1
|
Chen Y, Wang S, Li J, Fu Y, Chen P, Liu X, Zhang J, Sun L, Zhang R, Li X, Liu L. The relationships between biological novel biomarkers Lp-PLA 2 and CTRP-3 and CVD in patients with type 2 diabetes mellitus. J Diabetes 2024; 16:e13574. [PMID: 38924255 PMCID: PMC11199973 DOI: 10.1111/1753-0407.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/20/2024] [Accepted: 05/04/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is recognized as a primary and severe comorbidity in patients with type 2 diabetes mellitus (T2DM) and is also identified as a leading cause of mortality within this population. Consequently, the identification of novel biomarkers for the risk stratification and progression of CVD in individuals with T2DM is of critical importance. METHODS This retrospective cohort study encompassed 979 patients diagnosed with T2DM, of whom 116 experienced CVD events during the follow-up period. Clinical assessments and comprehensive blood laboratory analyses were conducted. Age- and sex-adjusted Cox proportional hazard regression analysis was utilized to evaluate the association between lipoprotein-associated phospholipase A2 (Lp-PLA2), C1q/tumor necrosis factor-related protein 3 (CTRP-3), and the incidence of CVD in T2DM. The diagnostic performance of these biomarkers was assessed through receiver operating characteristic (ROC) curve analysis and the computation of the area under the curve (AUC). RESULTS Over a median follow-up of 84 months (interquartile range: 42 [32-54] months), both novel inflammatory markers, Lp-PLA2 and CTRP-3, and traditional lipid indices, such as low-density lipoprotein cholesterol and apolipoprotein B, exhibited aberrant expression in the CVD-afflicted subset of the T2DM cohort. Age- and sex-adjusted Cox regression analysis delineated that Lp-PLA2 (hazard ratio [HR] = 1.007 [95% confidence interval {CI}: 1.005-1.009], p < 0.001) and CTRP-3 (HR = 0.943 [95% CI: 0.935-0.954], p < 0.001) were independently associated with the manifestation of CVD in T2DM. ROC curve analysis indicated a substantial predictive capacity for Lp-PLA2 (AUC = 0.81 [95% CI: 0.77-0.85], p < 0.001) and CTRP-3 (AUC = 0.91 [95% CI: 0.89-0.93], p < 0.001) in forecasting CVD occurrence in T2DM. The combined biomarker approach yielded an AUC of 0.94 (95% CI: 0.93-0.96), p < 0.001, indicating enhanced diagnostic accuracy. CONCLUSIONS The findings suggest that the biomarkers Lp-PLA2 and CTRP-3 are dysregulated in patients with T2DM who develop CVD and that each biomarker is independently associated with the occurrence of CVD. The combined assessment of Lp-PLA2 and CTRP-3 may significantly augment the diagnostic precision for CVD in the T2DM demographic.
Collapse
Affiliation(s)
- Yanhong Chen
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Shixin Wang
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Jian Li
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Yu Fu
- Central LaboratoryXuzhou Central HospitalXuzhouChina
| | - Pengsheng Chen
- Department of EndocrinologyXuzhou Central HospitalXuzhouChina
| | - Xuekui Liu
- Xuzhou Institute of Medical ScienceXuzhouChina
| | - Jiao Zhang
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Li Sun
- Department of EndocrinologyXuzhou Central HospitalXuzhouChina
| | - Rui Zhang
- Department of Clinical LaboratoryXuzhou Central HospitalXuzhouChina
| | - Xiaoli Li
- Department of CardiologyXuzhou Central HospitalXuzhouChina
| | - Lingling Liu
- Department of CardiologyXuzhou Central HospitalXuzhouChina
| |
Collapse
|
2
|
Schmid A, Pankuweit S, Vlacil AK, Koch S, Berge B, Gajawada P, Richter M, Troidl K, Schieffer B, Schäffler A, Grote K. Decreased circulating CTRP3 levels in acute and chronic cardiovascular patients. J Mol Med (Berl) 2024; 102:667-677. [PMID: 38436713 PMCID: PMC11055757 DOI: 10.1007/s00109-024-02426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
C1q/TNF-related protein 3 (CTRP3) represents an adipokine with various metabolic and immune-regulatory functions. While circulating CTRP3 has been proposed as a potential biomarker for cardiovascular disease (CVD), current data on CTRP3 regarding coronary artery disease (CAD) remains partially contradictory. This study aimed to investigate CTRP3 levels in chronic and acute settings such as chronic coronary syndrome (CCS) and acute coronary syndrome (ACS). A total of 206 patients were classified into three groups: CCS (n = 64), ACS having a first acute event (ACS-1, n = 75), and ACS having a recurrent acute event (ACS-2, n = 67). The control group consisted of 49 healthy individuals. ELISA measurement in peripheral blood revealed decreased CTRP3 levels in all patient groups (p < 0.001) without significant differences between the groups. This effect was exclusively observed in male patients. Females generally exhibited significantly higher CTRP3 plasma levels than males. ROC curve analysis in male patients revealed a valuable predictive potency of plasma CTRP3 in order to identify CAD patients, with a proposed cut-off value of 51.25 ng/mL. The sensitivity and specificity of prediction by CTRP3 were congruent for the subgroups of CCS, ACS-1, and ACS-2 patients. Regulation of circulating CTRP3 levels in murine models of cardiovascular pathophysiology was found to be partly opposite to the clinical findings, with male mice exhibiting higher circulating CTRP3 levels than females. We conclude that circulating CTRP3 levels are decreased in both male CCS and ACS patients. Therefore, CTRP3 might be useful as a biomarker for CAD but not for distinguishing an acute from a chronic setting. KEY MESSAGES: CTRP3 levels were found to be decreased in both male CCS and ACS patients compared to healthy controls. Plasma CTRP3 has a valuable predictive potency in order to identify CAD patients among men and is therefore proposed as a biomarker for CAD but not for distinguishing between acute and chronic settings. Regulation of circulating CTRP3 levels in murine models of cardiovascular pathophysiology was found to be partly opposite to the clinical findings in men.
Collapse
Affiliation(s)
- Andreas Schmid
- Department of Internal Medicine III, Giessen University Hospital, Giessen, Germany.
| | - Sabine Pankuweit
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | | | - Sören Koch
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Benedikt Berge
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany
| | - Praveen Gajawada
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany
| | - Kerstin Troidl
- Department of Life Sciences and Engineering, TH Bingen, University of Applied Sciences, Bingen Am Rhein, Germany
- Department of Vascular and Endovascular Surgery, Cardiovascular Surgery Clinic, University Hospital Frankfurt and Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | | | - Andreas Schäffler
- Department of Internal Medicine III, Giessen University Hospital, Giessen, Germany
| | - Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
3
|
Chen Z, Xia X, Yao M, Yang Y, Ao X, Zhang Z, Guo L, Xu X. The dual role of mesenchymal stem cells in apoptosis regulation. Cell Death Dis 2024; 15:250. [PMID: 38582754 PMCID: PMC10998921 DOI: 10.1038/s41419-024-06620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Mesenchymal stem cells (MSCs) are widely distributed pluripotent stem cells with powerful immunomodulatory capacity. MSCs transplantation therapy (MSCT) is widely used in the fields of tissue regeneration and repair, and treatment of inflammatory diseases. Apoptosis is an important way for tissues to maintain cell renewal, but it also plays an important role in various diseases. And many studies have shown that MSCs improves the diseases by regulating cell apoptosis. The regulation of MSCs on apoptosis is double-sided. On the one hand, MSCs significantly inhibit the apoptosis of diseased cells. On the other hand, MSCs also promote the apoptosis of tumor cells and excessive immune cells. Furthermore, MSCs regulate apoptosis through multiple molecules and pathways, including three classical apoptotic signaling pathways and other pathways. In this review, we summarize the current evidence on the regulation of apoptosis by MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of General Surgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Xuewei Xia
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400042, China
| | - Mengwei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of orthopedics, The 953th Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, China
| | - Zhaoqi Zhang
- Department of Neurosurgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Li Guo
- Endocrinology Department, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
4
|
Chen Q, Li Y, Bie B, Zhao B, Zhang Y, Fang S, Li S, Zhang Y. P38 MAPK activated ADAM17 mediates ACE2 shedding and promotes cardiac remodeling and heart failure after myocardial infarction. Cell Commun Signal 2023; 21:73. [PMID: 37046278 PMCID: PMC10091339 DOI: 10.1186/s12964-023-01087-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/23/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Heart failure (HF) after myocardial infarction (MI) is a prevalent disease with a poor prognosis. Relieving pathological cardiac remodeling and preserving cardiac function is a critical link in the treatment of post-MI HF. Thus, more new therapeutic targets are urgently needed. The expression of ADAM17 is increased in patients with acute MI, but its functional role in post-MI HF remains unclear. METHODS To address this question, we examined the effects of ADAM17 on the severity and prognosis of HF within 1 year of MI in 152 MI patients with or without HF. In mechanistic studies, the effects of ADAM17 on ventricular remodeling and systolic function were extensively assessed at the tissue and cellular levels by establishing animal model of post-MI HF and in vitro hypoxic cell model. RESULTS High levels of ADAM17 predicted a higher incidence of post-MI HF, poorer cardiac function and higher mortality. Animal studies demonstrated that ADAM17 promoted the occurrence of post-MI HF, as indicated by increased infarct size, cardiomyocyte hypertrophy, myocardial interstitial collagen deposition and cardiac failure. ADAM17 knock down significantly improved pathological cardiac remodeling and cardiac function in mice with MI. Mechanistically, activated ADAM17 inhibited the cardioprotective effects of ACE2 by promoting hydrolytic shedding of the transmembrane protein ACE2 in cardiomyocytes, which subsequently mediated the occurrence of cardiac remodeling and the progression of heart failure. Moreover, the activation of ADAM17 in hypoxic cardiomyocytes was dependent on p38 MAPK phosphorylation at threonine 735. CONCLUSIONS These data highlight a novel and important mechanism for ADAM17 to cause post-MI HF, which will hopefully be a new potential target for early prediction or intervention of post-MI HF. Video abstract.
Collapse
Affiliation(s)
- Qi Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- Harbin Medical University, No. 157 JianBao Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yilan Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Bike Bie
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- Harbin Medical University, No. 157 JianBao Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Bin Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- Harbin Medical University, No. 157 JianBao Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yanxiu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- Harbin Medical University, No. 157 JianBao Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Shaohong Fang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Shuijie Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Yao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
5
|
Zhang M, Tan Y, Song Y, Zhu M, Zhang B, Chen C, Liu Y, Shi L, Cui J, Shan W, Jia Z, Feng L, Cao G, Yi W, Sun Y. GLUT4 mediates the protective function of gastrodin against pressure overload-induced cardiac hypertrophy. Biomed Pharmacother 2023; 161:114324. [PMID: 36958192 DOI: 10.1016/j.biopha.2023.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 03/25/2023] Open
Abstract
Gastrodia elata exhibits extensive pharmacological activity; its extract gastrodin (GAS) has been used clinically to treat cardiovascular diseases. In the present study, we examined the effect of GAS in a mice model of pathological cardiac hypertrophy, which was induced using transverse aortic constriction (TAC). Male C57BL/6 J mice underwent either TAC or sham surgery. GAS was administered post-surgically for 6 weeks and significantly improved the deterioration of cardiac contractile function caused by pressure overload, cardiac hypertrophy, and fibrosis in mice. Treatment with GAS for 6 weeks upregulated myosin heavy chain α and down-regulated myosin heavy chain β and atrial natriuretic peptide, while insulin increased the effects of GAS against cardiac hypertrophy. In vitro studies showed that GAS could also protect phenylephrine-induced cardiomyocyte hypertrophy, and these effects were attenuated by BAY-876, and increased by insulin. Taken together, our results suggest that the anti-hypertrophic effect of gastrodin depends on its entry into cardiomyocytes through GLUT4.
Collapse
Affiliation(s)
- Miao Zhang
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yanzhen Tan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Min Zhu
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Cheng Chen
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yingying Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Shi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zipei Jia
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lele Feng
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guojie Cao
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
6
|
Song Y, Zhang Y, Wan Z, Pan J, Gao F, Li F, Zhou J, Chen J. CTRP3 alleviates cardiac ischemia/reperfusion injury via LAMP1/JIP2/JNK signaling pathway. Aging (Albany NY) 2022; 14:1321-1335. [PMID: 35114641 PMCID: PMC8876908 DOI: 10.18632/aging.203876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Abstract
Background: C1q/tumor necrosis factor-related protein 3 (CTRP3) has been reported to be a crucial regulator in myocardial infarction. Nevertheless, the potential molecular mechanism of CTRP3 in ischemia/reperfusion (I/R) injury remains largely unclear. Methods: The cell model of myocardial I/R injury was established by oxygen-glucose deprivation/reoxygenation (OGD/R) of rat cardiomyocyte H9C2. Expression of CTRP3 and lysosomal-associated membrane protein 1 (LAMP1) was detected in H9C2 cells treated with oxygen-glucose deprivation/reoxygenation (OGD/R). H9C2 cells were transfected with overexpression plasmids of CTRP3 (pcDNA-CTRP3) and LAMP1 (pcDNA-LAMP1), or CTRP3 small interfering RNA (si-CTRP3) or/and pcDNA-LAMP1, and cell proliferation, apoptosis and oxidative stress were testified. Co-IP assay was performed to validate the relationship among CTRP3, LAMP1 and JIP2. The role of CTRP3 and LAMP1 in JIP2/JNK pathway was evaluated with Western blot assay. Furthermore, in vivo myocardial I/R injury model was constructed to investigate the effect of CTRP3. Results: Overexpression of CTRP3 and LAMP1 both significantly promoted cell proliferation, inhibited apoptosis and the production of reactive oxygen species (ROS), malondialdehyde (MAD) and cardiac troponin (cTn-I), while silencing CTRP3 exerted the opposite effects, and LAMP1 overexpression reversed the effect of silencing CTRP3 on the aspects above. CTRP3 interacted with LAMP1, and both CTRP3 and LAMP1 bound with JIP2. SP600125 (JNK inhibitor) could restore the effects of CTRP3 or LAMP1 overexpression on the expression of JIP2 and phosphorylated-JNK (p-JNK), proliferation and apoptosis. Moreover, overexpression of CTRP3 improved cardiac I/R injury in vivo. Conclusion: CTRP3 alleviates cardiac I/R injury by elevating LAMP1 and activating JIP2/JNK signaling pathway, which may serve as a potential therapeutic target for I/R injury.
Collapse
Affiliation(s)
- Yanbin Song
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Yunqing Zhang
- Department of Pathology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Zhaofei Wan
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710038, China
| | - Junqiang Pan
- Department of Cardiology, Xi'an Central Hospital, Xi'an 710061, China
| | - Feng Gao
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Fei Li
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Jing Zhou
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| | - Junmin Chen
- Department of Cardiovasology, Yan'an University Affiliated Hospital, Yan'an 716000, China
| |
Collapse
|
7
|
Jung HN, Jung CH. The Role of Anti-Inflammatory Adipokines in Cardiometabolic Disorders: Moving beyond Adiponectin. Int J Mol Sci 2021; 22:ijms222413529. [PMID: 34948320 PMCID: PMC8707770 DOI: 10.3390/ijms222413529] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of obesity has multiplied owing to its rapidly growing prevalence and obesity-related morbidity and mortality. In addition to the classic role of depositing extra energy, adipose tissue actively interferes with the metabolic balance by means of secreting bioactive compounds called adipokines. While most adipokines give rise to inflammatory conditions, the others with anti-inflammatory properties have been the novel focus of attention for the amelioration of cardiometabolic complications. This review compiles the current evidence on the roles of anti-inflammatory adipokines, namely, adiponectin, vaspin, the C1q/TNF-related protein (CTRP) family, secreted frizzled-related protein 5 (SFRP5), and omentin-1 on cardiometabolic health. Further investigations on the mechanism of action and prospective human trials may pave the way to their clinical application as innovative biomarkers and therapeutic targets for cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Han Na Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
| | - Chang Hee Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
- Correspondence:
| |
Collapse
|
8
|
Ghosh AK. Acetyltransferase p300 Is a Putative Epidrug Target for Amelioration of Cellular Aging-Related Cardiovascular Disease. Cells 2021; 10:cells10112839. [PMID: 34831061 PMCID: PMC8616404 DOI: 10.3390/cells10112839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease is the leading cause of accelerated as well as chronological aging-related human morbidity and mortality worldwide. Genetic, immunologic, unhealthy lifestyles including daily consumption of high-carb/high-fat fast food, lack of exercise, drug addiction, cigarette smoke, alcoholism, and exposure to environmental pollutants like particulate matter (PM)-induced stresses contribute profoundly to accelerated and chronological cardiovascular aging and associated life threatening diseases. All these stressors alter gene expression epigenetically either through activation or repression of gene transcription via alteration of chromatin remodeling enzymes and chromatin landscape by DNA methylation or histone methylation or histone acetylation. Acetyltransferase p300, a major epigenetic writer of acetylation on histones and transcription factors, contributes significantly to modifications of chromatin landscape of genes involved in cellular aging and cardiovascular diseases. In this review, the key findings those implicate acetyltransferase p300 as a major contributor to cellular senescence or aging related cardiovascular pathologies including vascular dysfunction, cardiac hypertrophy, myocardial infarction, cardiac fibrosis, systolic/diastolic dysfunction, and aortic valve calcification are discussed. The efficacy of natural or synthetic small molecule inhibitor targeting acetyltransferase p300 in amelioration of stress-induced dysregulated gene expression, cellular aging, and cardiovascular disease in preclinical study is also discussed.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Tang Y, Li J, Wang W, Chen B, Chen J, Shen Z, Hou J, Mei Y, Liu S, Zhang L, Li Z, Lu S. Platelet extracellular vesicles enhance the proangiogenic potential of adipose-derived stem cells in vivo and in vitro. Stem Cell Res Ther 2021; 12:497. [PMID: 34503551 PMCID: PMC8427862 DOI: 10.1186/s13287-021-02561-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cells (ADSC)-based therapy is an outstanding treatment strategy for ischaemic disease. However, the therapeutic efficacy of this strategy is not ideal due to the poor paracrine function and low survival rate of ADSCs in target regions. Platelet extracellular vesicles (PEVs) are nanoparticles derived from activated platelets that can participate in communication between cells. Accumulating evidence indicates that PEVs can regulate the biological functions of several cell lines. In the present study, we aimed to investigate whether PEVs can modulate the proangiogenic potential of ADSCs in vitro and in vivo. METHODS PEVs were identified using scanning electron microscope (SEM), flow cytometry (FCM) and nanoparticle tracking analysis (NTA). The CCK8 assay was performed to detect proliferation of cells. Transwell and wound healing assays were performed to verify migration capacity of cells. AnnexinV-FITC/PI apoptosis kit and live/dead assay were performed to assess ADSCs apoptosis under Cocl2-induced hypoxia condition. The underlying mechanisms by which PEVs affected ADSCs were explored using real time-PCR(RT-PCR) and Western blot. In addition, matrigel plug assays were conducted and mouse hindlimb ischaemic models were established to investigate the proangiogenic potential of PEV-treated ADSCs in vivo. RESULTS We demonstrated that ADSC could internalize PEVs, which lead to a series of biological reactions. In vitro, dose-dependent effects of PEVs on ADSC proliferation, migration and antiapoptotic capacity were observed. Western blotting results suggested that multiple proteins such as ERK, AKT, FAK, Src and PLCγ1 kinase may contribute to these changes. Furthermore, PEVs induced upregulation of several growth factors expression in ADSCs and amplified the proliferation, migration and tube formation of HUVECs induced by ADSC conditioned medium (CM). In in vivo experiments, compared with control ADSCs, the injection of PEV-treated ADSCs resulted in more vascularization in matrigel plugs, attenuated tissue degeneration and increased blood flow and capillary density in ischaemic hindlimb tissues. CONCLUSION Our data demonstrated that PEVs could enhance the proangiogenic potential of ADSCs in mouse hindlimb ischaemia. The major mechanisms of this effect included the promotion of ADSC proliferation, migration, anti-apoptosis ability and paracrine secretion.
Collapse
Affiliation(s)
- Yanan Tang
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jiayan Li
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Weiyi Wang
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Bingyi Chen
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jinxing Chen
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Zekun Shen
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jiaxuan Hou
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yifan Mei
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Shuang Liu
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Liwei Zhang
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Zongjin Li
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China.
| | - Shaoying Lu
- Vascular Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
10
|
Koteliukh M. Features of Changes in the Structural and Functional State of the Myocardium in
Patients with Acute Myocardial Infarction Depending on Body Mass Index Considering FABP4
and CTRP3 Levels. GALICIAN MEDICAL JOURNAL 2021. [DOI: 10.21802/gmj.2021.3.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction. Adipokines such as fatty acid-binding protein 4 (FABP4) and C1q
tumor necrosis factor-related protein 3 (CTRP3) can affect the structural and functional
state of the myocardium in patients with acute myocardial infarction and obesity.
The objective of the research was to determine the relationship between FABP4, CTRP3 and
echocardiographic parameters of the left ventricular myocardium in patients with acute
myocardial infarction depending on body mass index.
Materials and Methods. The
observational cross-sectional study examined 189 patients with acute myocardial
infarction depending on body mass index, who were divided into the following groups:
Group 1 included 60 patients with acute myocardial infarction and normal body mass
index; Group 2 comprised 68 patients with acute myocardial infarction and excess body
weight; Group 3 included 61 patients with acute myocardial infarction and obesity.
Results. In Group 1, the statistical significance correlations were found: between FABP4
and end-diastolic dimension (EDD; r = -0.458), end-systolic dimension (ESD; r = -0.460),
end-diastolic volume (EDV; r = -0.452), left ventricular myocardial mass (LVMM; r =
-0.411), LVMM/body surface area index (LVMMI2; r = -0.419); between CTRP3 and EDV (r =
0.425), EDD (r = 0.469), left ventricular relative posterior wall thickness (LVRPWT; r =
-0.469). In Group 2, there were found the statistical significance relationships
between: FABP4 and EDD (r = 0.461), ESD (r = 0.467), EDV (r = 0.449), end-systolic
volume (ESV; r = 0.485), LVMM (r = 0.487), LVMMI1 (r = 0.406); between CTRP3 and EDD (r
= -0.440), EDV (r = -0.413), LVMM (r = -0.430), LVMM/height2.7 index (LVMMI1; r =
-0.483). In Group 3, the statistical significance correlations were found between: FABP4
and EDV (r = 0.481), ESD (r = 0.411), ESV (r = 0.490), LVMMI1 (r = 0.403); between CTRP3
and EDV (r = -0.326), ESD (r = -0.367), ESV (r = -0.453), LVMMI1 (r = -0.415).
Conclusions. In patients with acute myocardial infarction and overweight/obesity,
echocardiographic parameters had a significant low positive correlation with FABP4 and a
low negative correlation with CTRP3. On the contrary, in patients with acute myocardial
infarction and normal body mass index, echocardiographic parameters had a significant
low negative correlation with FABP4 and a low positive correlation with CTRP3.
Collapse
|
11
|
Mesenchymal Stem Cells Therapies on Fibrotic Heart Diseases. Int J Mol Sci 2021; 22:ijms22147447. [PMID: 34299066 PMCID: PMC8307175 DOI: 10.3390/ijms22147447] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy is a promising alternative approach to heart diseases. The most prevalent source of multipotent stem cells, usually called somatic or adult stem cells (mesenchymal stromal/stem cells, MSCs) used in clinical trials is bone marrow (BM-MSCs), adipose tissue (AT-MSCs), umbilical cord (UC-MSCs) and placenta. Therapeutic use of MSCs in cardiovascular diseases is based on the benefits in reducing cardiac fibrosis and inflammation that compose the cardiac remodeling responsible for the maintenance of normal function, something which may end up causing progressive and irreversible dysfunction. Many factors lead to cardiac fibrosis and failure, and an effective therapy is lacking to reverse or attenuate this condition. Different approaches have been shown to be promising in surpassing the poor survival of transplanted cells in cardiac tissue to provide cardioprotection and prevent cardiac remodeling. This review includes the description of pre-clinical and clinical investigation of the therapeutic potential of MSCs in improving ventricular dysfunction consequent to diverse cardiac diseases.
Collapse
|
12
|
Ding H, Wang Z, Song W. CTRP3 protects hippocampal neurons from oxygen-glucose deprivation-induced injury through the AMPK/Nrf2/ARE pathway. Hum Exp Toxicol 2021; 40:1153-1162. [PMID: 33501881 DOI: 10.1177/0960327121989412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE C1q/TNF-related protein 3 (CTRP3), a member of CTRP family, has been found to have neuroprotective effect. In the current study, we investigated the protective role of CTRP3 in hippocampal neurons exposed to oxygen-glucose deprivation/reperfusion (OGD/R). MATERIALS AND METHODS The mRNA and protein levels of CTRP3 in OGD/R-stimulated hippocampal neurons were measured using qRT-PCR and western blot analysis, respectively. CCK-8 assay was performed to assess cell viability. ROS production was measured using the fluorescence probe 2',7'-dichlorofluorescein diacetate (H2DCFDA). The activities of SOD and GPx were determined using ELISA. Cell apoptosis was assessed. Luciferase reporter assay was carried out to assess the activation of ARE). The levels of p-AMPK and Nrf2 were measured using western blot. RESULTS Our results showed that the expression of CTRP3 was significantly downregulated in hippocampal neuronal cells exposed to OGD/R. Overexpression of CTRP3 improved cell viability of OGD/R-induced hippocampal neurons. In addition, overexpression of CTRP3 attenuated the OGD/R-caused oxidative stress with decreased ROS production and increased activities of SOD and GPx. Moreover, CTRP3 caused a significant increase in bcl-2 expression and decreases in bax expression and caspase-3 activity. Furthermore, CTRP3 overexpression significantly upregulated the levels of p-AMPK and Nrf2, as well induced the activation of ARE in OGD-R-induced hippocampal neurons. CTRP3 upregulated the mRNA expression levels of HO-1, NQO-1 and GPx-3. Additionally, treatment with the inhibitor of AMPK partially reversed the neuroprotective effect of CTRP3 in OGD/R-exposed neurons. CONCLUSION CTRP3 exerted protective effect on OGD/R-induced cerebral injury, which was regulated by AMPK/Nrf2/ARE pathway.
Collapse
Affiliation(s)
- H Ding
- Department of Anesthesiology, 159431Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Z Wang
- Department of Anesthesiology, 159431Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - W Song
- Department of Anesthesiology, 159431Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Guo B, Zhuang T, Xu F, Lin X, Li F, Shan SK, Wu F, Zhong JY, Wang Y, Zheng MH, Xu QS, Ehsan UMH, Yuan LQ. New Insights Into Implications of CTRP3 in Obesity, Metabolic Dysfunction, and Cardiovascular Diseases: Potential of Therapeutic Interventions. Front Physiol 2020; 11:570270. [PMID: 33343381 PMCID: PMC7744821 DOI: 10.3389/fphys.2020.570270] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue, as the largest endocrine organ, secretes many biologically active molecules circulating in the bloodstream, collectively termed adipocytokines, which not only regulate the metabolism but also play a role in pathophysiological processes. C1q tumor necrosis factor (TNF)-related protein 3 (CTRP3) is a member of C1q tumor necrosis factor-related proteins (CTRPs), which is a paralog of adiponectin. CTRP3 has a wide range of effects on glucose/lipid metabolism, inflammation, and contributes to cardiovascular protection. In this review, we comprehensively discussed the latest research on CTRP3 in obesity, diabetes, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Bei Guo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tongtian Zhuang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yu Zhong
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ullah Muhammad Hasnain Ehsan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
GDF11 inhibits cardiomyocyte pyroptosis and exerts cardioprotection in acute myocardial infarction mice by upregulation of transcription factor HOXA3. Cell Death Dis 2020; 11:917. [PMID: 33100331 PMCID: PMC7585938 DOI: 10.1038/s41419-020-03120-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
NLRP3 (Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3) inflammasome-mediated cardiomyocytes pyroptosis plays a crucial part in progression of acute myocardial infarction (MI). GDF11 (Growth Differentiation Factor 11) has been reported to generate cytoprotective effects in phylogenesis and multiple diseases, but the mechanism that GDF11 contributes to cardioprotection of MI and cardiomyocytes pyroptosis remains poorly understood. In our study, we first determined that GDF11 was abnormally downregulated in the heart tissue of MI mice and hypoxic cardiomyocytes. Moreover, AAV9-GDF11 markedly alleviated heart function in MI mice. Meanwhile, GDF11 overexpression also decreased the pyroptosis of hypoxic cardiomyocytes. PROMO and JASPAR prediction software found that transcription factor HOXA3 was predicted as an important regulator of NLRP3, and was confirmed by ChIP assay. Further analysis identifying GDF11 promoted the Smad2/3 pathway resulted in HOXA3 overexpression. Taken together, our study implies that GDF11 prevents cardiomyocytes pyroptosis via HOXA3/NLRP3 signaling pathway in MI mice.
Collapse
|
15
|
Fan C, Feng J, Tang C, Zhang Z, Feng Y, Duan W, Zhai M, Yan Z, Zhu L, Feng L, Zhu H, Luo E. Melatonin suppresses ER stress-dependent proapoptotic effects via AMPK in bone mesenchymal stem cells during mitochondrial oxidative damage. Stem Cell Res Ther 2020; 11:442. [PMID: 33059742 PMCID: PMC7560057 DOI: 10.1186/s13287-020-01948-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMSCs) have been used as important cell-based tools for clinical applications. Oxidative stress-induced apoptosis causes a low survival rate after transplantation, and the underlying mechanisms remain unknown. The endoplasmic reticulum (ER) and mitochondria are vital organelles regulated by adenosine monophosphate (AMP)-activated protein kinase (AMPK), especially during oxidative stress injury. Melatonin exerts an antioxidant effect by scavenging free radicals. Here, we aimed to explore whether cytoprotective melatonin relieves ER stress-mediated mitochondrial dysfunction through AMPK in BMSCs after oxidative stress injury. Methods Mouse BMSCs were isolated and exposed to H2O2 in the absence or presence of melatonin. Thereafter, cell damage, oxidative stress levels, mitochondrial function, AMPK activity, ER stress-related proteins, and apoptotic markers were measured. Additionally, the involvement of AMPK and ER stress in the melatonin-mediated protection of BMSCs against H2O2-induced injury was investigated using pharmacologic agonists and inhibitors. Results Melatonin improved cell survival and restored mitochondrial function. Moreover, melatonin intimately regulated the phosphorylation of AMPK and molecules associated with ER stress pathways. AMPK activation and ER stress inhibition following melatonin administration improved the mitochondrial membrane potential (MMP), reduced mitochondria-initiated oxidative damage, and ultimately suppressed apoptotic signaling pathways in BMSCs. Cotreatment with N-acetyl-l-cysteine (NAC) significantly enhanced the antioxidant effect of melatonin. Importantly, pharmacological AMPK activation/ER stress inhibition promoted melatonin-induced cytoprotection, while pharmacological AMPK inactivation/ER stress induction conferred resistance to the effect of melatonin against H2O2 insult. Conclusions Our data also reveal a new, potentially therapeutic mechanism by which melatonin protects BMSCs from oxidative stress-mediated mitochondrial apoptosis, possibly by regulating the AMPK-ER stress pathway.
Collapse
Affiliation(s)
- Chongxi Fan
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China. .,Department of Oncology, Air Force Medical Center of PLA, 30 Fucheng Road, Beijing, 100142, China.
| | - Jianyu Feng
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Chi Tang
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhengbin Zhang
- Department of Geriatrics, The 8th Medical Center of Chinese PLA General Hospital, 17 Heishanhu Street, Beijing, 100091, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Mingming Zhai
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zedong Yan
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Liwen Zhu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Medical University, 277 Yanta West Road, Xi'an, 710077, China
| | - Lele Feng
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Hanzhao Zhu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Erping Luo
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
16
|
Fan C, Feng J, Tang C, Zhang Z, Feng Y, Duan W, Zhai M, Yan Z, Zhu L, Feng L, Zhu H, Luo E. Melatonin suppresses ER stress-dependent proapoptotic effects via AMPK in bone mesenchymal stem cells during mitochondrial oxidative damage. Stem Cell Res Ther 2020. [PMID: 33059742 DOI: 10.1186/s13287-020-01948-5.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) have been used as important cell-based tools for clinical applications. Oxidative stress-induced apoptosis causes a low survival rate after transplantation, and the underlying mechanisms remain unknown. The endoplasmic reticulum (ER) and mitochondria are vital organelles regulated by adenosine monophosphate (AMP)-activated protein kinase (AMPK), especially during oxidative stress injury. Melatonin exerts an antioxidant effect by scavenging free radicals. Here, we aimed to explore whether cytoprotective melatonin relieves ER stress-mediated mitochondrial dysfunction through AMPK in BMSCs after oxidative stress injury. METHODS Mouse BMSCs were isolated and exposed to H2O2 in the absence or presence of melatonin. Thereafter, cell damage, oxidative stress levels, mitochondrial function, AMPK activity, ER stress-related proteins, and apoptotic markers were measured. Additionally, the involvement of AMPK and ER stress in the melatonin-mediated protection of BMSCs against H2O2-induced injury was investigated using pharmacologic agonists and inhibitors. RESULTS Melatonin improved cell survival and restored mitochondrial function. Moreover, melatonin intimately regulated the phosphorylation of AMPK and molecules associated with ER stress pathways. AMPK activation and ER stress inhibition following melatonin administration improved the mitochondrial membrane potential (MMP), reduced mitochondria-initiated oxidative damage, and ultimately suppressed apoptotic signaling pathways in BMSCs. Cotreatment with N-acetyl-L-cysteine (NAC) significantly enhanced the antioxidant effect of melatonin. Importantly, pharmacological AMPK activation/ER stress inhibition promoted melatonin-induced cytoprotection, while pharmacological AMPK inactivation/ER stress induction conferred resistance to the effect of melatonin against H2O2 insult. CONCLUSIONS Our data also reveal a new, potentially therapeutic mechanism by which melatonin protects BMSCs from oxidative stress-mediated mitochondrial apoptosis, possibly by regulating the AMPK-ER stress pathway.
Collapse
Affiliation(s)
- Chongxi Fan
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China. .,Department of Oncology, Air Force Medical Center of PLA, 30 Fucheng Road, Beijing, 100142, China.
| | - Jianyu Feng
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Chi Tang
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhengbin Zhang
- Department of Geriatrics, The 8th Medical Center of Chinese PLA General Hospital, 17 Heishanhu Street, Beijing, 100091, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Mingming Zhai
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zedong Yan
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Liwen Zhu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Medical University, 277 Yanta West Road, Xi'an, 710077, China
| | - Lele Feng
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Hanzhao Zhu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Erping Luo
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
17
|
Shanaki M, Shabani P, Goudarzi A, Omidifar A, Bashash D, Emamgholipour S. The C1q/TNF-related proteins (CTRPs) in pathogenesis of obesity-related metabolic disorders: Focus on type 2 diabetes and cardiovascular diseases. Life Sci 2020; 256:117913. [DOI: 10.1016/j.lfs.2020.117913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
|
18
|
Damasceno PKF, de Santana TA, Santos GC, Orge ID, Silva DN, Albuquerque JF, Golinelli G, Grisendi G, Pinelli M, Ribeiro Dos Santos R, Dominici M, Soares MBP. Genetic Engineering as a Strategy to Improve the Therapeutic Efficacy of Mesenchymal Stem/Stromal Cells in Regenerative Medicine. Front Cell Dev Biol 2020; 8:737. [PMID: 32974331 PMCID: PMC7471932 DOI: 10.3389/fcell.2020.00737] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been widely studied in the field of regenerative medicine for applications in the treatment of several disease settings. The therapeutic potential of MSCs has been evaluated in studies in vitro and in vivo, especially based on their anti-inflammatory and pro-regenerative action, through the secretion of soluble mediators. In many cases, however, insufficient engraftment and limited beneficial effects of MSCs indicate the need of approaches to enhance their survival, migration and therapeutic potential. Genetic engineering emerges as a means to induce the expression of different proteins and soluble factors with a wide range of applications, such as growth factors, cytokines, chemokines, transcription factors, enzymes and microRNAs. Distinct strategies have been applied to induce genetic modifications with the goal to enhance the potential of MCSs. This review aims to contribute to the update of the different genetically engineered tools employed for MSCs modification, as well as the factors investigated in different fields in which genetically engineered MSCs have been tested.
Collapse
Affiliation(s)
- Patricia Kauanna Fonseca Damasceno
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | | | - Iasmim Diniz Orge
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | - Giulia Golinelli
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Ricardo Ribeiro Dos Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Bao H, Guo H, Feng Z, Li X. Deciphering the underlying mechanism of Xianlinggubao capsule against osteoporosis by network pharmacology. BMC Complement Med Ther 2020; 20:208. [PMID: 32620113 PMCID: PMC7333287 DOI: 10.1186/s12906-020-03007-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Xianlinggubao formula (XLGB), a Chinese State Food and Drug Administration-permitted traditional Chinese herbal medicine, has been extensively used to treat osteoporosis. Although XLGB was shown to improve bone mass in ovariectomized rats and clinically alleviate osteoporosis symptoms, its pharmacological mechanisms remain unclear. Methods In this study, we used a network pharmacological approach to explore the potential mechanism of XLGB in treating osteoporosis. We obtained XLGB compounds from the TCMSP and TCMID databases and identified potential targets of these compounds through target fishing based on the TCMSP and Swiss Target Prediction databases. Next, we identified the osteoporosis targets by using the CTD, TTD, GeneCards, OMIM and PharmGKB databases. Then, the overlapping genes between the XLGB potential targets and the osteoporosis targets were used to establish a protein-protein interaction (PPI) network and to analyze their interactions and identify the major hub genes in this network. Subsequently, the Metascape database was utilized to conduct the enrichment of Gene Ontology biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results There were 104 active compounds and 295 related targets identified overall. After the Metascape enrichment analysis, we identified the top 25 cellular biological processes and top 15 pathways based on the logP value and found that the XLGB-mediated anti-osteoporosis effect was mainly associated with reactive oxygen species, organonitrogen compound response and cell migration. Furthermore, 36 hub genes of XLGB, such as EGF, EGFR, MTOR, MAPK14 and NFKB1, were considered potential therapeutic targets, suggesting the underlying mechanisms of XLGB acting on osteoporosis. Conclusion We investigated the possible therapeutic mechanisms of XLGB from a systemic perspective. These key targets and pathways provide promising directions for future research to reveal the exact regulatory mechanisms of XLGB.
Collapse
Affiliation(s)
- Hangsheng Bao
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Huizhi Guo
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zongquan Feng
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Xin Li
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
20
|
Deng J, Zhang N, Wang Y, Yang C, Wang Y, Xin C, Zhao J, Jin Z, Cao F, Zhang Z. FNDC5/irisin improves the therapeutic efficacy of bone marrow-derived mesenchymal stem cells for myocardial infarction. Stem Cell Res Ther 2020; 11:228. [PMID: 32522253 PMCID: PMC7288492 DOI: 10.1186/s13287-020-01746-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background The beneficial functions of bone marrow mesenchymal stem cells (BM-MSCs) decline with decreased cell survival, limiting their therapeutic efficacy for myocardial infarction (MI). Irisin, a novel myokine which is cleaved from its precursor fibronectin type III domain-containing protein 5 (FNDC5), is believed to be involved in a cardioprotective effect, but little was known on injured BM-MSCs and MI repair yet. Here, we investigated whether FNDC5 or irisin could improve the low viability of transplanted BM-MSCs and increase their therapeutic efficacy after MI. Methods BM-MSCs, isolated from dual-reporter firefly luciferase and enhanced green fluorescent protein positive (Fluc+–eGFP+) transgenic mice, were exposed to normoxic condition and hypoxic stress for 12 h, 24 h, and 48 h, respectively. In addition, BM-MSCs were treated with irisin (20 nmol/L) and overexpression of FNDC5 (FNDC5-OV) in serum deprivation (H/SD) injury. Furthermore, BM-MSCs were engrafted into infarcted hearts with or without FNDC5-OV. Results Hypoxic stress contributed to increased apoptosis, decreased cell viability, and paracrine effects of BM-MSCs while irisin or FNDC5-OV alleviated these injuries. Longitudinal in vivo bioluminescence imaging and immunofluorescence results illustrated that BM-MSCs with overexpression of FNDC5 treatment (FNDC5-MSCs) improved the survival of transplanted BM-MSCs, which ameliorated the increased apoptosis and decreased angiogenesis of BM-MSCs in vivo. Interestingly, FNDC5-OV elevated the secretion of exosomes in BM-MSCs. Furthermore, FNDC5-MSC therapy significantly reduced fibrosis and alleviated injured heart function. Conclusions The present study indicated that irisin or FNDC5 improved BM-MSC engraftment and paracrine effects in infarcted hearts, which might provide a potential therapeutic target for MI.
Collapse
Affiliation(s)
- Jingyu Deng
- Department of Cardiology, Postgraduate Training Base in PLA Rocket Force Characteristic Medical Center, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Ning Zhang
- Central Beijing Medical District, Chinese PLA General Hospital, Fuxing-Road, Haidian, Beijing, 100853, China
| | - Yong Wang
- Department of Nuclear Medicine, the Fifth Medical Center,, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Beijing, 100071, China
| | - Chao Yang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Yabin Wang
- National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Xin
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Jinming Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhitao Jin
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Zheng Zhang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China.
| |
Collapse
|
21
|
Huang H, Wang Y, Wang X, Lei Y. Association of CYP4F2 and CTRP9 polymorphisms and serum selenium levels with coronary artery disease. Medicine (Baltimore) 2020; 99:e20494. [PMID: 32481463 DOI: 10.1097/md.0000000000020494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aims to explore the interaction between serum selenium level and CYP4F2 and CTRP9 gene polymorphisms in the development of coronary artery disease (CAD).A total of 200 cases of CAD were selected from the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei, China, and 200 healthy subjects cases were served as controls. The polymorphism of CYP4F2 and CTRP9 gene was detected by Sanger sequencing, and the serum selenium level was measured by hydride generation atomic fluorescence spectrometry.The serum selenium level in the CAD group was significantly lower than that in the control group. The risk of CAD was decreased in the patients carrying the AA genotype in CYP4F2 rs3093135, while the frequency of the CC genotype of CTRP9 rs9553238 in CAD patients was higher than that in control subjects. Low serum selenium level and CTRP9 rs9553238 CC genotype play a positive role in the occurrence of CAD.The serum selenium level is negatively correlated with CAD. The polymorphism of the CYP4F2 rs3093135 and CTRP9 rs9553238 was significantly related to the susceptibility of CAD, and there is a synergistic effect between the serum selenium level and the CTRP9 rs9553238 CC genotype, which significantly increases the risk of CAD.
Collapse
Affiliation(s)
- Hao Huang
- Cardiovascular Disease Center, Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | | | | | | |
Collapse
|
22
|
Qi W, Boliang W, Xiaoxi T, Guoqiang F, Jianbo X, Gang W. Cardamonin protects against doxorubicin-induced cardiotoxicity in mice by restraining oxidative stress and inflammation associated with Nrf2 signaling. Biomed Pharmacother 2019; 122:109547. [PMID: 31918264 DOI: 10.1016/j.biopha.2019.109547] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
The clinical application of doxorubicin (DOX) for cancer treatment is limited due to its cardiotoxicity. However, the basic pathophysiological molecular mechanisms underlying DOX-induced cardiomyopathy have not yet been completely clarified, and the disease-specific therapeutic strategies are lacking. The aim of the present study was to investigate the potential cardioprotective effect of cardamonin (CAR), a flavone found in Alpinia plant, on DOX-induced cardiotoxicity in a mouse model. At first, in DOX-treated mouse cardiomyocytes, CAR showed significantly cytoprotective effects through elevating nuclear factor erythroid-2 related factor 2 (Nrf2) signaling, and reducing the degradation of Nrf2. This process then improved the anti-oxidant system, as evidenced by the up-regulated expression levels of haem oxygenase-1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase modifier subunit (GCLM), superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT). In contrast, DOX-induced increases in malondialdehyde (MDA) and reactive oxygen species (ROS) were highly inhibited by CAR treatments. Additionally, DOX-induced apoptosis and inflammatory response in cardiomyocytes were diminished by CAR through reducing the Caspase-3 and nuclear factor-κB (NF-κB) signaling pathways, respectively. Then, in the DOX-induced animal model with cardiotoxicity, we confirmed that through improving Nrf2 signaling, CAR markedly suppressed oxidative stress, apoptosis and inflammatory response in hearts of mice, improving cardiac function eventually. Together, our findings demonstrated that CAR activated Nrf2-related cytoprotective system, and protected the heart from oxidative damage, apoptosis and inflammatory injury, suggesting that CAR might be a potential therapeutic strategy in the prevention of DOX-associated myocardiopathy.
Collapse
Affiliation(s)
- Wang Qi
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Wang Boliang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710000, China
| | - Tian Xiaoxi
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Fu Guoqiang
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Xiao Jianbo
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Wang Gang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710000, China.
| |
Collapse
|
23
|
Rockel JS, Rabani R, Viswanathan S. Anti-fibrotic mechanisms of exogenously-expanded mesenchymal stromal cells for fibrotic diseases. Semin Cell Dev Biol 2019; 101:87-103. [PMID: 31757583 DOI: 10.1016/j.semcdb.2019.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Most chronic diseases involving inflammation have a fibrotic component that involves remodeling and excess accumulation of extracellular matrix components. Left unchecked, fibrosis leads to organ failure and death. Mesenchymal stromal cells (MSCs) are emerging as a potent cell-based therapy for a wide spectrum of fibrotic conditions due to their immunomodulatory, anti-inflammatory and anti-fibrotic properties. This review provides an overview of known mechanisms by which MSCs mediate their anti-fibrotic actions and in relation to animal models of pulmonary, liver, renal and cardiac fibrosis. Recent MSC clinical trials results in liver, lung, skin, kidney and hearts are discussed and next steps for future MSC-based therapies including pre-activated or genetically-modified cells, or extracellular vesicles are also considered.
Collapse
Affiliation(s)
- Jason S Rockel
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| | - Razieh Rabani
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada; Division of Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|