1
|
Chen G, Zhang M, Lin X, Shi Q, Xu C, Sun B, Xiao X, Feng H. Single-cell RNA transcriptomic analyses of tumor microenvironment of ovarian metastasis in gastric cancer. Cell Oncol (Dordr) 2024; 47:1911-1925. [PMID: 39162990 DOI: 10.1007/s13402-024-00974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
PURPOSE Ovarian metastasis of gastric cancer (GC), commonly referred to as Krukenberg tumors, leads to a poor prognosis. However, the cause of metastasis remains unknown. Here, we present an integrated single-cell RNA sequencing (scRNA-Seq) analysis of the immunological microenvironment of two paired clinical specimens with ovarian metastasis of GC. METHODS scRNA-Seq was performed to determine the immunological microenvironment in ovarian metastasis of gastric cancer. CellChat was employed to analyze cell-cell communications across different cell types. Functional enrichment analysis was done by enrichKEGG in clusterProfiler. GEPIA2 was used to assess the influence of certain genes and gene signatures on prognosis. RESULTS The ovarian metastasis tissues exhibit a heterogenous immunological microenvironment compared to the primary tumors. Exhaustion of T and B cells is observed in the ovarian metastasis tissues. Compared to the paired adjacent non-tumoral and primary tumors, the ratio of endothelial cells and fibroblasts is high in the ovarian metastasis tissues. Compared to primary ovarian cancers, we identify a specific group of tumor-associated fibroblasts with MFAP4 and CAPNS1 expression in the ovarian metastatic tissues of GC. We further define metastasis-related-endothelial and metastasis-related-fibroblast signatures and indicate that patients with these high signature scores have a poor prognosis. In addition, the ovarian metastasis tissue has a lower level of intercellular communications compared to the primary tumor. CONCLUSION Our findings reveal the immunological microenvironment of ovarian metastasis of gastric cancer and will promote the discovery of new therapeutic strategies for ovarian metastasis in gastric cancer.
Collapse
Affiliation(s)
- Guoyu Chen
- State Key Laboratory of Systems Medicine for Cancer, Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Mingda Zhang
- State Key Laboratory of Systems Medicine for Cancer, Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qiqi Shi
- State Key Laboratory of Systems Medicine for Cancer, Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Chenxin Xu
- State Key Laboratory of Systems Medicine for Cancer, Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Bowen Sun
- State Key Laboratory of Systems Medicine for Cancer, Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Haizhong Feng
- State Key Laboratory of Systems Medicine for Cancer, Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
2
|
Zhang X, Zheng Y, Wang Z, Zhang G, Yang L, Gan J, Jiang X. Calpain: The regulatory point of cardiovascular and cerebrovascular diseases. Biomed Pharmacother 2024; 179:117272. [PMID: 39153432 DOI: 10.1016/j.biopha.2024.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Calpain, a key member of the Calpain cysteine protease superfamily, performs limited protein hydrolysis in a calcium-dependent manner. Its activity is tightly regulated due to the potential for non-specific cleavage of various intracellular proteins upon aberrant activation. A thorough review of the literature from 2010 to 2023 reveals 121 references discussing cardiovascular and cerebrovascular diseases. Dysregulation of the Calpain system is associated with various pathological phenomena, including lipid metabolism disorders, inflammation, apoptosis, and excitotoxicity. Although recent studies have revealed the significant role of Calpain in cardiovascular and cerebrovascular diseases, the precise mechanisms remain incompletely understood. Exploring the potential of Calpain inhibition as a therapeutic approach for the treatment of cardiovascular and cerebrovascular diseases may emerge as a compelling area of interest for future calpain research.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Guangming Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
3
|
Andleeb F, Elsadek MF, Asif M, Al-Numair KS, Chaudhry SR, Saleem M, Yehya AHS. Down-regulation of NF-κB signalling by methanolic extract of Viola odorata (L.) attenuated in vivo inflammatory and angiogenic responses. Inflammopharmacology 2024; 32:3521-3535. [PMID: 39030451 DOI: 10.1007/s10787-024-01505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/01/2024] [Indexed: 07/21/2024]
Abstract
Intractable inflammation plays a key role in the progression of autoimmune diseases such as rheumatoid arthritis. Oedema and angiogenesis are the hall marks of chronic inflammation. The current study was aimed to investigate the pharmacological effects of the methanolic extract of Viola odorata (Vo.Me) on inflammation induced oedema and angiogenesis, and to identify the active principles and explore the molecular mechanisms thereof. Various models of inflammation were utilized in rats, including carrageenan- and histamine-induced acute oedema, as well as chronic models of Complete Freund's Adjuvant (CFA)-induced arthritis and cotton pellet-induced granuloma. Anti-angiogenic activity was evaluated by CAM assay followed by quantification of phytoconstituents through HPLC. Effect of Vo.Me treatment on the expression of various mediators (PGE-2 and NO) and genes (IL-1β, TNF-α, NF-κB, and COX-2) were explored by qPCR and ELISA assays. HPLC analysis showed the presence of quercetin, chlorogenic acid, gallic acid, benzoic acid, m-coumaric acid, p-coumaric acid, synergic acid, caffeic acid, vanillic acid, sinapic acid, and cinnamic acid in Vo.Me. Significant dose-dependent inhibition of rats' paw oedema was observed in the Vo.Me administered groups (p < 0.05) in both acute and chronic inflammatory models. Moreover, at a dosage of 500 mg/kg, Vo.Me exhibited a comparable anti-inflammatory effect to indomethacin (p > 0.05). Additionally, Vo.Me demonstrated a remarkable anti-granulomatous activity. Histopathological findings demonstrated amelioration of inflammation in animal paws which were treated with Vo.Me and indomethacin. CAM assay also displayed significant inhibitory effect of Vo.Me on the blood vasculature growth. Vo.Me treatment also caused relatively less gastric irritation and hepatic damage as compared to indomethacin. At a molecular level, the down-regulation of NF-κB signalling leading to the decreased activation of pro-inflammatory mediators (such as IL-1β, TNF-α, and COX-2) and their downstream molecules including prostaglandin E-2 (PGE-2) and nitric oxide (NO), is suggested to be responsible for these diverse anti-inflammatory effects. These findings confirmed the promising anti-inflammatory and anti-angiogenic activities of Vo.Me, which warrant bench-to-bedside translational studies to assess its safety and suitability for clinical usage.
Collapse
Affiliation(s)
- Farzana Andleeb
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
| | - Khalid S Al-Numair
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shafqat Rasul Chaudhry
- II-TECH College of Pharmacy, International Institute of Technology, Culture & Health Sciences (II-TECH), Gujranwala, 52250, Punjab, Pakistan
| | - Mohammad Saleem
- Department of Pharmacology, Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Punjab, Pakistan
| | - Ashwaq Hamid Salem Yehya
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
4
|
Shahin H, Belcastro L, Das J, Perdiki Grigoriadi M, Saager RB, Steinvall I, Sjöberg F, Olofsson P, Elmasry M, El-Serafi AT. MicroRNA-155 mediates multiple gene regulations pertinent to the role of human adipose-derived mesenchymal stem cells in skin regeneration. Front Bioeng Biotechnol 2024; 12:1328504. [PMID: 38562669 PMCID: PMC10982420 DOI: 10.3389/fbioe.2024.1328504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: The role of Adipose-derived mesenchymal stem cells (AD-MSCs) in skin wound healing remains to be fully characterized. This study aims to evaluate the regenerative potential of autologous AD-MSCs in a non-healing porcine wound model, in addition to elucidate key miRNA-mediated epigenetic regulations that underlie the regenerative potential of AD-MSCs in wounds. Methods: The regenerative potential of autologous AD-MSCs was evaluated in porcine model using histopathology and spatial frequency domain imaging. Then, the correlations between miRNAs and proteins of AD-MSCs were evaluated using an integration analysis in primary human AD-MSCs in comparison to primary human keratinocytes. Transfection study of AD-MSCs was conducted to validate the bioinformatics data. Results: Autologous porcine AD-MSCs improved wound epithelialization and skin properties in comparison to control wounds. We identified 26 proteins upregulated in human AD-MSCs, including growth and angiogenic factors, chemokines and inflammatory cytokines. Pathway enrichment analysis highlighted cell signalling-associated pathways and immunomodulatory pathways. miRNA-target modelling revealed regulations related to genes encoding for 16 upregulated proteins. miR-155-5p was predicted to regulate Fibroblast growth factor 2 and 7, C-C motif chemokine ligand 2 and Vascular cell adhesion molecule 1. Transfecting human AD-MSCs cell line with anti-miR-155 showed transient gene silencing of the four proteins at 24 h post-transfection. Discussion: This study proposes a positive miR-155-mediated gene regulation of key factors involved in wound healing. The study represents a promising approach for miRNA-based and cell-free regenerative treatment for difficult-to-heal wounds. The therapeutic potential of miR-155 and its identified targets should be further explored in-vivo.
Collapse
Affiliation(s)
- Hady Shahin
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linkoping University, Linköping, Sweden
- Faculty of Biotechnology, Modern Sciences and Arts University, October City, Cairo, Egypt
| | - Luigi Belcastro
- Department of Biomedical Engineering, Linkoping University, Linköping, Sweden
| | - Jyotirmoy Das
- Bioinformatics Unit, Core Facility (KEF), Faculty of Medicine and Health Sciences (BKV), Linköping University, Linköping, Sweden
- Clinical Genomics Linköping, SciLife Laboratory, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Rolf B. Saager
- Department of Biomedical Engineering, Linkoping University, Linköping, Sweden
| | - Ingrid Steinvall
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
| | - Folke Sjöberg
- Department of Biomedical and Clinical Sciences, Linkoping University, Linköping, Sweden
| | - Pia Olofsson
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
| | - Moustafa Elmasry
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
| | - Ahmed T. El-Serafi
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linkoping University, Linköping, Sweden
| |
Collapse
|
5
|
Hu Y, Tang H, Xu N, Kang X, Wu W, Shen C, Lin J, Bao Y, Jiang X, Luo Z. Adhesive, Flexible, and Fast Degradable 3D-Printed Wound Dressings with a Simple Composition. Adv Healthc Mater 2024; 13:e2302063. [PMID: 37916920 DOI: 10.1002/adhm.202302063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/15/2023] [Indexed: 11/03/2023]
Abstract
3D printing technology has revolutionized the field of wound dressings, offering tailored solutions with mechanical support to facilitate wound closure. In addition to personalization, the intricate nature of the wound healing process requires wound dressing materials with diverse properties, such as moisturization, flexibility, adhesion, anti-oxidation and degradability. Unfortunately, current materials used in digital light processing (DLP) 3D printing have been inadequate in meeting these crucial criteria. This study introduces a novel DLP resin that is biocompatible and consists of only three commonly employed non-toxic compounds in biomaterials, that is, dopamine, poly(ethylene glycol) diacrylate, and N-vinylpyrrolidone. Simple as it is, this material system fulfills all essential functions for effective wound healing. Unlike most DLP resins that are non-degradable and rigid, this material exhibits tunable and rapid degradation kinetics, allowing for complete hydrolysis within a few hours. Furthermore, the high flexibility enables conformal application of complex dressings in challenging areas such as finger joints. Using a difficult-to-heal wound model, the manifold positive effects on wound healing in vivo, including granulation tissue formation, inflammation regulation, and vascularization are substantiated. The simplicity and versatility of this material make it a promising option for personalized wound care, holding significant potential for future translation.
Collapse
Affiliation(s)
- Yu Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Hao Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Nan Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaowo Kang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chuhan Shen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Junsheng Lin
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yinyin Bao
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhi Luo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
6
|
Zhu J, Chen P, Liang J, Wu Z, Jin H, Xu T, Zheng Y, Ma H, Cong W, Wang X, Guan X. Inhibition of CK2α accelerates skin wound healing by promoting endothelial cell proliferation through the Hedgehog signaling pathway. FASEB J 2023; 37:e23135. [PMID: 37594910 DOI: 10.1096/fj.202300478rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
Diabetes is a chronic disease characterized by perturbed glucose and lipid metabolism, resulting in high blood glucose levels. Many complications induced by endothelial dysfunction can cause disability and even death of diabetic patients. Here, we found that the protein level of casein kinase 2α (CK2α) was increased in the endothelium of mice with type I diabetes (T1D) induced by streptozotocin (STZ) injection. Although a potential correlation between the protein level of CK2α and endothelial dysfunction in diabetes was established, the contribution of CK2α to the progression of endothelial dysfunction in diabetes remained largely unknown. By using CX4945 (a selective CK2α antagonist) and Si-csnk2a1 (small interfering RNA targeting CK2α), we found that inhibition of CK2α accelerated skin wound healing in T1D mice by promoting proliferation of endothelial cells. Administration of CX4945 or Si-csnk2a1 rescued the impaired Hedgehog signaling pathway in high glucose-treated human umbilical vein endothelial cells (HUVECs). Exploration of the underlying molecular mechanism revealed that the protective effect of CK2α inhibition on angiogenesis, which contributes to skin wound healing in diabetic mice, was blocked by administration of GANT61 (an inhibitor targeting the Hedgehog signaling pathway). Our findings establish CK2α as a regulator of endothelial dysfunction in diabetes and demonstrate that inhibition of CK2α accelerates skin wound healing in T1D mice by promoting endothelial cell proliferation via the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Jiaojiao Liang
- Department of Pathology, Huaihe hospital of Henan University, kaifeng, Henan Province, P.R. China
| | - Zhaohang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Haiqun Jin
- State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, China
| | - Tianpeng Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yeyi Zheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Hongfang Ma
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
7
|
Kasamatsu H, Chino T, Hasegawa T, Utsunomiya N, Utsunomiya A, Yamada M, Oyama N, Hasegawa M. A cysteine proteinase inhibitor ALLN alleviates bleomycin-induced skin and lung fibrosis. Arthritis Res Ther 2023; 25:156. [PMID: 37626391 PMCID: PMC10463804 DOI: 10.1186/s13075-023-03130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective tissue disease that is characterized by fibrosis in the skin and internal organs, such as the lungs. Activated differentiation of progenitor cells, which are mainly resident fibroblasts, into myofibroblasts is considered a key mechanism underlying the overproduction of extracellular matrix and the resultant tissue fibrosis in SSc. Calpains are members of the Ca2+-dependent cysteine protease family, whose enzymatic activities participate in signal transduction and tissue remodeling, potentially contributing to fibrosis in various organs. However, the roles of calpain in the pathogenesis of SSc remain unknown. This study aimed to examine the anti-fibrotic properties of N-acetyl-Leu-Leu-norleucinal (ALLN), one of the cysteine proteinase inhibitors that primarily inhibit calpain, in vitro and in vivo, to optimally translate into the therapeutic utility in human SSc. METHODS Normal human dermal and lung fibroblasts pretreated with ALLN were stimulated with recombinant transforming growth factor beta 1 (TGF-β1), followed by assessment of TGF-β1/Smad signaling and fibrogenic molecules. RESULTS ALLN treatment significantly inhibited TGF-β1-induced phosphorylation and nuclear transport of Smad2/3 in skin and lung fibroblasts. TGF-β1-dependent increases in α-smooth muscle actin (αSMA), collagen type I, fibronectin 1, and some mesenchymal transcription markers were attenuated by ALLN. Moreover, our findings suggest that ALLN inhibits TGF-β1-induced mesenchymal transition in human lung epithelial cells. Consistent with these in vitro findings, administering ALLN (3 mg/kg/day) three times a week intraperitoneally remarkably suppressed the development of skin and lung fibrosis in a SSc mouse model induced by daily subcutaneous bleomycin injection. The number of skin- and lung-infiltrating CD3+ T cells decreased in ALLN-treated mice compared with that in control-treated mice. Phosphorylation of Smad3 and/or an increase in αSMA-positive myofibroblasts was significantly inhibited by ALLN treatment on the skin and lungs. However, no adverse effects were observed. CONCLUSIONS Our results prove that calpains can be a novel therapeutic target for skin and lung fibrosis in SSc, considering its inhibitor ALLN.
Collapse
Affiliation(s)
- Hiroshi Kasamatsu
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Takenao Chino
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Takumi Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Natsuko Utsunomiya
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Akira Utsunomiya
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Noritaka Oyama
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Minoru Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
| |
Collapse
|
8
|
Hwang J, Kiick KL, Sullivan MO. VEGF-Encoding, Gene-Activated Collagen-Based Matrices Promote Blood Vessel Formation and Improved Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16434-16447. [PMID: 36961242 PMCID: PMC10154048 DOI: 10.1021/acsami.2c23022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Disruption in vascularization during wound repair can severely impair healing. Proangiogenic growth factor therapies have shown great healing potential; however, controlling growth factor activity and cellular behavior over desired healing time scales remains challenging. In this study, we evaluated collagen-mimetic peptide (CMP) tethers for their capacity to control growth factor gene transfer and growth factor activity using our recently developed gene-activated hyaluronic acid-collagen matrix (GAHCM). GAHCM was comprised of DNA/polyethyleneimine (PEI) polyplexes that were retained on hyaluronic acid (HA)-collagen hydrogels using CMPs. We hypothesized that using CMP-collagen tethers to control vascular endothelial growth factor-A (VEGF-A) gene delivery in fibroblasts would provide a powerful strategy to modulate the proangiogenic behaviors of endothelial cells (ECs) for blood vessel formation, resulting in enhanced wound repair. In co-culture experiments, we observed that CMP-modified GAHCM induced tunable gene delivery in fibroblasts as predicted, and correspondingly, VEGF-A produced by the fibroblasts led to increased growth and persistent migration of ECs for at least 7 days, as compared to non-CMP-modified GAHCM. Moreover, when ECs were exposed to fibroblast-containing VEGF-GAHCM with higher levels of CMP modification (50% CMP-PEI, or 50 CP), high CD31 expression was stimulated, resulting in the formation of an interconnected EC network with a significantly higher network volume and a larger diameter network structure than controls. Application of VEGF-GAHCM with 50 CP in murine splinted excisional wounds facilitated prolonged prohealing and proangiogenic responses resulting in increased blood vessel formation, improved granulation tissue formation, faster re-epithelialization, and overall enhanced repair. These findings suggest the benefits of CMP-collagen tethers as useful tools to control gene transfer and growth factor activity for improved treatment of wounds.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA, 19713
| | - Kristi L. Kiick
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA, 19713
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA, 19716
| | - Millicent O. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA, 19713
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA, 19716
| |
Collapse
|
9
|
Li F, Wang Y, Tian J, Zhou Z, Yin W, Qin X, Wang H, Zeng T, Li A, Jiang J. Inhibition of calpain9 attenuates peritoneal dialysis-related peritoneal fibrosis. Front Pharmacol 2022; 13:962770. [DOI: 10.3389/fphar.2022.962770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Aim: Peritoneal dialysis is a common renal replacement method for end-stage renal disease. Long-term peritoneal dialysis leads to peritoneal dialysis-related peritoneal fibrosis, which leads to a cessation of treatment. Calpain is a protein belonging to calcium-dependent endopeptidase family and plays an important role in extracellular matrix remodeling. Here, we evaluated the effect of calpain in peritoneal dialysis-related peritoneal fibrosis.Methods: We established two animal models of peritoneal fibrosis and inhibited the activity of Calpain, and then collected peritoneal tissue to evaluate the progress of fibrosis and the changes of Calpain and β-catenin. We obtained Rat peritoneal mesothelial cells and Human peritoneal mesothelial cell line and stimulated with TGF-β to produce extracellular matrix. Next we inhibited Calpain activity or reduced Calpain9 expression, and then assessed changes in extracellular matrix and β-catenin.Results: Inhibition of calpain activity attenuated chlorhexidine glucose and peritoneal dialysis-induced peritoneal thickening and β-catenin expression in mice. In addition, compared with the control group, when primary rat peritoneal mesothelial cells or human peritoneal mesothelial cells were treated with transforming growth factor beta, down-regulation of calpain activity inhibited the expression of Fibronectin and Collagen I, and increased the expression of E-cadherin. These changes could be adjusted after silencing calpain9. Finally, calpain9 deficiency was associated with down-regulation of Fibronectin and β-catenin in human peritoneal mesothelial cells.Conclusion: Our results suggest that calpain9 may be a key molecule in mediating peritoneal dialysis-related peritoneal fibrosis.
Collapse
|
10
|
Yi C, Chen F, Ma R, Fu Z, Song M, Zhang Z, Chen L, Tang X, Lu P, Li B, Zhang Q, Song Q, Zhu G, Wang W, Wang Q, Wang X. Serum level of calpains product as a novel biomarker of acute lung injury following cardiopulmonary bypass. Front Cardiovasc Med 2022; 9:1000761. [PMID: 36465445 PMCID: PMC9709320 DOI: 10.3389/fcvm.2022.1000761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE The aim of this study was to test the hypothesis whether serum level of calpains could become a meaningful biomarker for diagnosis of acute lung injury (ALI) in clinical after cardiac surgery using cardiopulmonary bypass (CPB) technology. METHODS AND RESULTS Seventy consecutive adults underwent cardiac surgery with CPB were included in this prospective study. Based on the American-European Consensus Criteria (AECC), these patients were divided into ALI (n = 20, 28.57%) and non-ALI (n = 50, 71.43%) groups. Serum level of calpains in terms of calpains' activity which was expressed as relative fluorescence unit (RFU) per microliter and measured at beginning of CPB (baseline), 1 h during CPB, end of CPB as well as 1, 12, and 24 h after CPB. Difference of serum level of calpains between two groups first appeared at the end of CPB and remained different at subsequent test points. Univariate and multivariate logistic regression analysis indicated that serum level of calpains 1 h after CPB was an independent predictor for postoperative ALI (OR 1.011, 95% CI 1.001, 1.021, p = 0.033) and correlated with a lower PaO2/FiO2 ratio in the first 2 days (The first day: r = -0.389, p < 0.001 and the second day: r = -0.320, p = 0.007) as well as longer mechanical ventilation time (r = 0.440, p < 0.001), intensive care unit (ICU) length of stay (LOS) (r = 0.419, p < 0.001) and hospital LOS (r = 0.297, p = 0.013). CONCLUSION Elevated serum level of calpains correlate with impaired lung function and poor clinical outcomes, indicating serum level of calpains could act as a potential biomarker for postoperative ALI following CPB in adults. CLINICAL TRIAL REGISTRATION [https://clinicaltrials.gov/show/NCT05610475], identifier [NCT05610475].
Collapse
Affiliation(s)
- Chenlong Yi
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fangyu Chen
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Thoracic and Cardiovascular Surgery, Dalian Medical University, Dalian, China
| | - Rongrong Ma
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zhi Fu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Meijuan Song
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhuan Zhang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lingdi Chen
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xing Tang
- Department of Operating Theatre, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Peng Lu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ben Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingfen Zhang
- Department of Anesthesiology, Peking University People’s Hospital, Beijing, China
| | - Qifeng Song
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Thoracic and Cardiovascular Surgery, Dalian Medical University, Dalian, China
| | - Guangzheng Zhu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Thoracic and Cardiovascular Surgery, Dalian Medical University, Dalian, China
| | - Wei Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qiang Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaowei Wang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Wu M, Huang J, Shi J, Shi L, Zeng Q, Wang H. Ruyi Jinhuang Powder accelerated diabetic ulcer wound healing by regulating Wnt/β-catenin signaling pathway of fibroblasts In Vivo and In Vitro. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115321. [PMID: 35483560 DOI: 10.1016/j.jep.2022.115321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic ulcer is a common complication of diabetes. Therapies of diabetic ulcer are still challenging due to the complicated aetiology. Ruyi Jinhuang Powder (RJP) is gradually adopted to treat diabetic ulcer and has a significant therapeutic effect. AIM OF THE STUDY To investigate the therapeutic potential for diabetic ulcer in vivo and in vitro, we explored whether and how RJP influences wound healing in mice and fibroblasts at the tissular, cellular and molecular levels. MATERIALS AND METHODS The chemical composition of RJP was identified by HPLC. Streptozotocin (STZ) induced diabetic mice were used to confirm the curative effect of RJP in vivo. Besides, the impact of RJP in stimulating fibroblasts proliferation, migration and reducing inflammation was studied through CCK-8 assay, cell scratch assay, PCR, WB, etc. RESULTS: A total of 17 compounds were identified in RJP by HPLC. Our data indicated that RJP promoted fibroblasts proliferation and migration via activating Wnt/β-catenin signaling pathway. Consistently, RNA-seq analysis of mice skin samples also showed that the shared differentially expressed genes (DEGs) between RJP group and control group were most enriched in wnt signaling pathway. These DEGs were closely related with wound repair. In addition, the anti-inflammation effect of RJP was also confirmed through downregulation of IL-1α, IL-1β, IL-6 and IL-10 expression levels. These biological effects were reduced when the Wnt/β-catenin signaling was blocked. The in vivo study also demonstrated the effect of RJP in improving epidermal wound closure, which was consistent with the in vitro results. CONCLUSIONS Topical application of RJP was effective in treating diabetic ulcer. This research is helpful to provide new insights and evidence into the role of RJP in accelerating unhealing wound and reducing wound inflammation.
Collapse
Affiliation(s)
- Minfeng Wu
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Jianhua Huang
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Jingjuan Shi
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Lei Shi
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Hongwei Wang
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.
| |
Collapse
|
12
|
Integration of collagen fibers in connective tissue with dental implant in the transmucosal region. Int J Biol Macromol 2022; 208:833-843. [PMID: 35367473 DOI: 10.1016/j.ijbiomac.2022.03.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
Abstract
Dental implants have been widely accepted as an ideal therapy to replace the missing teeth for its good performance in aspects of mechanical properties and aesthetic outcomes. Its restorative success is contributed by not only the successful osseointegration of the implant but also the tight soft tissue integration, especially the collagen fibers, in the transmucosal region. Soft tissue attaching to the dental implant/abutment is overall similar, but in some aspects distinct with that seen around natural teeth and soft tissue integration can be enhanced via several surface modification methods. This review is going to focus on the current knowledge of the transmucosal zone around the dental implants (compared with natural teeth), and latest strategies in use to fine-tune the collagen fibers assembly in the connective tissue, in an attempt to enhance soft tissue integration.
Collapse
|
13
|
Li Q, Liu X, Yang S, Li C, Jin W, Hou W. Effects of the Chinese Herb Medicine Formula "She-Xiang-Yu-Hong" Ointment on Wound Healing Promotion in Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1062261. [PMID: 35132324 PMCID: PMC8817837 DOI: 10.1155/2022/1062261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
Wound healing in diabetic patients is a difficult problem to be solved at present. In addition, patients with diabetes have an increased risk of postoperative wound complications. "She-Xiang-Yu-Hong" (SXYH) ointment is a type of traditional Chinese medicine (TCM) compound used to treat wounds. Over the past few years, SXYH has been applied in the Affiliated Hospital of Chengdu University of TCM (Chengdu, China) for the treatment of diabetic foot infections and bedsores, whereas there has been rare research on the effect of SXYH ointment on wound healing. In this study, SXYH ointment was first applied to streptozotocin (STZ)-triggered diabetic ICR mice (4-6 weeks, 20 ± 2 g) to observe the accelerated wound healing and the shortened wound healing period. As indicated by the histology and biochemistry analyses of skin biopsies, the wounds treated using SXYH ointment showed an increase in the granulation tissue. Moreover, SXYH also modulated the inflammation response by regulating affinity proinflammatory cytokines release (e.g., IL-6 and TNF-α). Furthermore, SXYH ointment obviously improved collagen fiber deposition and tissue on the wound surface. On the whole, this study indicated that SXYH ointment could accelerate wound healing, promote blood vessel formation, and suppress inflammations. Thus, the clinical potential of SXYH ointment was demonstrated in the treatment of diabetes and refractory wounds.
Collapse
Affiliation(s)
- Qingjie Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinjun Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shihui Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunrun Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiwei Hou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Calpain-Mediated Mitochondrial Damage: An Emerging Mechanism Contributing to Cardiac Disease. Cells 2021; 10:cells10082024. [PMID: 34440793 PMCID: PMC8392834 DOI: 10.3390/cells10082024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Calpains belong to the family of calcium-dependent cysteine proteases expressed ubiquitously in mammals and many other organisms. Activation of calpain is observed in diseased hearts and is implicated in cardiac cell death, hypertrophy, fibrosis, and inflammation. However, the underlying mechanisms remain incompletely understood. Recent studies have revealed that calpains target and impair mitochondria in cardiac disease. The objective of this review is to discuss the role of calpains in mediating mitochondrial damage and the underlying mechanisms, and to evaluate whether targeted inhibition of mitochondrial calpain is a potential strategy in treating cardiac disease. We expect to describe the wealth of new evidence surrounding calpain-mediated mitochondrial damage to facilitate future mechanistic studies and therapy development for cardiac disease.
Collapse
|
15
|
Impaired Autophagy Induced by oxLDL/ β2GPI/anti- β2GPI Complex through PI3K/AKT/mTOR and eNOS Signaling Pathways Contributes to Endothelial Cell Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6662225. [PMID: 34221236 PMCID: PMC8219424 DOI: 10.1155/2021/6662225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/22/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022]
Abstract
Endothelial cell dysfunction plays a fundamental role in the pathogenesis of atherosclerosis (AS), and endothelial autophagy has protective effects on the development of AS. Our previous study had shown that oxidized low-density lipoprotein/β2-glycoprotein I/anti-β2-glycoprotein I antibody (oxLDL/β2GPI/anti-β2GPI) complex could promote the expressions of inflammatory cytokines and enhance the adhesion of leukocytes to endothelial cells. In the present study, we aimed to assess the effects of oxLDL/β2GPI/anti-β2GPI complex on endothelial autophagy and explore the associated potential mechanisms. Human umbilical vein endothelial cells (HUVECs) and mouse brain endothelial cell line (bEnd.3) were used as models of the vascular endothelial cells. Autophagy was evaluated by examining the expressions of autophagic proteins using western blotting analysis, autophagosome accumulation using transmission electron microscopy, and RFP-GFP-LC3 adenoviral transfection and autophagic flux using lysosome inhibitor chloroquine. The expressions of phospho-PI3K, phospho-AKT, phospho-mTOR, and phospho-eNOS were determined by western blotting analysis. 3-Methyladenine (3-MA) and rapamycin were used to determine the role of autophagy in oxLDL/β2GPI/anti-β2GPI complex-induced endothelial cell dysfunction. We showed that oxLDL/β2GPI/anti-β2GPI complex suppressed the autophagy, evidenced by an increase in p62 protein, a decrease in LC3-II and Beclin1, and a reduction of autophagosome generation in endothelial cells. Moreover, inhibition of autophagy was associated with PI3K/AKT/mTOR and eNOS signaling pathways. Rapamycin attenuated oxLDL/β2GPI/anti-β2GPI complex-induced endothelial inflammation, oxidative stress, and apoptosis, whereas 3-MA alone induced the endothelial injury. Our results suggested that oxLDL/β2GPI/anti-β2GPI complex inhibited endothelial autophagy via PI3K/AKT/mTOR and eNOS signaling pathways and further contributed to endothelial cell dysfunction. Collectively, our findings provided a novel mechanism for vascular endothelial injury in AS patients with an antiphospholipid syndrome (APS) background.
Collapse
|
16
|
Human Mesenchymal Stromal Cell-Derived Exosomes Promote In Vitro Wound Healing by Modulating the Biological Properties of Skin Keratinocytes and Fibroblasts and Stimulating Angiogenesis. Int J Mol Sci 2021; 22:ijms22126239. [PMID: 34207905 PMCID: PMC8228793 DOI: 10.3390/ijms22126239] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (MSCs) are major players in regenerative therapies for wound healing via their paracrine activity, mediated partially by exosomes. Our purpose was to test if MSC-derived exosomes could accelerate wound healing by enhancing the biological properties of the main cell types involved in the key phases of this process. Thus, the effects of exosomes on (i) macrophage activation, (ii) angiogenesis, (iii) keratinocytes and dermal fibroblasts proliferation and migration, and (iv) the capacity of myofibroblasts to regulate the turnover of the extracellular matrix were evaluated. The results showed that, although exosomes did not exhibit anti-inflammatory properties, they stimulated angiogenesis. Exposure of keratinocytes and dermal (myo)fibroblasts to exosomes enhanced their proliferation and migratory capacity. Additionally, exosomes prevented the upregulation of gene expression for type I and III collagen, α-smooth muscle actin, and MMP2 and 14, and they increased MMP13 expression during the fibroblast–myofibroblast transition. The regenerative properties of exosomes were validated using a wound healing skin organotypic model, which exhibited full re-epithelialization upon exosomes exposure. In summary, these data indicate that exosomes enhance the biological properties of keratinocytes, fibroblasts, and endothelial cells, thus providing a reliable therapeutic tool for skin regeneration.
Collapse
|
17
|
Tang W, Zhang C, Zhong Y, Zhu P, Hu Y, Jiao Z, Wei X, Lu G, Wang J, Liang Y, Lin Y, Wang W, Yang H, Zou J. Customizing a self-healing soft pump for robot. Nat Commun 2021; 12:2247. [PMID: 33854071 PMCID: PMC8046788 DOI: 10.1038/s41467-021-22391-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/02/2021] [Indexed: 01/18/2023] Open
Abstract
Recent advances in soft materials enable robots to possess safer human-machine interaction ways and adaptive motions, yet there remain substantial challenges to develop universal driving power sources that can achieve performance trade-offs between actuation, speed, portability, and reliability in untethered applications. Here, we introduce a class of fully soft electronic pumps that utilize electrical energy to pump liquid through electrons and ions migration mechanism. Soft pumps combine good portability with excellent actuation performances. We develop special functional liquids that merge unique properties of electrically actuation and self-healing function, providing a direction for self-healing fluid power systems. Appearances and pumpabilities of soft pumps could be customized to meet personalized needs of diverse robots. Combined with a homemade miniature high-voltage power converter, two different soft pumps are implanted into robotic fish and vehicle to achieve their untethered motions, illustrating broad potential of soft pumps as universal power sources in untethered soft robotics. Utilizing soft pumps in soft robotics is an attractive approach to endow untethered soft robots with muscle-like actuation. Here, the authors report bio-inspired soft electronic pumps as driving power sources to drive actuation and self-healing in untethered soft robotics.
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Chao Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China.
| | - Yiding Zhong
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Pingan Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Yu Hu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Zhongdong Jiao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Xiaofeng Wei
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Gang Lu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Jinrong Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Yuwen Liang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Yangqiao Lin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Wei Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China.
| |
Collapse
|