1
|
Schubert SA, Ruano D, Joruiz SM, Stroosma J, Glavak N, Montali A, Pinto LM, Rodríguez-Girondo M, Barge-Schaapveld DQCM, Nielsen M, van Nesselrooij BPM, Mensenkamp AR, van Leerdam ME, Sharp TH, Morreau H, Bourdon JC, de Miranda NFCC, van Wezel T. Germline variant affecting p53β isoforms predisposes to familial cancer. Nat Commun 2024; 15:8208. [PMID: 39294166 PMCID: PMC11410958 DOI: 10.1038/s41467-024-52551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
Germline and somatic TP53 variants play a crucial role during tumorigenesis. However, genetic variations that solely affect the alternatively spliced p53 isoforms, p53β and p53γ, are not fully considered in the molecular diagnosis of Li-Fraumeni syndrome and cancer. In our search for additional cancer predisposing variants, we identify a heterozygous stop-lost variant affecting the p53β isoforms (p.*342Serext*17) in four families suspected of an autosomal dominant cancer syndrome with colorectal, breast and papillary thyroid cancers. The stop-lost variant leads to the 17 amino-acid extension of the p53β isoforms, which increases oligomerization to canonical p53α and dysregulates the expression of p53's transcriptional targets. Our study reveals the capacity of p53β mutants to influence p53 signalling and contribute to the susceptibility of different cancer types. These findings underscore the significance of p53 isoforms and the necessity of comprehensive investigation into the entire TP53 gene in understanding cancer predisposition.
Collapse
Affiliation(s)
- Stephanie A Schubert
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jordy Stroosma
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nikolina Glavak
- School of Medicine, University of Dundee, Dundee, UK
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Anna Montali
- School of Medicine, University of Dundee, Dundee, UK
| | - Lia M Pinto
- School of Medicine, University of Dundee, Dundee, UK
| | - Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, Section of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Giovannini S, Smirnov A, Concetti L, Scimeca M, Mauriello A, Bischof J, Rovella V, Melino G, Buonomo CO, Candi E, Bernassola F. A comprehensive molecular characterization of a claudin-low luminal B breast tumor. Biol Direct 2024; 19:66. [PMID: 39152485 PMCID: PMC11328405 DOI: 10.1186/s13062-024-00482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 08/19/2024] Open
Abstract
Breast cancer is the most common cause of death from cancer in women. Here, we present the case of a 43-year-old woman, who received a diagnosis of claudin-low luminal B breast cancer. The lesion revealed to be a poorly differentiated high-grade infiltrating ductal carcinoma, which was strongly estrogen receptor (ER)/progesterone receptor (PR) positive and human epidermal growth factor receptor (HER2) negative. Her tumor underwent in-depth chromosomal, mutational and gene expression analyses. We found a pathogenic protein truncating mutation in the TP53 gene, which is predicted to disrupt its transcriptional activity. The patient also harbors germline mutations in some mismatch repair (MMR) genes, and her tumor displays the presence of immune infiltrates, high tumor mutational burden (TMB) status and the apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3) associated signatures, which, overall, are predictive for the use of immunotherapy. Here, we propose promising prognostic indicators as well as potential therapeutic strategies based on the molecular characterization of the tumor.
Collapse
Affiliation(s)
- Sara Giovannini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Livia Concetti
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Julia Bischof
- Germany Biochemistry Laboratory, Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Claudio Oreste Buonomo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
3
|
Liu Y, Su Z, Tavana O, Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024; 42:946-967. [PMID: 38729160 PMCID: PMC11190820 DOI: 10.1016/j.ccell.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhenyi Su
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Omid Tavana
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Oren M, Prives C. p53: A tale of complexity and context. Cell 2024; 187:1569-1573. [PMID: 38552605 DOI: 10.1016/j.cell.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
The story of p53 is illuminating. Despite widespread attention, the tumor-suppressive functions of wild-type p53 or the oncogenic activities of its cancer-associated mutants are still not fully understood, and our discoveries have not yet led to major therapeutic breakthroughs. There is still much to learn about this fascinating protein.
Collapse
Affiliation(s)
- Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Hill RJ, Bona N, Smink J, Webb HK, Crisp A, Garaycoechea JI, Crossan GP. p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice. Nat Commun 2024; 15:2518. [PMID: 38514641 PMCID: PMC10957910 DOI: 10.1038/s41467-024-46844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
DNA repair deficiency can lead to segmental phenotypes in humans and mice, in which certain tissues lose homeostasis while others remain seemingly unaffected. This may be due to different tissues facing varying levels of damage or having different reliance on specific DNA repair pathways. However, we find that the cellular response to DNA damage determines different tissue-specific outcomes. Here, we use a mouse model of the human XPF-ERCC1 progeroid syndrome (XFE) caused by loss of DNA repair. We find that p53, a central regulator of the cellular response to DNA damage, regulates tissue dysfunction in Ercc1-/- mice in different ways. We show that ablation of p53 rescues the loss of hematopoietic stem cells, and has no effect on kidney, germ cell or brain dysfunction, but exacerbates liver pathology and polyploidisation. Mechanistically, we find that p53 ablation led to the loss of cell-cycle regulation in the liver, with reduced p21 expression. Eventually, p16/Cdkn2a expression is induced, serving as a fail-safe brake to proliferation in the absence of the p53-p21 axis. Taken together, our data show that distinct and tissue-specific functions of p53, in response to DNA damage, play a crucial role in regulating tissue-specific phenotypes.
Collapse
Affiliation(s)
- Ross J Hill
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Nazareno Bona
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Job Smink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Hannah K Webb
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Juan I Garaycoechea
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands.
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
6
|
Indeglia A, Murphy ME. Elucidating the chain of command: our current understanding of critical target genes for p53-mediated tumor suppression. Crit Rev Biochem Mol Biol 2024; 59:128-138. [PMID: 38661126 PMCID: PMC11209770 DOI: 10.1080/10409238.2024.2344465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
TP53 encodes a transcription factor that is centrally-involved in several pathways, including the control of metabolism, the stress response, DNA repair, cell cycle arrest, senescence, programmed cell death, and others. Since the discovery of TP53 as the most frequently-mutated tumor suppressor gene in cancer over four decades ago, the field has focused on uncovering target genes of this transcription factor that are essential for tumor suppression. This search has been fraught with red herrings, however. Dozens of p53 target genes were discovered that had logical roles in tumor suppression, but subsequent data showed that most were not tumor suppressive, and were dispensable for p53-mediated tumor suppression. In this review, we focus on p53 transcriptional targets in two categories: (1) canonical targets like CDKN1A (p21) and BBC3 (PUMA), which clearly play critical roles in p53-mediated cell cycle arrest/senescence and cell death, but which are not mutated in cancer, and for which knockout mice fail to develop spontaneous tumors; and (2) a smaller category of recently-described p53 target genes that are mutated in human cancer, and which appear to be critical for tumor suppression by p53. Interestingly, many of these genes encode proteins that control broad cellular pathways, like splicing and protein degradation, and several of them encode proteins that feed back to regulate p53. These include ZMAT3, GLS2, PADI4, ZBXW7, RFX7, and BTG2. The findings from these studies provide a more complex, but exciting, potential framework for understanding the role of p53 in tumor suppression.
Collapse
Affiliation(s)
- Alexandra Indeglia
- The Wistar Institute, Philadelphia PA 19104
- Biochemistry and Molecular Biophysics Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104
| | | |
Collapse
|
7
|
Kim K, Park MH. Role of Functionalized Peptides in Nanomedicine for Effective Cancer Therapy. Biomedicines 2024; 12:202. [PMID: 38255307 PMCID: PMC10813321 DOI: 10.3390/biomedicines12010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Peptide-functionalized nanomedicine, which addresses the challenges of specificity and efficacy in drug delivery, is emerging as a pivotal approach for cancer therapy. Globally, cancer remains a leading cause of mortality, and conventional treatments, such as chemotherapy, often lack precision and cause adverse effects. The integration of peptides into nanomedicine offers a promising solution for enhancing the targeting and delivery of therapeutic agents. This review focuses on the three primary applications of peptides: cancer cell-targeting ligands, building blocks for self-assembling nanostructures, and elements of stimuli-responsive systems. Nanoparticles modified with peptides improved targeting of cancer cells, minimized damage to healthy tissues, and optimized drug delivery. The versatility of self-assembled peptide structures makes them an innovative vehicle for drug delivery by leveraging their biocompatibility and diverse nanoarchitectures. In particular, the mechanism of cell death induced by self-assembled structures offers a novel approach to cancer therapy. In addition, peptides in stimuli-responsive systems enable precise drug release in response to specific conditions in the tumor microenvironment. The use of peptides in nanomedicine not only augments the efficacy and safety of cancer treatments but also suggests new research directions. In this review, we introduce systems and functionalization methods using peptides or peptide-modified nanoparticles to overcome challenges in the treatment of specific cancers, including breast cancer, lung cancer, colon cancer, prostate cancer, pancreatic cancer, liver cancer, skin cancer, glioma, osteosarcoma, and cervical cancer.
Collapse
Affiliation(s)
- Kibeom Kim
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Myoung-Hwan Park
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
8
|
Zhou S, Chai D, Wang X, Neeli P, Yu X, Davtyan A, Young K, Li Y. AI-powered discovery of a novel p53-Y220C reactivator. Front Oncol 2023; 13:1229696. [PMID: 37593097 PMCID: PMC10430779 DOI: 10.3389/fonc.2023.1229696] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction The p53-Y220C mutation is one of the most common mutations that play a major role in cancer progression. Methods In this study, we applied artificial intelligence (AI)-powered virtual screening to identify small-molecule compounds that specifically restore the wild-type p53 conformation from p53-Y220C. From 10 million compounds, the AI algorithm selected a chemically diverse set of 83 high-scoring hits, which were subjected to several experimental assays using cell lines with different p53 mutations. Results We identified one compound, H3, that preferentially killed cells with the p53-Y220C mutation compared to cells with other p53 mutations. H3 increased the amount of folded mutant protein with wild-type p53 conformation, restored its transcriptional functions, and caused cell cycle arrest and apoptosis. Furthermore, H3 reduced tumorigenesis in a mouse xenograft model with p53-Y220C-positive cells. Conclusion AI enabled the discovery of the H3 compound that selectively reactivates the p53-Y220C mutant and inhibits tumor development in mice.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Xu Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Praveen Neeli
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Xinfang Yu
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | | | - Ken Young
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
9
|
Stieg D, Casey K, Murphy ME. p53 Oligomerization Domain Mutants: A New Class of Mutants That Retain "License to Kill". Cancer Discov 2023; 13:1046-1048. [PMID: 37139723 DOI: 10.1158/2159-8290.cd-23-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
SUMMARY In this issue of Cancer Discovery, companion articles from the Prives and Lozano groups describe functional analyses of a common dimeric mutant of p53 found in Li-Fraumeni disease and sporadic cancer: A347D (AD). The authors show that the AD mutant is completely defective for canonical p53 transcriptional function, but interestingly retains some tumor suppressor function, which they show is manifested as "neomorphic" activities in transcription and the control of mitochondrial metabolism. See related article by Gencel-Augusto et al., p. 1230 (7). See related article by Choe et al., p. 1250 (6).
Collapse
Affiliation(s)
- David Stieg
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Kaitlyn Casey
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
- Graduate Program in Cancer Biology, Saint Joseph's University, Philadelphia, Pennsylvania
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|