1
|
Arachchi UPE, Madushani KP, Shanaka KASN, Kim G, Lim C, Yang H, Jayamali BPMV, Kodagoda YK, Warnakula WADLR, Jung S, Wan Q, Lee J. Characterization of tripartite motif containing 59 (TRIM59) in Epinephelus akaara: Insights into its immune involvement and functional properties in viral pathogenesis, macrophage polarization, and apoptosis regulation. FISH & SHELLFISH IMMUNOLOGY 2024; 157:110082. [PMID: 39645217 DOI: 10.1016/j.fsi.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The tripartite motif-containing (TRIM) superfamily is the largest family of RING-type E3 ubiquitin ligases that is conserved across the metazoan kingdom. Previous studies in mammals have demonstrated that TRIM59 possesses ubiquitin-protein ligase activity and acts as a negative regulator of NF-κB signaling. However, TRIM59 has rarely been characterized in fish. This study aimed to characterize TRIM59 from Epinephelus akaara (Eatrim59) and elucidate its structural features, expression patterns, and functional properties in innate immune responses and in the regulation of apoptosis. Eatrim59 is composed of 406 amino acids with a molecular weight of 45.84 kDa and a theoretical isoelectric point of 5.25. It comprises a conserved RING domain, a B-box motif, and a coiled-coil region. Subcellular localization analysis revealed that Eatrim59 was localized in the endoplasmic reticulum. Eatrim59 was ubiquitously expressed in all tissues examined, with the highest relative expression detected in the blood, followed by the brain and spleen. Temporal expression of Eatrim59 was dynamically regulated in response to in vivo immune stimulation by Toll-like receptor ligands and nervous necrosis virus infection. In FHM cells overexpressing Eatrim59, an increase in viral replication was observed upon infection with the Viral hemorrhagic septicemia virus. This phenomenon is attributed to Eatrim59-mediated downregulation of interferon, pro-inflammatory cytokines, and other antiviral pathways. Moreover, macrophages stably overexpressing Eatrim59 exhibited a decrease in nitric oxide production and the formation of a filamentous actin structure upon lipopolysaccharide stimulation, indicating dampened M1 polarization. Furthermore, a decrease in apoptosis was observed in Eatrim59-overexpressing FHM cells under oxidative stress induced by H2O2. In conclusion, these findings demonstrate the multifaceted role of Eatrim59 as a regulator of innate immune response and apoptosis in E. akaara.
Collapse
Affiliation(s)
- U P E Arachchi
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K P Madushani
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Hyerim Yang
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yasara Kavindi Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
2
|
Serradimigni R, Rojas A, Pal U, Pathirajage KS, Bryan M, Sharma S, Dasgupta S. Flame retardant tetrabromobisphenol A (TBBPA) disrupts histone acetylation during zebrafish maternal-to-zygotic transition. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135845. [PMID: 39305598 DOI: 10.1016/j.jhazmat.2024.135845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
3,3',5.5'-Tetrabromobisphenol A (TBBPA) is a widely used brominated flame-retardant. The objective of this study is to use zebrafish as a model and determine the effects of TBBPA exposure on early embryogenesis. We initiated TBBPA exposures at 0.75 h post fertilization (hpf) and showed that TBBPA induced developmental delays during maternal-to-zygotic transition (MZT) and zygotic genome activation (ZGA). To examine the genetic basis of TBBPA-induced delays, we conducted mRNA-sequencing on embryos exposed to 0 or 40 μM TBBPA from 0.75 hpf to 2, 3.5 or 4.5 hpf. Read count data showed that while TBBPA exposures had no overall impacts on maternal or maternal-zygotic genes, collective read counts for zygotically activated genes were lower in TBBPA treatment at 4.5 hpf compared to time-matched controls, suggesting that TBBPA delays ZGA. Gene ontology assessments for both time- and stage-matched differentially expressed genes revealed TBBPA-induced inhibition of chromatin assembly- a process regulated by histone modifications. Immunostaining and in vitro experiments showed inhibition of histone H3 lysine 27 acetylation (H3K27Ac) as well as its catalyzing enzyme, p300. Finally, co-exposure with a p300 activator showed partial mitigation of effects, demonstrating that inhibition of histone acetylation drives TBBPA-induced developmental delays.
Collapse
Affiliation(s)
| | - Alfredo Rojas
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Uttam Pal
- Technical Research Centre, S.N. Bose National Centre for Basic Sciences, Kolkata, WB, India
| | | | - Madeline Bryan
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Sunil Sharma
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Subham Dasgupta
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
3
|
Chiang DC, Yap BK. TRIM25, TRIM28 and TRIM59 and Their Protein Partners in Cancer Signaling Crosstalk: Potential Novel Therapeutic Targets for Cancer. Curr Issues Mol Biol 2024; 46:10745-10761. [PMID: 39451518 PMCID: PMC11506413 DOI: 10.3390/cimb46100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Aberrant expression of TRIM proteins has been correlated with poor prognosis and metastasis in many cancers, with many TRIM proteins acting as key oncogenic factors. TRIM proteins are actively involved in many cancer signaling pathways, such as p53, Akt, NF-κB, MAPK, TGFβ, JAK/STAT, AMPK and Wnt/β-catenin. Therefore, this review attempts to summarize how three of the most studied TRIMs in recent years (i.e., TRIM25, TRIM28 and TRIM59) are involved directly and indirectly in the crosstalk between the signaling pathways. A brief overview of the key signaling pathways involved and their general cross talking is discussed. In addition, the direct interacting protein partners of these TRIM proteins are also highlighted in this review to give a picture of the potential protein-protein interaction that can be targeted for future discovery and for the development of novel therapeutics against cancer. This includes some examples of protein partners which have been proposed to be master switches to various cancer signaling pathways.
Collapse
Affiliation(s)
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| |
Collapse
|
4
|
Wu T, Zhou H, Wang L, Tan J, Gao W, Wu Y, Zhao D, Shen C, Zheng B, Huang X, Shao B. TRIM59 is required for mouse GC-1 cell maintenance through modulating the ubiquitination of AXIN1. Heliyon 2024; 10:e36744. [PMID: 39263074 PMCID: PMC11387378 DOI: 10.1016/j.heliyon.2024.e36744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Tripartite motif-containing protein 59 (TRIM59) is a biomarker for multiple tumors with crucial roles. However, the specific role of TRIM59 in germ cells remains largely unknown. Here, we investigated the effects and underlying regulatory mechanisms of TRIM59 on germ cells using the mouse spermatogonial cell line GC-1. Our results demonstrated that TRIM59 promoted proliferation and inhibited apoptosis of GC-1 cells. Mechanistically, TRIM59 maintained GC-1 cell behaviors through ubiquitination of AXIN1 to activate β-catenin signaling. Furthermore, activation of β-catenin signaling reversed the effects mediated by Trim59 knockdown in GC-1 cells. Collectively, our study revealed a major role and regulatory mechanism of TRIM59 in GC-1 cells, which sheds new light on the molecular pathogenesis of defects in spermatogenesis and may provide therapeutic targets for treatment of male infertility.
Collapse
Affiliation(s)
- Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Lulu Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Jianxin Tan
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Wenxin Gao
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Dan Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Xiaoyan Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Binbin Shao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| |
Collapse
|
5
|
Cao J, Yang M, Guo D, Tao Z, Hu X. Emerging roles of tripartite motif family proteins (TRIMs) in breast cancer. Cancer Med 2024; 13:e7472. [PMID: 39016065 PMCID: PMC11252664 DOI: 10.1002/cam4.7472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Breast cancer (BC) is the most common malignant tumor worldwide. Despite enormous progress made in the past decades, the underlying mechanisms of BC remain further illustrated. Recently, TRIM family proteins proved to be engaged in BC progression through regulating various aspects. Here we reviewed the structures and basic functions of TRIM family members and first classified them into three groups according to canonical polyubiquitination forms that they could mediate: K48- only, K63- only, and both K48- and K63-linked ubiquitination. Afterwards, we focused on the specific biological functions and mechanisms of TRIMs in BCs, including tumorigenesis and invasiveness, drug sensitivity, tumor immune microenvironment (TIME), cell cycle, and metabolic reprogramming. We also explored the potential of TRIMs as novel biomarkers for predicting prognosis and future therapeutic targets in BC.
Collapse
Affiliation(s)
- Jianing Cao
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Mengdi Yang
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Duancheng Guo
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Zhonghua Tao
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xichun Hu
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
6
|
Serradimigni R, Rojas A, Leong C, Pal U, Bryan M, Sharma S, Dasgupta S. Flame retardant tetrabromobisphenol A (TBBPA) disrupts histone acetylation during zebrafish maternal-to-zygotic transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587433. [PMID: 38617289 PMCID: PMC11014481 DOI: 10.1101/2024.03.31.587433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
3,3',5.5'-Tetrabromobisphenol A (TBBPA) is a widely used brominated flame-retardant utilized in the production of electronic devices and plastic paints. The objective of this study is to use zebrafish as a model and determine the effects of TBBPA exposure on early embryogenesis. We initiated TBBPA exposures (0, 10, 20 and 40μM) at 0.75 h post fertilization (hpf) and monitored early developmental events such as cleavage, blastula and epiboly that encompass maternal-to-zygotic transition (MZT) and zygotic genome activation (ZGA). Our data revealed that TBBPA exposures induced onset of developmental delays by 3 hpf (blastula). By 5.5 hpf (epiboly), TBBPA-exposed (10-20 μM) embryos showed concentration-dependent developmental lag by up to 3 stages or 100% mortality at 40 μM. Embryos exposed to sublethal TBBPA concentrations from 0.75-6 hpf and raised in clean water to 120 hpf showed altered larval photomotor response (LPR), suggesting a compromised developmental health. To examine the genetic basis of TBBPA-induced delays, we conducted mRNA-sequencing on embryos exposed to 0 or 40 μM TBBPA from 0.75 hpf to 2, 3.5 or 4.5 hpf. Read count data showed that while TBBPA exposures had no overall impacts on maternal or maternal-zygotic genes, collective read counts for zygotically activated genes were lower in TBBPA treatment at 4.5 hpf compared to time-matched controls, suggesting that TBBPA delays ZGA. Gene ontology assessments for both time- and stage-matched differentially expressed genes revealed TBBPA-induced inhibition of chromatin assembly- a process regulated by histone modifications. Since acetylation is the primary histone modification system operant during early ZGA, we immunostained embryos with an H3K27Ac antibody and demonstrated reduced acetylation in TBBPA-exposed embryos. Leveraging in silico molecular docking studies and in vitro assays, we also showed that TBBPA potentially binds to P300- a protein that catalyzes acetylation- and inhibits P300 activity. Finally, we co-exposed embryos to 20 μM TBBPA and 50 μM n-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide (CTPB) -a histone acetyltransferase activator that promotes histone acetylation- and showed that TBBPA-CTPB co or pre-exposures significantly reversed TBBPA-only developmental delays, suggesting that TBBPA-induced phenotypes are indeed driven by repression of histone acetylation. Collectively, our work demonstrates that TBBPA disrupts ZGA and early developmental morphology, potentially by inhibiting histone acetylation. Future studies will focus on mechanisms of TBBPA-induced chromatin modifications.
Collapse
|
7
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
8
|
Kiss L, Rhinesmith T, Luptak J, Dickson CF, Weidenhausen J, Smyly S, Yang JC, Maslen SL, Sinning I, Neuhaus D, Clift D, James LC. Trim-Away ubiquitinates and degrades lysine-less and N-terminally acetylated substrates. Nat Commun 2023; 14:2160. [PMID: 37061529 PMCID: PMC10105713 DOI: 10.1038/s41467-023-37504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/20/2023] [Indexed: 04/17/2023] Open
Abstract
TRIM proteins are the largest family of E3 ligases in mammals. They include the intracellular antibody receptor TRIM21, which is responsible for mediating targeted protein degradation during Trim-Away. Despite their importance, the ubiquitination mechanism of TRIM ligases has remained elusive. Here we show that while Trim-Away activation results in ubiquitination of both ligase and substrate, ligase ubiquitination is not required for substrate degradation. N-terminal TRIM21 RING ubiquitination by the E2 Ube2W can be inhibited by N-terminal acetylation, but this doesn't prevent substrate ubiquitination nor degradation. Instead, uncoupling ligase and substrate degradation prevents ligase recycling and extends functional persistence in cells. Further, Trim-Away degrades substrates irrespective of whether they contain lysines or are N-terminally acetylated, which may explain the ability of TRIM21 to counteract fast-evolving pathogens and degrade diverse substrates.
Collapse
Affiliation(s)
- Leo Kiss
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Tyler Rhinesmith
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jakub Luptak
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Claire F Dickson
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia
| | - Jonas Weidenhausen
- Biochemiezentrum der Universität Heidelberg (BZH), INF328, D-69120, Heidelberg, Germany
- EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Shannon Smyly
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Irmgard Sinning
- Biochemiezentrum der Universität Heidelberg (BZH), INF328, D-69120, Heidelberg, Germany
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Dean Clift
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
9
|
Jin Z, Chen T, Zhu Z, Xu B, Yan D. The role of TRIM59 in immunity and immune-related diseases. Int Rev Immunol 2022; 43:33-40. [PMID: 35975813 DOI: 10.1080/08830185.2022.2102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/09/2022] [Indexed: 10/15/2022]
Abstract
TRIM59 is a member of the tripartite motif containing (TRIM) protein family. It functions as an E3 ubiquitin ligase through its RING domain and is expressed by multiple types of cells. Physiogically, TRIM59 is involved in development, immune response, and the invasion and metastasis of tumors. In this review, we first describe the structure, expression, and subcellular location of TRIM59. Then, we summarize emerging evidence for TRIM59 in immunological diseases including infection, vascular diseases, autoimmunity, and tumor immunity. Additionally, we discuss important molecular signaling pathways that mediate TRIM59 activity. Altogether, the accumulating evidence suggests that manipulating TRIM59 levels and activity may open an avenue for innovative therapies for immune diseases and tumors.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Tiffany Chen
- Divison of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Baohui Xu
- Divison of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
10
|
Jin Z, Liu L, Yu Y, Li D, Zhu X, Yan D, Zhu Z. TRIM59: A potential diagnostic and prognostic biomarker in human tumors. PLoS One 2021; 16:e0257445. [PMID: 34534244 PMCID: PMC8448305 DOI: 10.1371/journal.pone.0257445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
TRIM59 is a protein that is highly expressed in a variety of tumors and promotes tumor development. However, the use of TRIM59 as tumor diagnosis and prognosis biomarker has not been fully explored. We collected datasets from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) to investigate its potential as a biomarker for diagnosis and prognosis. A total of 46 studies, including 11,558 patients were included in this study. Here, we showed that TRIM59 was significantly upregulated in 15 type of human solid tumors in comparison to their adjacent tissues. Receiver operating characteristic curve (ROC) results provided further evidence for the use of TRIM59 as a potential tumor diagnosis biomarker. Overall survival (OS) was compared between TRIM59 high expression and low expression groups. High expression of TRIM59 indicated a poor prognosis in multiple solid tumors. Taken together, these analyses showed that TRIM59 was upregulated in various types of tumors and had the potential to be used as a diagnostic and prognostic biomarker in human solid tumors.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Liping Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Youran Yu
- College of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Xun Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
- * E-mail: (DY); (ZZ)
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
- * E-mail: (DY); (ZZ)
| |
Collapse
|
11
|
Su X, Zhang Q, Yue J, Wang Y, Zhang Y, Yang R. TRIM59 suppresses NO production by promoting the binding of PIAS1 and STAT1 in macrophages. Int Immunopharmacol 2020; 89:107030. [PMID: 33045573 DOI: 10.1016/j.intimp.2020.107030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Macrophages, which can secret various inflammation mediators, have an essential role in tumor growth and metastasis. However, the mechanism(s) to regulate the production of inflammation mediator is not completely clear. Here we found that TRIM 59 could inhibit the production of NO and the expression of inducible nitric oxide synthase (iNOS), cytochrome c oxidase subunit2 (COX2) and TNFα. TRIM59 mediated suppression on nitric oxide (NO) production is through inhibiting the activation of JAK2-STAT1 signal pathway. In response to LPS, TRIM59 in macrophages was translocated from cytoplasm to nucleus and directly bound with STAT1. During this process, TRIM59 could recruit much more PIAS1 to bind with STAT1 to suppress the activation of STAT1. Finally, TRIM59 modified macrophages could promote tumor growth. Thus, TRIM59 mediated suppression on NO production by promoting the binding of PIAS1 and STAT1 in macrophages may regulate tumor growth.
Collapse
Affiliation(s)
- Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| | - Qianjing Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Jianmei Yue
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yachen Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
12
|
TRIM59 attenuates IL-1β-driven cartilage matrix degradation in osteoarthritis via direct suppression of NF-κB and JAK2/STAT3 signaling pathway. Biochem Biophys Res Commun 2020; 529:28-34. [PMID: 32560815 DOI: 10.1016/j.bbrc.2020.05.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Abstract
The tripartite motif (TRIM) protein family are implicated in a wide array of cellular processes, including cell growth, differentiation, apoptosis and inflammation. This study aimed to investigate the specific function of TRIM59 in chondrocytes and its association with the pathophysiology of osteoarthritis (OA). We observed the downregulated TRIM59 expression in OA cartilage compared to normal tissues. Overexpression of TRIM59 suppressed interleukin 1 beta (IL-1β)-induced extracellular matrix (ECM) metabolic imbalance, proinflammatory cytokine production, apoptosis and decrease in cell viability. Mechanistic analyses further revealed that IL-1β-induced activation of the NF-κB and JAK2/STAT3 pathway is suppressed upon TRIM59 overexpression. TRIM59 expression was consistently decreased in a rat OA model in vivo, and its overexpression led to inhibition of matrix metallopeptidase-13 (MMP-13) production, proinflammatory cytokine levels and increased collagen type II (collagen II) and aggrecan synthesis. Our data collectively suggest that TRIM59 plays a critical in OA development through regulation of NF-κB and JAK2/STAT3 signaling pathway. Pharmacological upregulation of TRIM59 may therefore present an effective novel therapeutic approach for OA.
Collapse
|
13
|
TRIM59 expression is regulated by Sp1 and Nrf1 in LPS-activated macrophages through JNK signaling pathway. Cell Signal 2019; 67:109522. [PMID: 31883458 DOI: 10.1016/j.cellsig.2019.109522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
Activated macrophages play an important role in many inflammatory diseases including septic shock and atherosclerosis. TRIM59 has been showed to participate in many pathological processes, such as inflammation, cytotoxicity and tumorigenesis. However, the molecular mechanisms controlling its expression in activated macrophages are not fully understood. Here we report that TRIM59 expression is regulated by Sp1 and Nrf1 in LPS-activated macrophages. TRIM59 is highly expressed in macrophages, and markedly decreased by LPS stimuli in vivo and in vitro. TRIM59 promoter activity is also significantly suppressed by LPS and further analysis demonstrated that Sp1 and Nrf1 directly bound to the proximal promoter of TRIM59 gene. LPS treatment significantly decreased Sp1 expression, nuclear translocation and reduced its binding to the promoter, whereas increased Nrf1 expression, nuclear translocation and enhanced its binding to the promoter. Moreover, LPS-decreased TRIM59 expression was reversed by JNK inhibitor. Finally, TRIM59 level is significantly decreased during atherosclerosis progression. Taken together, our results demonstrated that TRIM59 expression was precisely regulated by Sp1 and Nrf1 in LPS-activated macrophages, which may be dependent on the activation of JNK signaling pathway and TRIM59 may be a potential therapeutic target for inflammatory diseases such as atherosclerosis.
Collapse
|
14
|
Nenasheva VV, Tarantul VZ. Many Faces of TRIM Proteins on the Road from Pluripotency to Neurogenesis. Stem Cells Dev 2019; 29:1-14. [PMID: 31686585 DOI: 10.1089/scd.2019.0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif (TRIM) proteins participate in numerous biological processes. They are the key players in immune system and are involved in the oncogenesis. Moreover, TRIMs are the highly conserved regulators of developmental pathways in both vertebrates and invertebrates. In particular, numerous data point to the participation of TRIMs in the determination of stem cell fate, as well as in the neurogenesis. TRIMs apply various mechanisms to perform their functions. Their common feature is the ability to ubiquitinate proteins mediated by the Really Interesting New Gene (RING) domain. Different C-terminal domains of TRIMs are involved in DNA and RNA binding, protein/protein interactions, and chromatin-mediated transcriptional regulation. Mutations and alterations of TRIM expression cause significant disturbances in the stem cells' self-renewal and neurogenesis, which result in the various pathologies of the nervous system (neurodegeneration, neuroinflammation, and malignant transformation). This review discusses the diverse molecular mechanisms of participation of TRIMs in stem cell maintenance and self-renewal as well as in neural differentiation processes and neuropathology.
Collapse
Affiliation(s)
- Valentina V Nenasheva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vyacheslav Z Tarantul
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|