1
|
Jiang J, Li D, Li F, Li H, Zhang X, Feng L. Catechin promotes endoplasmic reticulum stress-mediated gastric cancer cell apoptosis via NOX4-induced reactive oxygen species. Mol Cell Biochem 2024:10.1007/s11010-024-05138-2. [PMID: 39565530 DOI: 10.1007/s11010-024-05138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
Catechin, a polyphenolic compound in various foods and beverages, shows strong anti-cancer effects against gastric cancer (GC) cells. This study explored the effect of catechin on GC cell apoptosis and endoplasmic reticulum (ER) stress. GC cells were treated with different catechin concentrations to assess effects on cell viability, LDH release, invasion, migration, apoptosis, intracellular calcium (Ca2⁺), ER stress markers, and reactive oxygen species (ROS). siRNA knockdown targeted GRP78, PERK, CHOP, and NOX4 to examine their roles in catechin-induced ER stress and apoptosis. Catechin treatment significantly reduced GC cell viability, increased LDH release, and induced apoptosis dose-dependently. Catechins elevated intracellular Ca2⁺ and ER stress markers. Co-treatment with thapsigargin (TG) intensified these effects, implicating ER stress in apoptosis. Knocking down GRP78, PERK, and CHOP mitigated catechin-induced apoptosis and restored viability. Additionally, catechins raised ROS levels, while co-treatment with Diphenyleneiodonium (DPI) or N-acetylcysteine (NAC) lowered ROS, cell damage, and ER stress markers. NOX4 knockdown countered catechin-induced viability loss and upregulated CHOP and cleaved caspase-3. Catechin induces apoptosis in GC cells through ER stress and ROS generation. Key mediators include GRP78, PERK, CHOP, and NOX4, suggesting potential therapeutic targets for enhancing catechin efficacy in GC treatment.
Collapse
Affiliation(s)
- Jun Jiang
- Endoscopy Center, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201100, China
| | - Deming Li
- Endoscopy Center, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201100, China
| | - Fan Li
- Endoscopy Center, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201100, China
| | - Huanqing Li
- Endoscopy Center, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201100, China.
| | - Xiaohong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201100, China.
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201100, China.
| |
Collapse
|
2
|
Singhal SK, Byun JS, Yan T, Yancey R, Caban A, Gil Hernandez S, Bufford S, Hewitt SM, Winfield J, Pradhan J, Mustkov V, McDonald JA, Pérez-Stable EJ, Nápoles AM, Vohra N, De Siervi A, Yates C, Davis MB, Yang M, Tsai YC, Weissman AM, Gardner K. Protein expression of the gp78 E3 ligase predicts poor breast cancer outcome based on race. JCI Insight 2022; 7:e157465. [PMID: 35639484 PMCID: PMC9310521 DOI: 10.1172/jci.insight.157465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Women of African ancestry suffer higher rates of breast cancer mortality compared with all other groups in the United States. Though the precise reasons for these disparities remain unclear, many recent studies have implicated a role for differences in tumor biology. Using an epitope-validated antibody against the endoplasmic reticulum-associated E3 ligase, gp78, we show that elevated levels of gp78 in patient breast cancer cells predict poor survival. Moreover, high levels of gp78 are associated with poor outcomes in both ER+ and ER- tumors, and breast cancers expressing elevated amounts of gp78 protein are enriched in gene expression pathways that influence cell cycle, metabolism, receptor-mediated signaling, and cell stress response pathways. In multivariate analysis adjusted for subtype and grade, gp78 protein is an independent predictor of poor outcomes in women of African ancestry. Furthermore, gene expression signatures, derived from patients stratified by gp78 protein expression, are strong predictors of recurrence and pathological complete response in retrospective clinical trial data and share many common features with gene sets previously identified to be overrepresented in breast cancers based on race. These findings implicate a prominent role for gp78 in tumor progression and offer insights into our understanding of racial differences in breast cancer outcomes.
Collapse
Affiliation(s)
- Sandeep K. Singhal
- Department of Pathology, School of Medicine and Health Sciences
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, North Dakota, USA
| | - Jung S. Byun
- Division of Intramural Research, National Institutes of Minority Health and Health Disparities, NIH, Bethesda, Maryland, USA
| | - Tingfen Yan
- Division of Intramural Research, National Institutes of Minority Health and Health Disparities, NIH, Bethesda, Maryland, USA
| | - Ryan Yancey
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, New York, USA
| | - Ambar Caban
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, New York, USA
| | - Sara Gil Hernandez
- Division of Intramural Research, National Institutes of Minority Health and Health Disparities, NIH, Bethesda, Maryland, USA
| | - Sediqua Bufford
- Masters of Science Biotechnology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Stephen M. Hewitt
- Laboratory of Pathology, Centers for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Joy Winfield
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, New York, USA
| | - Jaya Pradhan
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, New York, USA
| | - Vesco Mustkov
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, New York, USA
| | - Jasmine A. McDonald
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York, USA
| | - Eliseo J. Pérez-Stable
- Division of Intramural Research, National Institutes of Minority Health and Health Disparities, NIH, Bethesda, Maryland, USA
| | - Anna María Nápoles
- Division of Intramural Research, National Institutes of Minority Health and Health Disparities, NIH, Bethesda, Maryland, USA
| | - Nasreen Vohra
- Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Adriana De Siervi
- Laboratory of Molecular Oncology and New Therapeutic Targets, Institute of Biology and Experimental Medicine (IBYME), CONICET, Argentina
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, USA
| | | | - Mei Yang
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Allan M. Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, New York, USA
| |
Collapse
|
3
|
McIntyre AJ, Angel CZ, Smith JS, Templeman A, Beattie K, Beattie S, Ormrod A, Devlin E, McGreevy C, Bothwell C, Eddie S, Buckley N, Williams R, Mullan P. TBX2 acts as a potent transcriptional silencer of tumour suppressor genes through interaction with the CoREST complex to sustain the proliferation of breast cancers. Nucleic Acids Res 2022; 50:6154-6173. [PMID: 35687133 PMCID: PMC9226508 DOI: 10.1093/nar/gkac494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Chromosome 17q23 amplification occurs in 20% of primary breast tumours and is associated with poor outcome. The TBX2 gene is located on 17q23 and is often over-expressed in this breast tumour subset. TBX2 is an anti-senescence gene, promoting cell growth and survival through repression of Tumour Suppressor Genes (TSGs), such as NDRG1 and CST6. Previously we found that TBX2 cooperates with the PRC2 complex to repress several TSGs, and that PRC2 inhibition restored NDRG1 expression to impede cellular proliferation. Here, we now identify CoREST proteins, LSD1 and ZNF217, as novel interactors of TBX2. Genetic or pharmacological targeting of CoREST emulated TBX2 loss, inducing NDRG1 expression and abolishing breast cancer growth in vitro and in vivo. Furthermore, we uncover that TBX2/CoREST targeting of NDRG1 is achieved by recruitment of TBX2 to the NDRG1 promoter by Sp1, the abolishment of which resulted in NDRG1 upregulation and diminished cancer cell proliferation. Through ChIP-seq we reveal that 30% of TBX2-bound promoters are shared with ZNF217 and identify novel targets repressed by TBX2/CoREST; of these targets a lncRNA, LINC00111, behaves as a negative regulator of cell proliferation. Overall, these data indicate that inhibition of CoREST proteins represents a promising therapeutic intervention for TBX2-addicted breast tumours.
Collapse
Affiliation(s)
- Alexander J McIntyre
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Charlotte Z Angel
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - James S Smith
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Amy Templeman
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Katherine Beattie
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Shannon Beattie
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Alice Ormrod
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Eadaoin Devlin
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Charles McGreevy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Chloe Bothwell
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Sharon L Eddie
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Niamh E Buckley
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Rich Williams
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Paul B Mullan
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
4
|
Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front Cell Dev Biol 2021; 9:736935. [PMID: 34595180 PMCID: PMC8476812 DOI: 10.3389/fcell.2021.736935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Hao Wu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shiyao Sui
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Qin Wang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shouping Xu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
5
|
Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021; 13:2872. [PMID: 34201346 PMCID: PMC8229436 DOI: 10.3390/cancers13122872] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
The CREB-binding protein (CBP) and p300 are two paralogous lysine acetyltransferases (KATs) that were discovered in the 1980s-1990s. Since their discovery, CBP/p300 have emerged as important regulatory proteins due to their ability to acetylate histone and non-histone proteins to modulate transcription. Work in the last 20 years has firmly established CBP/p300 as critical regulators for nuclear hormone signaling pathways, which drive tumor growth in several cancer types. Indeed, CBP/p300 are critical co-activators for the androgen receptor (AR) and estrogen receptor (ER) signaling in prostate and breast cancer, respectively. The AR and ER are stimulated by sex hormones and function as transcription factors to regulate genes involved in cell cycle progression, metabolism, and other cellular functions that contribute to oncogenesis. Recent structural studies of the AR/p300 and ER/p300 complexes have provided critical insights into the mechanism by which p300 interacts with and activates AR- and ER-mediated transcription. Breast and prostate cancer rank the first and forth respectively in cancer diagnoses worldwide and effective treatments are urgently needed. Recent efforts have identified specific and potent CBP/p300 inhibitors that target the acetyltransferase activity and the acetytllysine-binding bromodomain (BD) of CBP/p300. These compounds inhibit AR signaling and tumor growth in prostate cancer. CBP/p300 inhibitors may also be applicable for treating breast and other hormone-dependent cancers. Here we provide an in-depth account of the critical roles of CBP/p300 in regulating the AR and ER signaling pathways and discuss the potential of CBP/p300 inhibitors for treating prostate and breast cancer.
Collapse
Affiliation(s)
- Aaron R. Waddell
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA;
| | - Daiqing Liao
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| |
Collapse
|
6
|
Parfenyev SE, Shabelnikov SV, Pozdnyakov DY, Gnedina OO, Adonin LS, Barlev NA, Mittenberg AG. Proteomic Analysis of Zeb1 Interactome in Breast Carcinoma Cells. Molecules 2021; 26:molecules26113143. [PMID: 34074001 PMCID: PMC8197395 DOI: 10.3390/molecules26113143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed malignant neoplasm and the second leading cause of cancer death among women. Epithelial-to-mesenchymal Transition (EMT) plays a critical role in the organism development, providing cell migration and tissue formation. However, its erroneous activation in malignancies can serve as the basis for the dissemination of cancer cells and metastasis. The Zeb1 transcription factor, which regulates the EMT activation, has been shown to play an essential role in malignant transformation. This factor is involved in many signaling pathways that influence a wide range of cellular functions via interacting with many proteins that affect its transcriptional functions. Importantly, the interactome of Zeb1 depends on the cellular context. Here, using the inducible expression of Zeb1 in epithelial breast cancer cells, we identified a substantial list of novel potential Zeb1 interaction partners, including proteins involved in the formation of malignant neoplasms, such as ATP-dependent RNA helicase DDX17and a component of the NURD repressor complex, CTBP2. We confirmed the presence of the selected interactors by immunoblotting with specific antibodies. Further, we demonstrated that co-expression of Zeb1 and CTBP2 in breast cancer patients correlated with the poor survival prognosis, thus signifying the functionality of the Zeb1–CTBP2 interaction.
Collapse
Affiliation(s)
- Sergey E. Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Sergey V. Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Danila Y. Pozdnyakov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Olga O. Gnedina
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Leonid S. Adonin
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Alexey G. Mittenberg
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
- Correspondence: or
| |
Collapse
|
7
|
Guo Q, Cheng K, Wang X, Li X, Yu Y, Hua Y, Yang Z. Expression of HDAC1 and RBBP4 correlate with clinicopathologic characteristics and prognosis in breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:563-572. [PMID: 32269697 PMCID: PMC7137008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
Retinoblastoma binding protein 4 (RBBP4) plays an important role in transcription, cell cycle, and proliferation. Immunohistochemistry was performed to assess HDAC1 and RBBP4 expression in 240 BC patients. The expression of HDAC1 and RBBP4 in 12 pairs of BC tissues and their normal tissues was determined by western blotting. Kaplan-Meier analysis and Cox's proportional hazards regression were applied to evaluate the prognostic significance of HDAC1 and RBBP4. HDAC1 and RBBP4 expression in BC was significantly higher than that in normal tissues. HDAC1 was positively correlated with RBBP4 in breast cancer. HDAC1 and RBBP4 were negatively correlated with ER and PR in BC, respectively. The patients with high expression of RBBP4 had a worse overall survival time. The expression of RBBP4 was found to be significantly correlated with lymph node metastasis. RBBP4 may play a major role though HDAC1 in the development, metastasis, and prognosis of BC.
Collapse
Affiliation(s)
- Qingqun Guo
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Kai Cheng
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Xiaohong Wang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Xiaoqiang Li
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Yue Yu
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Yitong Hua
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| |
Collapse
|