1
|
Xia L, Guo X, Lu D, Jiang Y, Liang X, Shen Y, Lin J, Zhang L, Chen H, Jin J, Luan X, Zhang W. S100A13-driven interaction between pancreatic adenocarcinoma cells and cancer-associated fibroblasts promotes tumor progression through calcium signaling. Cell Commun Signal 2025; 23:51. [PMID: 39871271 PMCID: PMC11773924 DOI: 10.1186/s12964-025-02049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are key components of the pancreatic adenocarcinoma (PAAD) tumor microenvironment (TME), where they promote tumor progression and metastasis through immunosuppressive functions. Although significant progress has been made in understanding the crosstalk between cancer cells and CAFs, many underlying mechanisms remain unclear. Recent studies have highlighted the importance of calcium signaling in enhancing interactions between tumor cells and the surrounding stroma, with the S100 family of proteins serving as important regulators. While the roles of some S100 proteins have been extensively studied, others, such as S100A13, remain less well understood. METHODS Bioinformatic analysis was employed to predict the pathogenic potential of CAFs and S100A13. Stable S100A13 knockdown CAFs were generated using a short hairpin RNA system. Cellular viability and apoptosis rates were evaluated through CCK-8 and flow cytometry tests, respectively. Additionally, the wound healing and migration assays were conducted to assess the invasive and metastatic capabilities. Transcriptome analysis was conducted to identify differential gene expression and associated signaling pathways in PAAD cells derived from an indirect culture system. Furthermore, the protumoral role of S100A13 in PAAD was further verified using both 3D bioprinting and cell line-based xenograft tumor models. RESULTS In this study, we identified a strong association between S100A13, a calcium-binding protein, and CAFs in PAAD. Gene expression analysis revealed that S100A13 was highly expressed in CAFs and correlated with poor prognosis. Knockdown of S100A13 in CAFs reduced the metastatic potential of PAAD cells. In addition, S100A13 depletion impaired cell motility and calcium signaling pathways within the TME. Furthermore, silencing S100A13 in CAFs markedly slowed PAAD progression in both tumor spheroids and Balb/c nude mice. CONCLUSIONS Together, our findings underscore the critical role of CAFs-derived S100A13 in PAAD progression and suggest that targeting S100A13 may offer a promising therapeutic strategy for PAAD.
Collapse
Affiliation(s)
- Liuyuan Xia
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xin Guo
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yixin Jiang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaohui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiwen Shen
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Weidong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100700, China.
| |
Collapse
|
2
|
Tahara S, Nojima S, Takashima T, Okuzaki D, Morii E. Mesothelin promotes the migration of endometrioid carcinoma and is associated with the MELF pattern. Pathol Res Pract 2024; 262:155562. [PMID: 39182448 DOI: 10.1016/j.prp.2024.155562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Mesothelin (MSLN) is expressed in the mesothelium in normal tissues but is overexpressed in various malignant tumors. In this study, we searched for genes that were more frequently expressed in cases of endometrioid carcinoma (EC) with the MELF (microcystic, elongated, and fragmented) pattern using laser microdissection and RNA sequencing, and found that MSLN was predominantly expressed in cases with the MELF pattern. The role of MSLN in EC was analyzed by generating MSLN-knockout and -knockdown EC cell lines. MSLN promoted migration and epithelial-mesenchymal transition (EMT). Moreover, we found that cadherin-6 (CDH6) expression was regulated by MSLN. MSLN is known to bind to cancer antigen 125 (CA125), and we found that CA125 can regulate CDH6 expression via MSLN. Immunohistochemical investigations showed that MSLN, CA125, and CDH6 expression levels were considerably elevated in EC with the MELF pattern. The expression of CA125 was similar to that of MSLN not only in terms of immunohistochemical staining intensity but also the blood level of CA125. Our results showed that MSLN contributes to the migration and EMT of EC cells through upstream CA125 and downstream CDH6. Therefore, MSLN has potential as a therapeutic target for EC with the MELF pattern.
Collapse
Affiliation(s)
- Shinichiro Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Takashima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
3
|
Nadalin F, Marzi MJ, Pirra Piscazzi M, Fuentes-Bravo P, Procaccia S, Climent M, Bonetti P, Rubolino C, Giuliani B, Papatheodorou I, Marioni JC, Nicassio F. Multi-omic lineage tracing predicts the transcriptional, epigenetic and genetic determinants of cancer evolution. Nat Commun 2024; 15:7609. [PMID: 39218912 PMCID: PMC11366763 DOI: 10.1038/s41467-024-51424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is a highly heterogeneous disease, where phenotypically distinct subpopulations coexist and can be primed to different fates. Both genetic and epigenetic factors may drive cancer evolution, however little is known about whether and how such a process is pre-encoded in cancer clones. Using single-cell multi-omic lineage tracing and phenotypic assays, we investigate the predictive features of either tumour initiation or drug tolerance within the same cancer population. Clones primed to tumour initiation in vivo display two distinct transcriptional states at baseline. Remarkably, these states share a distinctive DNA accessibility profile, highlighting an epigenetic basis for tumour initiation. The drug tolerant niche is also largely pre-encoded, but only partially overlaps the tumour-initiating one and evolves following two genetically and transcriptionally distinct trajectories. Our study highlights coexisting genetic, epigenetic and transcriptional determinants of cancer evolution, unravelling the molecular complexity of pre-encoded tumour phenotypes.
Collapse
Affiliation(s)
- F Nadalin
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.
| | - M J Marzi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - M Pirra Piscazzi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - P Fuentes-Bravo
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - S Procaccia
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - M Climent
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - P Bonetti
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - C Rubolino
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - B Giuliani
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - I Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - J C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - F Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy.
| |
Collapse
|
4
|
Qi Y, Wei Y, Li L, Ge H, Wang Y, Zeng C, Ma F. Genetic factors in the pathogenesis of cardio-oncology. J Transl Med 2024; 22:739. [PMID: 39103883 DOI: 10.1186/s12967-024-05537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
In recent years, with advancements in medicine, the survival period of patients with tumours has significantly increased. The adverse effects of tumour treatment on patients, especially cardiac toxicity, have become increasingly prominent. In elderly patients with breast cancer, treatment-related cardiovascular toxicity has surpassed cancer itself as the leading cause of death. Moreover, in recent years, an increasing number of novel antitumour drugs, such as multitargeted agents, antibody‒drug conjugates (ADCs), and immunotherapies, have been applied in clinical practice. The cardiotoxicity induced by these drugs has become more pronounced, leading to a complex and diverse mechanism of cardiac damage. The risks of unintended cardiovascular toxicity are increased by high-dose anthracyclines, immunotherapies, and concurrent radiation, in addition to traditional cardiovascular risk factors such as smoking, hypertension, diabetes, hyperlipidaemia, and obesity. However, these factors do not fully explain why only a subset of individuals experience treatment-related cardiac toxicity, whereas others with similar clinical features do not. Recent studies indicate that genetics play a significant role in susceptibility to the development of cardiovascular toxicity from cancer therapies. These genes are involved in drug metabolism, oxidative damage, cardiac dysfunction, and other processes. Moreover, emerging evidence suggests that epigenetics also plays a role in drug-induced cardiovascular toxicity. We conducted a review focusing on breast cancer as an example to help oncologists and cardiologists better understand the mechanisms and effects of genetic factors on cardiac toxicity. In this review, we specifically address the relationship between genetic alterations and cardiac toxicity, including chemotherapy-related genetic changes, targeted therapy-related genetic changes, and immune therapy-related genetic changes. We also discuss the role of epigenetic factors in cardiac toxicity. We hope that this review will improve the risk stratification of patients and enable therapeutic interventions that mitigate these unintended adverse consequences of life-saving cancer treatments.
Collapse
Affiliation(s)
- Yalong Qi
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Yuhan Wei
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Lixi Li
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Hewei Ge
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Yuanyi Wang
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Cheng Zeng
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Fei Ma
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China.
| |
Collapse
|
5
|
Fu Y, Tao J, Liu T, Liu Y, Qiu J, Su D, Wang R, Luo W, Cao Z, Weng G, Zhang T, Zhao Y. Unbiasedly decoding the tumor microenvironment with single-cell multiomics analysis in pancreatic cancer. Mol Cancer 2024; 23:140. [PMID: 38982491 PMCID: PMC11232163 DOI: 10.1186/s12943-024-02050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor prognosis and limited therapeutic options. Research on the tumor microenvironment (TME) of PDAC has propelled the development of immunotherapeutic and targeted therapeutic strategies with a promising future. The emergence of single-cell sequencing and mass spectrometry technologies, coupled with spatial omics, has collectively revealed the heterogeneity of the TME from a multiomics perspective, outlined the development trajectories of cell lineages, and revealed important functions of previously underrated myeloid cells and tumor stroma cells. Concurrently, these findings necessitated more refined annotations of biological functions at the cell cluster or single-cell level. Precise identification of all cell clusters is urgently needed to determine whether they have been investigated adequately and to identify target cell clusters with antitumor potential, design compatible treatment strategies, and determine treatment resistance. Here, we summarize recent research on the PDAC TME at the single-cell multiomics level, with an unbiased focus on the functions and potential classification bases of every cellular component within the TME, and look forward to the prospects of integrating single-cell multiomics data and retrospectively reusing bulk sequencing data, hoping to provide new insights into the PDAC TME.
Collapse
Affiliation(s)
- Yifan Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tao Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guihu Weng
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00960-8. [PMID: 38806997 DOI: 10.1007/s13402-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.
Collapse
Affiliation(s)
- Jessica Kalla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Ferreira N, Kulkarni A, Agorku D, Midelashvili T, Hardt O, Legler TJ, Ströbel P, Conradi LC, Alves F, Ramos-Gomes F, Markus MA. OrganoIDNet: a deep learning tool for identification of therapeutic effects in PDAC organoid-PBMC co-cultures from time-resolved imaging data. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00958-2. [PMID: 38805131 DOI: 10.1007/s13402-024-00958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE Pancreatic Ductal Adenocarcinoma (PDAC) remains a challenging disease due to its complex biology and aggressive behavior with an urgent need for efficient therapeutic strategies. To assess therapy response, pre-clinical PDAC organoid-based models in combination with accurate real-time monitoring are required. METHODS We established stable live-imaging organoid/peripheral blood mononuclear cells (PBMCs) co-cultures and introduced OrganoIDNet, a deep-learning-based algorithm, capable of analyzing bright-field images of murine and human patient-derived PDAC organoids acquired with live-cell imaging. We investigated the response to the chemotherapy gemcitabine in PDAC organoids and the PD-L1 inhibitor Atezolizumab, cultured with or without HLA-matched PBMCs over time. Results obtained with OrganoIDNet were validated with the endpoint proliferation assay CellTiter-Glo. RESULTS Live cell imaging in combination with OrganoIDNet accurately detected size-specific drug responses of organoids to gemcitabine over time, showing that large organoids were more prone to cytotoxic effects. This approach also allowed distinguishing between healthy and unhealthy status and measuring eccentricity as organoids' reaction to therapy. Furthermore, imaging of a new organoids/PBMCs sandwich-based co-culture enabled longitudinal analysis of organoid responses to Atezolizumab, showing an increased potency of PBMCs tumor-killing in an organoid-individual manner when Atezolizumab was added. CONCLUSION Optimized PDAC organoid imaging analyzed by OrganoIDNet represents a platform capable of accurately detecting organoid responses to standard PDAC chemotherapy over time. Moreover, organoid/immune cell co-cultures allow monitoring of organoid responses to immunotherapy, offering dynamic insights into treatment behavior within a co-culture setting with PBMCs. This setup holds promise for real-time assessment of immunotherapeutic effects in individual patient-derived PDAC organoids.
Collapse
Affiliation(s)
- Nathalia Ferreira
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ajinkya Kulkarni
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - David Agorku
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Teona Midelashvili
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Olaf Hardt
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tobias J Legler
- Department of Transfusion Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Frauke Alves
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Hematology and Medical Oncology, Department of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - M Andrea Markus
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
8
|
Fan B, Wang L, Wang J. RAB22A as a predictor of exosome secretion in the progression and relapse of multiple myeloma. Aging (Albany NY) 2024; 16:4169-4190. [PMID: 38431306 PMCID: PMC10968671 DOI: 10.18632/aging.205565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable malignant plasma cell disease. We explored the role of RAB22A in exosome secretion, epithelial-mesenchymal transition (EMT) and immune regulation. METHODS We obtained MM samples from Gene Expression Omnibus (GEO) data sets. We downloaded the "IOBR" package, and used the "PCA" and "ssGSEA" algorithms to calculate the EMT scores and exosome scores. The "CIBERSORT" package was used to analyze the infiltration of immune cells. We extracted the exosomes of mesenchymal stem cell (MSC) to verify the biological function of RAB22A. RESULTS The expression level of RAB22A in smoldering multiple myeloma (SMM) and MM patients was significantly higher than that in normal people and monoclonal gammopathy of undetermined significance (MGUS) patients, and the expression level of RAB22A in relapse MM patients was significantly higher than that in newly diagnosed patients. The EMT scores and exosome scores of high RAB22A group were significantly higher than those of low RAB22A group, and the exosome scores of MSC in recurrent patients were significantly higher than those of newly diagnosed patients. In addition, the infiltration levels of monocyte, NK cells resting, eosinophils, T cells regulatory and T cells CD4 memory activated were positively correlated with RAB22A. After down-regulating the expression of RAB22A in MM-MSC, the secretion of exosomes decreased. Compared with the exosomes of MSC in si-RAB22A group, the exosomes in control group significantly promoted the proliferation of MM. CONCLUSIONS RAB22A is a potential therapeutic target to improve the prognosis of MM, which is closely related to exosome secretion, EMT and immune cell infiltration.
Collapse
Affiliation(s)
- Bingjie Fan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
- Clinical Medicine College of Guizhou Medical University, Guiyang, China
| | - Li Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
- Clinical Medicine College of Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
- Clinical Medicine College of Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Low RRJ, Fung KY, Dagley LF, Yousef J, Emery-Corbin SJ, Putoczki TL. Unbiased Quantitative Proteomics of Organoid Models of Pancreatic Cancer. Methods Mol Biol 2024; 2823:77-93. [PMID: 39052215 DOI: 10.1007/978-1-0716-3922-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal solid malignancy with many patients succumbing to the disease within 6 months of diagnosis. The mechanisms that underlie PDAC initiation and progression are poorly understood. Current treatment options are primarily limited to chemotherapy, which is often provided with palliative intent. Unfortunately, there are no robust biomarkers to guide treatment selection or monitor treatment response. This is concerning given the increasing incidence of this cancer. We and others have generated organoid models to explore the biology underlying PDAC with the goal of identifying new therapeutic targets. Here we provide protocols to generate a preclinical PDAC organoid model and methods to use these to define the proteomic landscape of this cancer.
Collapse
Affiliation(s)
- Ronnie Ren Jie Low
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Currently at the DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ka Yee Fung
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jumana Yousef
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Samantha J Emery-Corbin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
10
|
Michiels E, Madhloum H, Van Lint S, Messaoudi N, Kunda R, Martens S, Giron P, Olsen C, Lefesvre P, Dusetti N, El Mohajer L, Tomasini R, Hawinkels LJ, Ahsayni F, Nicolle R, Arsenijevic T, Bouchart C, Van Laethem JL, Rooman I. High-resolution and quantitative spatial analysis reveal intra-ductal phenotypic and functional diversification in pancreatic cancer. J Pathol 2024; 262:76-89. [PMID: 37842959 DOI: 10.1002/path.6212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 10/17/2023]
Abstract
A 'classical' and a 'basal-like' subtype of pancreatic cancer have been reported, with differential expression of GATA6 and different dosages of mutant KRAS. We established in situ detection of KRAS point mutations and mRNA panels for the consensus subtypes aiming to project these findings to paraffin-embedded clinical tumour samples for spatial quantitative analysis. We unveiled that, next to inter-patient and intra-patient inter-ductal heterogeneity, intraductal spatial phenotypes exist with anti-correlating expression levels of GATA6 and KRASG12D . The basal-like mRNA panel better captured the basal-like cell states than widely used protein markers. The panels corroborated the co-existence of the classical and basal-like cell states in a single tumour duct with functional diversification, i.e. proliferation and epithelial-to-mesenchymal transition respectively. Mutant KRASG12D detection ascertained an epithelial origin of vimentin-positive cells in the tumour. Uneven spatial distribution of cancer-associated fibroblasts could recreate similar intra-organoid diversification. This extensive heterogeneity with functional cooperation of plastic tumour cells poses extra challenges to therapeutic approaches. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ellis Michiels
- Laboratory of Medical & Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hediel Madhloum
- Laboratory of Medical & Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Silke Van Lint
- Laboratory of Medical & Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Nouredin Messaoudi
- Department of Surgery, Department of Gastroenterology-Hepatology, Department of Advanced Interventional Endoscopy, Universitair Ziekenhuis Brussel (UZB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Rastislav Kunda
- Department of Surgery, Department of Gastroenterology-Hepatology, Department of Advanced Interventional Endoscopy, Universitair Ziekenhuis Brussel (UZB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sandrina Martens
- Laboratory of Medical & Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Philippe Giron
- Centre for Medical Genetics, Clinical Sciences, Reproduction and Genetics Research Group, Universitair Ziekenhuis Brussel (UZB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Catharina Olsen
- Centre for Medical Genetics, Clinical Sciences, Reproduction and Genetics Research Group, Universitair Ziekenhuis Brussel (UZB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pierre Lefesvre
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZB), Brussels, Belgium
| | - Nelson Dusetti
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille, Marseille University, Marseille, France
| | - Leila El Mohajer
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille, Marseille University, Marseille, France
| | - Richard Tomasini
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille, Marseille University, Marseille, France
| | - Lukas Jac Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Farah Ahsayni
- Department of Surgery, Department of Gastroenterology-Hepatology, Department of Advanced Interventional Endoscopy, Universitair Ziekenhuis Brussel (UZB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Rémy Nicolle
- Centre de Recherche sur l'inflammation (CRI), INSERM, Paris, France
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, HUB Bordet Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation-Oncology, Université Libre de Bruxelles (ULB), Hospital Universitaire de Bruxelles (HUB) Institut Jules Bordet, Brussels, Belgium
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, HUB Bordet Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Ilse Rooman
- Laboratory of Medical & Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
11
|
Weng G, Tao J, Liu Y, Qiu J, Su D, Wang R, Luo W, Zhang T. Organoid: Bridging the gap between basic research and clinical practice. Cancer Lett 2023; 572:216353. [PMID: 37599000 DOI: 10.1016/j.canlet.2023.216353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Nowadays, the diagnosis and treatment system of malignant tumors has increasingly tended to be more precise and personalized while the existing tumor models are still unable to fully meet the needs of clinical practice. Notably, the emerging organoid platform has been proven to have huge potential in the field of basic-translational medicine, which is expected to promote a paradigm shift in personalized medicine. Here, given the unique advantages of organoid platform, we mainly explore the prominent role of organoid models in basic research and clinical practice from perspectives of tumor biology, tumorigenic microbes-host interaction, clinical decision-making, and regenerative strategy. In addition, we also put forward some practical suggestions on how to construct a new generation of organoid platform, which is destined to vigorously promote the reform of basic-translational medicine.
Collapse
Affiliation(s)
- Guihu Weng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Dan Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Ruobing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|