1
|
Yin L, Hu X, Pei G, Tang M, Zhou Y, Zhang H, Huang M, Li S, Zhang J, Citu C, Zhao Z, Debeb BG, Feng X, Chen J. Genome-wide CRISPR screen reveals the synthetic lethality between BCL2L1 inhibition and radiotherapy. Life Sci Alliance 2024; 7:e202302353. [PMID: 38316463 PMCID: PMC10844523 DOI: 10.26508/lsa.202302353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Radiation therapy (RT) is one of the most commonly used anticancer therapies. However, the landscape of cellular response to irradiation, especially to a single high-dose irradiation, remains largely unknown. In this study, we performed a whole-genome CRISPR loss-of-function screen and revealed temporal inherent and acquired responses to RT. Specifically, we found that loss of the IL1R1 pathway led to cellular resistance to RT. This is in part because of the involvement of radiation-induced IL1R1-dependent transcriptional regulation, which relies on the NF-κB pathway. Moreover, the mitochondrial anti-apoptotic pathway, particularly the BCL2L1 gene, is crucially important for cell survival after radiation. BCL2L1 inhibition combined with RT dramatically impeded tumor growth in several breast cancer cell lines and syngeneic models. Taken together, our results suggest that the combination of an apoptosis inhibitor such as a BCL2L1 inhibitor with RT may represent a promising anticancer strategy for solid cancers including breast cancer.
Collapse
Affiliation(s)
- Ling Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoding Hu
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangsheng Pei
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - You Zhou
- Department of Pediatrics Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Citu Citu
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bisrat G Debeb
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Silva GD, Milan TM, Chagas PS, Trevisan GL, Ferraz CL, Leopoldino AM. SET protein as an epigenetics target. Epigenomics 2024; 16:249-257. [PMID: 38131159 DOI: 10.2217/epi-2023-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The SET gene has four transcripts reported in NCBI, coding two isoforms of SET proteins. The most known function of SET protein is inhibiting protein phosphatase 2A, a tumor suppressor, which has been associated with different biological processes. In this review, our focus was on exploring the other SET functions related to epigenetic mechanisms, which impact cellular migration, cell cycle and apoptosis.
Collapse
Affiliation(s)
- Gabriel da Silva
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Thaís Moré Milan
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Pablo Shimaoka Chagas
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Glauce Lunardelli Trevisan
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Camila Lopes Ferraz
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| |
Collapse
|
3
|
Clementi L, Sabetta S, Zelli V, Compagnoni C, Tessitore A, Mattei V, Angelucci A. Mitotic phosphorylation of Tau/MAPT modulates cell cycle progression in prostate cancer cells. J Cancer Res Clin Oncol 2023; 149:7689-7701. [PMID: 37000265 PMCID: PMC10374748 DOI: 10.1007/s00432-023-04721-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/22/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE Tau/MAPT (microtubule associated protein tau) protein is actively studied for the pathologic consequences of its aberrant proteostasis in central nervous system leading to neurodegenerative diseases. Besides its ability to generate insoluble toxic oligomers, Tau homeostasis has attracted attention for its involvement in the formation of the mitotic spindle. This evidence, in association with the description of Tau expression in extra-neuronal tissues, and mainly in cancer tissues, constitutes the rationale for a more in-depth investigation of Tau role also in neoplastic diseases. METHODS In our study, we investigated the expression of phosphorylated Tau in prostate cancer cell lines with particular focus on the residue Thr231 present in microtubule binding domain. RESULTS The analysis of prostate cancer cells synchronized with nocodazole demonstrated that the expression of Tau protein phosphorylated at residue Thr231 is restricted to G2/M cell cycle phase. The phosphorylated form was unable to bind tubulin and it does not localize on mitotic spindle. As demonstrated by the use of specific inhibitors, the phosphorylation status of Tau is under the direct control of cdk5 and PP2A, while cdk1 activation was able to exert an indirect control. These mechanisms were also active in cells treated with docetaxel, where counteracting the expression of the dephosphorylated form, by kinase inhibition or protein silencing, determined resistance to drug toxicity. CONCLUSIONS We hypothesize that phosphorylation status of Tau is a key marker for G2/M phase in prostate cancer cells and that the forced modulation of Tau phosphorylation can interfere with the capacity of cell to efficiently progress through G2/M phase.
Collapse
Affiliation(s)
- Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Samantha Sabetta
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L'Aquila, 67100, L'Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L'Aquila, 67100, L'Aquila, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center "Sabina Universitas", 02100, Rieti, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| |
Collapse
|
4
|
Zhou Y, Chen Y, Li J, Fu Z, Chen Q, Zhang W, Luo H, Xie M. The development of endoplasmic reticulum-related gene signatures and the immune infiltration analysis of sepsis. Front Immunol 2023; 14:1183769. [PMID: 37346041 PMCID: PMC10280294 DOI: 10.3389/fimmu.2023.1183769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Background Sepsis is a complex condition involving multiorgan failure, resulting from the hosts' deleterious systemic immune response to infection. It is characterized by high mortality, with limited effective detection and treatment options. Dysregulated endoplasmic reticulum (ER) stress is directly involved in the pathophysiology of immune-mediated diseases. Methods Clinical samples were obtained from Gene Expression Omnibus datasets (i.e., GSE65682, GSE54514, and GSE95233) to perform the differential analysis in this study. A weighted gene co-expression network analysis algorithm combining multiple machine learning algorithms was used to identify the diagnostic biomarkers for sepsis. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and the single-sample gene set enrichment analysis algorithm were used to analyze immune infiltration characteristics in sepsis. PCR analysis and western blotting were used to demonstrate the potential role of TXN in sepsis. Results Four ERRGs, namely SET, LPIN1, TXN, and CD74, have been identified as characteristic diagnostic biomarkers for sepsis. Immune infiltration has been repeatedly proved to play a vital role both in sepsis and ER. Subsequently, the immune infiltration characteristics result indicated that the development of sepsis is mediated by immune-related function, as four diagnostic biomarkers were strongly associated with the immune infiltration landscape of sepsis. The biological experiments in vitro and vivo demonstrate TXN is emerging as crucial player in maintaining ER homeostasis in sepsis. Conclusion Our research identified novel potential biomarkers for sepsis diagnosis, which point toward a potential strategy for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Yifang Chen
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Jianbo Li
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Zailin Fu
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Qian Chen
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Huan Luo
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Minghua Xie
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
The phosphatase CTDSPL2 is phosphorylated in mitosis and a target for restraining tumor growth and motility in pancreatic cancer. Cancer Lett 2022; 526:53-65. [PMID: 34813892 PMCID: PMC8702485 DOI: 10.1016/j.canlet.2021.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Carboxy-terminal domain (CTD) small phosphatase like 2 (CTDSPL2), also known as SCP4 or HSPC129, is a new member of the small CTD phosphatase (SCP) family and its role in cancers remains unclear. Here, we used a Phos-tag technique to screen a series of phosphatases and identified CTDSPL2 as a mitotic regulator. We demonstrated that CTDSPL2 was phosphorylated at T86, S104, and S134 by cyclin-dependent kinase 1 (CDK1) in mitosis. Depletion of CTDSPL2 led to mitotic defects and prolonged mitosis. Resultantly, CTDSPL2 deletion restrained proliferation, migration, and invasion in pancreatic cancer cells. We further confirmed the dominant negative effects of a phosphorylation-deficient mutant form of CTDSPL2, implying the biological significance of CTDSPL2 mitotic phosphorylation. Moreover, RT2 cell cycle array analysis revealed p21 and p27 as downstream regulators of CTDSPL2, and inhibition of p21 and/or p27 partially rescued the phenotype in CTDSPL2-deficient cell lines. Importantly, both CTDSPL2 depletion and phosphorylation-deficient mutant CTDSPL2 hindered tumor growth in xenograft models. Together, our findings for the first time highlight the novel role of CTDSPL2 in regulating cell mitosis, proliferation and motility in pancreatic cancer and point out the implications of CTDSPL2 in regulating two critical cell cycle participants (p21 and p27), providing an alternative molecular target for pancreatic cancer treatment.
Collapse
|
6
|
Kim H, Takegahara N, Choi Y. Protocadherin-7 Regulates Osteoclast Differentiation through Intracellular SET-Binding Domain-Mediated RhoA and Rac1 Activation. Int J Mol Sci 2021; 22:13117. [PMID: 34884920 PMCID: PMC8658210 DOI: 10.3390/ijms222313117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup of the cadherin superfamily. Although the cell-intrinsic role of Pcdh7 in osteoclast differentiation has been demonstrated, the molecular mechanisms of Pcdh7 regulating osteoclast differentiation remain to be determined. Here, we demonstrate that Pcdh7 contributes to osteoclast differentiation by regulating small GTPases, RhoA and Rac1, through its SET oncoprotein binding domain. Pcdh7 is associated with SET along with RhoA and Rac1 during osteoclast differentiation. Pcdh7-deficient (Pcdh7-/-) cells showed abolished RANKL-induced RhoA and Rac1 activation, and impaired osteoclast differentiation. Impaired osteoclast differentiation in Pcdh7-/- cells was restored by retroviral transduction of full-length Pcdh7 but not by a Pcdh7 mutant that lacks SET binding domain. The direct crosslink of the Pcdh7 intracellular region induced the activation of RhoA and Rac1, which was not observed when Pcdh7 lacks the SET binding domain. Additionally, retroviral transduction of the constitutively active form of RhoA and Rac1 completely restored the impaired osteoclast differentiation in Pcdh7-/- cells. Collectively, these results demonstrate that Pcdh7 controls osteoclast differentiation by regulating RhoA and Rac1 activation through the SET binding domain.
Collapse
Affiliation(s)
| | | | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.K.); (N.T.)
| |
Collapse
|
7
|
Harikumar A, Lim PSL, Nissim-Rafinia M, Park JE, Sze SK, Meshorer E. Embryonic Stem Cell Differentiation Is Regulated by SET through Interactions with p53 and β-Catenin. Stem Cell Reports 2021; 15:1260-1274. [PMID: 33296674 PMCID: PMC7724474 DOI: 10.1016/j.stemcr.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
The multifunctional histone chaperone, SET, is essential for embryonic development in the mouse. Previously, we identified SET as a factor that is rapidly downregulated during embryonic stem cell (ESC) differentiation, suggesting a possible role in the maintenance of pluripotency. Here, we explore SET's function in early differentiation. Using immunoprecipitation coupled with protein quantitation by LC-MS/MS, we uncover factors and complexes, including P53 and β-catenin, by which SET regulates lineage specification. Knockdown for P53 in SET-knockout (KO) ESCs partially rescues lineage marker misregulation during differentiation. Paradoxically, SET-KO ESCs show increased expression of several Wnt target genes despite reduced levels of active β-catenin. Further analysis of RNA sequencing datasets hints at a co-regulatory relationship between SET and TCF proteins, terminal effectors of Wnt signaling. Overall, we discover a role for both P53 and β-catenin in SET-regulated early differentiation and raise a hypothesis for SET function at the β-catenin-TCF regulatory axis.
Collapse
Affiliation(s)
- Arigela Harikumar
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Patrick S L Lim
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; The Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
8
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
9
|
Functioning mechanisms of Shugoshin-1 in centromeric cohesion during mitosis. Essays Biochem 2021; 64:289-297. [PMID: 32451529 DOI: 10.1042/ebc20190077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
Proper regulation of centromeric cohesion is required for faithful chromosome segregation that prevents chromosomal instability. Extensive studies have identified and established the conserved protein Shugoshin (Sgo1/2) as an essential protector for centromeric cohesion. In this review, we summarize the current understanding of how Shugoshin-1 (Sgo1) protects centromeric cohesion at the molecular level. Targeting of Sgo1 to inner centromeres is required for its proper function of cohesion protection. We therefore discuss about the molecular mechanisms that install Sgo1 onto inner centromeres. At metaphase-to-anaphase transition, Sgo1 at inner centromeres needs to be disabled for the subsequent sister-chromatid segregation. A few recent studies suggest interesting models to explain how it is achieved. These models are discussed as well.
Collapse
|
10
|
Schmitz ML, Higgins JMG, Seibert M. Priming chromatin for segregation: functional roles of mitotic histone modifications. Cell Cycle 2020; 19:625-641. [PMID: 31992120 DOI: 10.1080/15384101.2020.1719585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Posttranslational modifications (PTMs) of histone proteins are important for various cellular processes including regulation of gene expression and chromatin structure, DNA damage response and chromosome segregation. Here we comprehensively review mitotic histone PTMs, in particular phosphorylations, and discuss their interplay and functions in the control of dynamic protein-protein interactions as well as their contribution to centromere and chromosome structure and function during cell division. Histone phosphorylations can create binding sites for mitotic regulators such as the chromosomal passenger complex, which is required for correction of erroneous spindle attachments and chromosome bi-orientation. Other histone PTMs can alter the structural properties of nucleosomes and the accessibility of chromatin. Epigenetic marks such as lysine methylations are maintained during mitosis and may also be important for mitotic transcription as well as bookmarking of transcriptional states to ensure the transmission of gene expression programs through cell division. Additionally, histone phosphorylation can dissociate readers of methylated histones without losing epigenetic information. Through all of these processes, mitotic histone PTMs play a functional role in priming the chromatin for faithful chromosome segregation and preventing genetic instability, one of the characteristic hallmarks of cancer cells.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Markus Seibert
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|