiar, Bcas2, Ddx5, Srsf10, Uhrf1, and Bud31) were bound by SRSF1 in the mouse testes. Specific deletion of Srsf1 in mouse germ cells impairs homing of precursor SSCs leading to male infertility. Whole-mount staining data showed the absence of germ cells in the testes of adult conditional knockout (cKO) mice, which indicates Sertoli cell-only syndrome in cKO mice. The expression of spermatogonia-related genes (e.g. Gfra1, Pou5f1, Plzf, Dnd1, Stra8, and Taf4b) was significantly reduced in the testes of cKO mice. Moreover, multiomics analysis suggests that SRSF1 may affect survival of spermatogonia by directly binding and regulating Tial1/Tiar expression through AS. In addition, immunoprecipitation mass spectrometry and co-immunoprecipitation data showed that SRSF1 interacts with RNA splicing-related proteins (e.g. SART1, RBM15, and SRSF10). Collectively, our data reveal the critical role of SRSF1 in spermatogonia survival, which may provide a framework to elucidate the molecular mechanisms of the posttranscriptional network underlying homing of precursor SSCs.
Collapse
Affiliation(s)
- Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Xuexue Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Yujing Shao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou UniversityJiangsuChina
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China, Agricultural UniversityBeijingChina
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural UniversityBeijingChina
| |
Collapse
|
12
|
Azhar M, Xu C, Jiang X, Li W, Cao Y, Zhu X, Xing X, Wu L, Zou J, Meng L, Cheng Y, Han W, Bao J. The arginine methyltransferase Prmt1 coordinates the germline arginine methylome essential for spermatogonial homeostasis and male fertility. Nucleic Acids Res 2023; 51:10428-10450. [PMID: 37739418 PMCID: PMC10602896 DOI: 10.1093/nar/gkad769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023] Open
Abstract
Arginine methylation, catalyzed by the protein arginine methyltransferases (PRMTs), is a common post-translational protein modification (PTM) that is engaged in a plethora of biological events. However, little is known about how the methylarginine-directed signaling functions in germline development. In this study, we discover that Prmt1 is predominantly distributed in the nuclei of spermatogonia but weakly in the spermatocytes throughout mouse spermatogenesis. By exploiting a combination of three Cre-mediated Prmt1 knockout mouse lines, we unravel that Prmt1 is essential for spermatogonial establishment and maintenance, and that Prmt1-catalyzed asymmetric methylarginine coordinates inherent transcriptional homeostasis within spermatogonial cells. In conjunction with high-throughput CUT&Tag profiling and modified mini-bulk Smart-seq2 analyses, we unveil that the Prmt1-deposited H4R3me2a mark is permissively enriched at promoter and exon/intron regions, and sculpts a distinctive transcriptomic landscape as well as the alternative splicing pattern, in the mouse spermatogonia. Collectively, our study provides the genetic and mechanistic evidence that connects the Prmt1-deposited methylarginine signaling to the establishment and maintenance of a high-fidelity transcriptomic identity in orchestrating spermatogonial development in the mammalian germline.
Collapse
Affiliation(s)
- Muhammad Azhar
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Caoling Xu
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Xue Jiang
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Wenqing Li
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Yuzhu Cao
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Xiaoli Zhu
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Xuemei Xing
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Limin Wu
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiaqi Zou
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Lan Meng
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Yu Cheng
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Wenjie Han
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Jianqiang Bao
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| |
Collapse
|
13
|
Jeanne F, Bernay B, Sourdaine P. Comparative Proteome Analysis of Four Stages of Spermatogenesis in the Small-Spotted Catshark ( Scyliorhinus canicula), Using High-Resolution NanoLC-ESI-MS/MS. J Proteome Res 2023. [PMID: 37290099 DOI: 10.1021/acs.jproteome.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spermatogenesis is a highly specialized process of cell proliferation and differentiation leading to the production of spermatozoa from spermatogonial stem cells. Due to its testicular anatomy, Scyliorhinus canicula is an interesting model to explore stage-based changes in proteins during spermatogenesis. The proteomes of four testicular zones corresponding to the germinative niche and to spermatocysts (cysts) with spermatogonia (zone A), cysts with spermatocytes (zone B), cysts with young spermatids (zone C), and cysts with late spermatids (zone D) have been analyzed by nanoLC-ESI-MS/MS. Gene ontology and KEGG annotations were also performed. A total of 3346 multiple protein groups were identified. Zone-specific protein analyses highlighted RNA-processing, chromosome-related processes, cilium organization, and cilium activity in zones A, D, C, and D, respectively. Analyses of proteins with zone-dependent abundance revealed processes related to cellular stress, ubiquitin-dependent degradation by the proteasome, post-transcriptional regulation, and regulation of cellular homeostasis. Our results also suggest that the roles of some proteins, such as ceruloplasmin, optineurin, the pregnancy zone protein, PA28β or the Culling-RING ligase 5 complex, as well as some uncharacterized proteins, during spermatogenesis could be further explored. Finally, the study of this shark species allows one to integrate these data in an evolutionary context of the regulation of spermatogenesis. Mass spectrometry data are freely accessible via iProX-integrated Proteome resources (https://www.iprox.cn/) for reuse purposes.
Collapse
Affiliation(s)
- Fabian Jeanne
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Benoît Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen cedex 5, France
| | - Pascal Sourdaine
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| |
Collapse
|