1
|
Ma Y, Wang R, Liao J, Guo P, Wang Q, Li W. Xanthohumol overcomes osimertinib resistance via governing ubiquitination-modulated Ets-1 turnover. Cell Death Discov 2024; 10:454. [PMID: 39468027 PMCID: PMC11519634 DOI: 10.1038/s41420-024-02220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent and fatal malignancy with a significant global impact. Recent advancements have introduced targeted therapies like tyrosine kinase inhibitors (TKIs) such as osimertinib, which have improved patient outcomes, particularly in those with EGFR mutations. Despite these advancements, acquired resistance to TKIs remains a significant challenge. Hence, one of the current research priorities is understanding the resistance mechanisms and identifying new therapeutic targets to improve therapeutic efficacy. Herein, we identified high expression of c-Met in osimertinib-resistant NSCLC cells, and depletion of c-Met significantly inhibited the proliferation of osimertinib-resistant cells and prolonged survival in mice, suggesting c-Met as an attractive therapeutic target. To identify effective anti-tumor agents targeting c-Met, we screened a compound library containing 641 natural products and found that only xanthohumol exhibited potent inhibitory effects against osimertinib-resistant NSCLC cells. Moreover, combination treatment with xanthohumol and osimertinib sensitized osimertinib-resistant NSCLC cells to osimertinib both in vitro and in vivo. Mechanistically, xanthohumol disrupted the interaction between USP9X and Ets-1, and inhibited the phosphorylation of Ets-1 at Thr38, promoting its degradation, thereby targeting the Ets-1/c-Met signaling axis and inducing intrinsic apoptosis in osimertinib-resistant NSCLC cells. Overall, the research highlights the critical role of targeting c-Met to address osimertinib resistance in NSCLC. By demonstrating the efficacy of xanthohumol in overcoming resistance and enhancing therapeutic outcomes, this study provides valuable insights and potential new strategies for improving the clinical management of NSCLC.
Collapse
Affiliation(s)
- Ying Ma
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- NHC key laboratory of translantional research on transplantation medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Pengfei Guo
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Qiang Wang
- NHC key laboratory of translantional research on transplantation medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Hao Y, Zhang F, Ma Y, Luo Y, Zhang Y, Yang N, Liu M, Liu H, Li J. Potential biomarkers for the early detection of bone metastases. Front Oncol 2023; 13:1188357. [PMID: 37404755 PMCID: PMC10315674 DOI: 10.3389/fonc.2023.1188357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
The clinical manifestations of bone metastases are diversified while many sites remain asymptomatic at early stage. As the early diagnosis method is not perfect and the early symptoms of tumor bone metastasis are not typical, bone metastasis is not easy to be detected. Therefore, the search for bone metastasis-related markers is effective for timely detection of tumor bone metastases and the development of drugs to inhibit bone metastases. As a result, bone metastases can only be diagnosed when symptoms are found, increasing the risk of developing skeletal-related event (SREs), which significantly impairs the patient's quality of life. Therefore, the early diagnosis of bone metastases is of great importance for the treatment and prognosis of cancer patients. Changes of bone metabolism indexes appear earlier in bone metastases, but the traditional biochemical indexes of bone metabolism lack of specificity and could be interfered by many factors, which limits their application in the study of bone metastases. Some new biomarkers of bone metastases have good diagnostic value, such as proteins, ncRNAs, circulating tumor cells (CTCs). Therefore, this study mainly reviewed the initial diagnostic biomarkers of bone metastases which were expected to provide references for the early detection of bone metastases.
Collapse
Affiliation(s)
- Yang Hao
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Feifan Zhang
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Hunan University of Chinese Medicine, Changsha, China
| | - Yan Ma
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Yage Luo
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Yongyong Zhang
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Ning Yang
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Man Liu
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jitian Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Henan University of Chinese Medicine, Zhengzhou, China
- Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
MiRNAs and snoRNAs in Bone Metastasis: Functional Roles and Clinical Potential. Cancers (Basel) 2022; 15:cancers15010242. [PMID: 36612237 PMCID: PMC9818347 DOI: 10.3390/cancers15010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Bone is a frequent site of metastasis. Bone metastasis is associated with a short-term prognosis in cancer patients, and current treatments aim to slow its growth, but are rarely curative. Thus, revealing molecular mechanisms that explain why metastatic cells are attracted to the bone micro-environment, and how they successfully settle in the bone marrow-taking advantage over bone resident cells-and grow into macro-metastasis, is essential to propose new therapeutic approaches. MicroRNAs and snoRNAs are two classes of small non-coding RNAs that post-transcriptionally regulate gene expression. Recently, microRNAs and snoRNAs have been pointed out as important players in bone metastasis by (i) preparing the pre-metastatic niche, directly and indirectly affecting the activities of osteoclasts and osteoblasts, (ii) promoting metastatic properties within cancer cells, and (iii) acting as mediators within cells to support cancer cell growth in bone. This review aims to highlight the importance of microRNAs and snoRNAs in metastasis, specifically in bone, and how their roles can be linked together. We then discuss how microRNAs and snoRNAs are secreted by cancer cells and be found as extracellular vesicle cargo. Finally, we provide evidence of how microRNAs and snoRNAs can be potential therapeutic targets, at least in pre-clinical settings, and how their detection in liquid biopsies can be a useful diagnostic and/or prognostic biomarker to predict the risk of relapse in cancer patients.
Collapse
|
4
|
Cai B, Qu X, Kan D, Luo Y. miR-26a-5p suppresses nasopharyngeal carcinoma progression by inhibiting PTGS2 expression. Cell Cycle 2022; 21:618-629. [PMID: 35073820 PMCID: PMC8942422 DOI: 10.1080/15384101.2022.2030168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) has a low five-year survival rate, and its pathogenesis remains unclear. There is an urgent need to improve our understanding of the genetic regulation of NPC tumorigenesis and development. The role of miR-26a-5p in NPC growth regulation and the expression of its target, PTGS2, was analyzed. Quantitative Real-time PCR assay was used to detect miR-26a-5p and PTGS2 expression in human NPC tissues and cell lines. The RNA pull-down dual-luciferase reporter assay was used to determine the association between miR-26a-5p and PTGS2. The effects of miR-26a-5p and PTGS2 on NPC cell viability, proliferation, migration, and invasion were measured by CCK-8, BrdU, and Transwell assays. miR-26a-5p expression in NPC tissues and cell lines was significantly decreased. The overexpression of miR-26a-5p inhibited the viability, proliferation, migration, and invasion of NPC cells. miR-26a-5p bound to the 3-'untranslated region of PTGS2, thus reducing PTGS2 protein levels. miR-26a-5p inhibited NPC development by reducing the expression of its target PTGS2.
Collapse
Affiliation(s)
- Binlin Cai
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Xiu Qu
- Department of Pain Treatment, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Dan Kan
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Yi Luo
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China,CONTACT Yi Luo Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, No. 1 Benxi Street, Qingshan District, Wuhan, Hubei430081, China
| |
Collapse
|
5
|
Orlandella FM, Auletta L, Greco A, Zannetti A, Salvatore G. Preclinical Imaging Evaluation of miRNAs' Delivery and Effects in Breast Cancer Mouse Models: A Systematic Review. Cancers (Basel) 2021; 13:6020. [PMID: 34885130 PMCID: PMC8656589 DOI: 10.3390/cancers13236020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We have conducted a systematic review focusing on the advancements in preclinical molecular imaging to study the delivery and therapeutic efficacy of miRNAs in mouse models of breast cancer. METHODS A systematic review of English articles published in peer-reviewed journals using PubMed, EMBASE, BIOSIS™ and Scopus was performed. Search terms included breast cancer, mouse, mice, microRNA(s) and miRNA(s). RESULTS From a total of 2073 records, our final data extraction was from 114 manuscripts. The most frequently used murine genetic background was Balb/C (46.7%). The most frequently used model was the IV metastatic model (46.8%), which was obtained via intravenous injection (68.9%) in the tail vein. Bioluminescence was the most used frequently used tool (64%), and was used as a surrogate for tumor growth for efficacy treatment or for the evaluation of tumorigenicity in miRNA-transfected cells (29.9%); for tracking, evaluation of engraftment and for response to therapy in metastatic models (50.6%). CONCLUSIONS This review provides a systematic and focused analysis of all the information available and related to the imaging protocols with which to test miRNA therapy in an in vivo mice model of breast cancer, and has the purpose of providing an important tool to suggest the best preclinical imaging protocol based on available evidence.
Collapse
Affiliation(s)
| | - Luigi Auletta
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Adelaide Greco
- InterDepartmental Center of Veterinary Radiology, University of Naples Federico II, 80131 Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Giuliana Salvatore
- IRCCS SDN, 80143 Naples, Italy;
- Department of Motor Sciences and Wellness, University of Naples Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate S.C.A.R.L., 80145 Naples, Italy
| |
Collapse
|
6
|
Othman A, Winogradzki M, Lee L, Tandon M, Blank A, Pratap J. Bone Metastatic Breast Cancer: Advances in Cell Signaling and Autophagy Related Mechanisms. Cancers (Basel) 2021; 13:cancers13174310. [PMID: 34503118 PMCID: PMC8431094 DOI: 10.3390/cancers13174310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis is a frequent complication of breast cancer with nearly 70% of metastatic breast cancer patients developing bone metastasis during the course of their disease. The bone represents a dynamic microenvironment which provides a fertile soil for disseminated tumor cells, however, the mechanisms which regulate the interactions between a metastatic tumor and the bone microenvironment remain poorly understood. Recent studies indicate that during the metastatic process a bidirectional relationship between metastatic tumor cells and the bone microenvironment begins to develop. Metastatic cells display aberrant expression of genes typically reserved for skeletal development and alter the activity of resident cells within the bone microenvironment to promote tumor development, resulting in the severe bone loss. While transcriptional regulation of the metastatic process has been well established, recent findings from our and other research groups highlight the role of the autophagy and secretory pathways in interactions between resident and tumor cells during bone metastatic tumor growth. These reports show high levels of autophagy-related markers, regulatory factors of the autophagy pathway, and autophagy-mediated secretion of matrix metalloproteinases (MMP's), receptor activator of nuclear factor kappa B ligand (RANKL), parathyroid hormone related protein (PTHrP), as well as WNT5A in bone metastatic breast cancer cells. In this review, we discuss the recently elucidated mechanisms and their crosstalk with signaling pathways, and potential therapeutic targets for bone metastatic disease.
Collapse
|
7
|
Abstract
Bone metastasis occurs in advanced stages of breast cancer, worsening the quality of life and increasing the mortality of patients. Current treatments for bone metastasis are only palliative, and efficient therapeutic targets need to be still identified. MicroRNAs (miRNAs) are a large class of small non-coding RNAs that regulate gene expression within cells. Interestingly, the expression of certain miRNAs has been associated with several stages of bone metastasis progression, highlighting the importance of these small RNAs during the course of the metastatic disease. In this review, we aim to summarise the most recent findings on miRNAs and their mRNA targets in driving breast cancer bone metastasis. Furthermore, we discuss the possibility to use miRNAs as direct therapeutic targets or as advanced therapies for breast cancer bone metastasis, as well as their potential as predictive biomarkers of bone metastasis for an early diagnosis and a better tailoring of therapies for cancer patients.
Collapse
Affiliation(s)
- Margherita Puppo
- Oncology and Metabolism Department (OMD), Medical School, University of Sheffield, Sheffield, UK.
| | - Manoj K Valluru
- Infection Immunity and Cardiovascular Department (IICD), Medical School, University of Sheffield, Sheffield, UK
| | - Philippe Clézardin
- Oncology and Metabolism Department (OMD), Medical School, University of Sheffield, Sheffield, UK
- INSERM, Research Unit UMR S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| |
Collapse
|
8
|
Marengo B, Pulliero A, Izzotti A, Domenicotti C. miRNA Regulation of Glutathione Homeostasis in Cancer Initiation, Progression and Therapy Resistance. Microrna 2020; 9:187-197. [PMID: 31849293 PMCID: PMC7366003 DOI: 10.2174/2211536609666191218103220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
Glutathione (GSH) is the most abundant antioxidant that contributes to regulating the cellular production of Reactive Oxygen Species (ROS) which, maintained at physiological levels, can exert a function of second messengers in living organisms. In fact, it has been demonstrated that moderate amounts of ROS can activate the signaling pathways involved in cell growth and proliferation, while high levels of ROS induce DNA damage leading to cancer development. Therefore, GSH is a crucial player in the maintenance of redox homeostasis and its metabolism has a role in tumor initiation, progression, and therapy resistance. Our recent studies demonstrated that neuroblastoma cells resistant to etoposide, a common chemotherapeutic drug, show a partial monoallelic deletion of the locus coding for miRNA 15a and 16-1 leading to a loss of these miRNAs and the activation of GSH-dependent responses. Therefore, the aim of this review is to highlight the role of specific miRNAs in the modulation of intracellular GSH levels in order to take into consideration the use of modulators of miRNA expression as a useful strategy to better sensitize tumors to current therapies.
Collapse
Affiliation(s)
- Barbara Marengo
- Address correspondence to this author at the Department of Experimental Medicine, University of Genoa, Genoa, Italy; Tel: +39 010 3538831; Fax: +39 010 3538836; E-mail:
| | | | | | | |
Collapse
|
9
|
Jahanban-Esfahlan R, Seidi K, Manjili MH, Jahanban-Esfahlan A, Javaheri T, Zare P. Tumor Cell Dormancy: Threat or Opportunity in the Fight against Cancer. Cancers (Basel) 2019; 11:cancers11081207. [PMID: 31430951 PMCID: PMC6721805 DOI: 10.3390/cancers11081207] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor dormancy, a clinically undetectable state of cancer, makes a major contribution to the development of multidrug resistance (MDR), minimum residual disease (MRD), tumor outgrowth, cancer relapse, and metastasis. Despite its high incidence, the whole picture of dormancy-regulated molecular programs is far from clear. That is, it is unknown when and which dormant cells will resume proliferation causing late relapse, and which will remain asymptomatic and harmless to their hosts. Thus, identification of dormancy-related culprits and understanding their roles can help predict cancer prognosis and may increase the probability of timely therapeutic intervention for the desired outcome. Here, we provide a comprehensive review of the dormancy-dictated molecular mechanisms, including angiogenic switch, immune escape, cancer stem cells, extracellular matrix (ECM) remodeling, metabolic reprogramming, miRNAs, epigenetic modifications, and stress-induced p38 signaling pathways. Further, we analyze the possibility of leveraging these dormancy-related molecular cues to outmaneuver cancer and discuss the implications of such approaches in cancer treatment.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 9841, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 9841, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 9841, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 9841, Iran
| | - Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, Massey Cancer Center, Richmond, VA 23298, USA
| | | | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
| | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland.
| |
Collapse
|
10
|
Shao Z, Li Y, Dai W, Jia H, Zhang Y, Jiang Q, Chai Y, Li X, Sun H, Yang R, Cao Y, Feng F, Guo Y. ETS-1 induces Sorafenib-resistance in hepatocellular carcinoma cells via regulating transcription factor activity of PXR. Pharmacol Res 2018; 135:188-200. [PMID: 30114438 DOI: 10.1016/j.phrs.2018.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Transcription factor E26 transformation specific sequence 1 (ETS-1) is a primary regulator in the metastasis of human cancer cells, especially hepatocellular carcinoma (HCC) cells; and it would affect the prognosis of HCC patients who received chemotherapies. However, the regulatory role of ETS-1 in the resistance of HCC cells to molecular-targeting agent remains poorly understood. In the present work, we demonstrate that high ETS-1 expression correlates with poor prognosis of advanced HCC patients received Sorafenib treatment. Mechanistically, ETS-1 binds to nuclear Pregnane X receptor (PXR) directly and enhances PXR's transcription factor activity, which further leads to the induction of the PXR's downstream multi-drug resistance related genes. Overexpression of ETS-1 accelerates the metabolic clearance of Sorafenib in HCC cells and leads to the better survival and faster migration of those cells. The therapeutic studies show that ETS-1 promotes the Sorafenib-resistance of HCC tumor models and ETS-1 blockade enhances the anti-tumor capacity of Sorafenib by decreasing PXR activation. Thus, our study suggests that ETS-1 could enhance the activation of PXR and be a potential therapeutic target for overcoming Sorafenib resistance in HCC treatment.
Collapse
Affiliation(s)
- Zhiyi Shao
- School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, PR China; The Library, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Yibo Li
- School of Psychology, Shaanxi Normal University, Xi'an, PR China
| | - Wenjie Dai
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Hui Jia
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110016, PR China
| | - Yingshi Zhang
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, 110016, PR China
| | - Qiyu Jiang
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Yantao Chai
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Xiaojuan Li
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Huiwei Sun
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Ruichuang Yang
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China
| | - Yu Cao
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| | - Fan Feng
- The Library, Shaanxi Normal University, Xi'an, 710062, PR China; Research Center for Clinical and Translational Medicine, The 302nd Hospital of Chinese PLA, Beijing, 100039, PR China.
| | - Yingjie Guo
- School of Foreign Languages, Shaanxi Normal University, Xi'an, 710062, PR China.
| |
Collapse
|