1
|
Wang Z, Zhao M, Su Y, Zhao Q, Ma Z, Yue Q, Zhu Z, Zhang L, Hou Z, Li H. The impact of NUMB on chicken abdominal adipogenesis: A comprehensive analysis. Int J Biol Macromol 2024; 278:134904. [PMID: 39168214 DOI: 10.1016/j.ijbiomac.2024.134904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Excessive abdominal fat deposition negatively impacts poultry meat production and carcass yield. Identification of novel adipogenesis regulators may help improve production performance declines caused by excessive fat deposition. NUMB Endocytic Adaptor Protein (NUMB) typically functions as a cell fate determinant and plays a significant role in cell development and various diseases. Here, we found that NUMB is abundantly expressed in chicken abdominal fat depots and is induced in cultured adipocytes following adipogenic treatment. The gain- and loss-of-function experiments demonstrated that NUMB promotes the proliferation and G1/S transition of chicken adipocytes, enhances adipocyte differentiation, and increases the expression of PPARγ1 transcript. Through mRNA-seq analysis and molecular experiments, we further confirmed that NUMB inhibits the transcriptional activation of the NOTCH1 pathway and the expression of the downstream transcription factor HES1 by inducing NOTCH1 degradation. Nevertheless, the inhibition of the NOTCH1/HES1 axis alone cannot fully explain NUMB's role in adipogenesis, as NUMB also regulates the expression of multiple adipogenic transcription factors such as E2F1, EGR2, and NR4A3. Our data suggest that NUMB is a potent activator of adipogenesis and enhances our understanding of its regulatory mechanisms in chicken abdominal fat deposition.
Collapse
Affiliation(s)
- Zheng Wang
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Mingyu Zhao
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Yue Su
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Qiangsen Zhao
- National Engineering Laboratory for Animal Breeding and MARA Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenhua Ma
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Qiaoxian Yue
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Zhiwei Zhu
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Lihuan Zhang
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MARA Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huifeng Li
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China.
| |
Collapse
|
2
|
Morin GM, Zerbib L, Kaltenbach S, Fraissenon A, Balducci E, Asnafi V, Canaud G. PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. Annu Rev Genomics Hum Genet 2024; 25:211-237. [PMID: 38316164 DOI: 10.1146/annurev-genom-121222-114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments.
Collapse
Affiliation(s)
- Gabriel M Morin
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lola Zerbib
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- CREATIS, CNRS UMR 5220, Villeurbanne, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
- Service d'Imagerie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Estelle Balducci
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vahid Asnafi
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Guillaume Canaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
3
|
Giżewska-Kacprzak K, Śliwiński M, Nicieja K, Babiak-Choroszczak L, Walaszek I. Macrodactyly. CHILDREN (BASEL, SWITZERLAND) 2024; 11:753. [PMID: 39062202 PMCID: PMC11274991 DOI: 10.3390/children11070753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024]
Abstract
Macrodactyly is a rare congenital limb difference manifesting as an overgrowth of one or more fingers or toes. The pathological process affects all tissues of the ray in the hand or foot. The enlargement can significantly alter the limb's appearance and impair its function. The role of a pediatrician is to distinguish isolated macrodactyly from syndromic conditions (including PIK3CA-Related Overgrowth Spectrum) or mimicking conditions to enable early interdisciplinary consultation and treatment planning. The psychological stigma associated with this often disfiguring condition necessitates support for patients and their family. We present a practical guide for physicians who might be the first to raise suspicion of macrodactyly and initiate further diagnostics to achieve adequate treatment and support for children and caregivers.
Collapse
Affiliation(s)
- Kaja Giżewska-Kacprzak
- Department of Pediatric and Oncological Surgery, Urology and Hand Surgery, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland; (M.Ś.)
| | - Maximilian Śliwiński
- Department of Pediatric and Oncological Surgery, Urology and Hand Surgery, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland; (M.Ś.)
| | - Karol Nicieja
- Department of Pediatric and Oncological Surgery, Urology and Hand Surgery, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland; (M.Ś.)
| | - Lidia Babiak-Choroszczak
- Department of Pediatric and Oncological Surgery, Urology and Hand Surgery, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland; (M.Ś.)
| | - Ireneusz Walaszek
- Department of Pediatric and Oncological Surgery, Urology and Hand Surgery, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland; (M.Ś.)
- Department of Nursing, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 48 Żołnierska St., 71-210 Szczecin, Poland
| |
Collapse
|
4
|
Chen H, Gao W, Liu H, Sun B, Hua C, Lin X. Updates on Diagnosis and Treatment of PIK3CA-Related Overgrowth Spectrum. Ann Plast Surg 2023; 90:S209-S215. [PMID: 36729078 DOI: 10.1097/sap.0000000000003389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Hyperactivation of the PI3K/AKT/mTOR signaling pathway caused by PIK3CA mutations is associated with a category of overgrowth syndromes that are defined as PIK3CA -related overgrowth spectrum (PROS). The clinical features of PROS are highly heterogeneous and usually present as vascular malformations, bone and soft tissue overgrowth, and neurological and visceral abnormalities. Detection of PIK3CA variants is necessary for diagnosis and provides the basis for targeted therapy for PROS. Drugs that inhibit the PI3K pathway offer alternatives to conventional therapies. This article reviews the current knowledge of PROS and summarizes the latest progress in precise treatment, providing new insights into future therapies and research goals.
Collapse
Affiliation(s)
- Hongrui Chen
- From the Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | |
Collapse
|
5
|
Angulo-Urarte A, Graupera M. When, where and which PIK3CA mutations are pathogenic in congenital disorders. NATURE CARDIOVASCULAR RESEARCH 2022; 1:700-714. [PMID: 39196083 DOI: 10.1038/s44161-022-00107-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 08/29/2024]
Abstract
PIK3CA encodes the class I PI3Kα isoform and is frequently mutated in cancer. Activating mutations in PIK3CA also cause a range of congenital disorders featuring asymmetric tissue overgrowth, known as the PIK3CA-related overgrowth spectrum (PROS), with frequent vascular involvement. In PROS, PIK3CA mutations arise postzygotically, during embryonic development, leading to a mosaic body pattern distribution resulting in a variety of phenotypic features. A clear skewed pattern of overgrowth favoring some mesoderm-derived and ectoderm-derived tissues is observed but not understood. Here, we summarize our current knowledge of the determinants of PIK3CA-related pathogenesis in PROS, including intrinsic factors such as cell lineage susceptibility and PIK3CA variant bias, and extrinsic factors, which refers to environmental modifiers. We also include a section on PIK3CA-related vascular malformations given that the vasculature is frequently affected in PROS. Increasing our biological understanding of PIK3CA mutations in PROS will contribute toward unraveling the onset and progression of these conditions and ultimately impact on their treatment. Given that PIK3CA mutations are similar in PROS and cancer, deeper insights into one will also inform about the other.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Shen XF, Gasteratos K, Spyropoulou GA, Yin F, Rui YJ. Congenital Difference of the Hand and Foot: Pediatric Macrodactyly. J Plast Reconstr Aesthet Surg 2022; 75:4054-4062. [DOI: 10.1016/j.bjps.2022.06.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
|
7
|
Guedes GVC, Jácome DT, Alves GF, Monteiro AV. Epidemiological Analysis of Glomus Tumors of the Hand and Association with Recurrence Rate. REVISTA IBEROAMERICANA DE CIRUGÍA DE LA MANO 2022. [DOI: 10.1055/s-0042-1744466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Abstract
Introduction Glomus tumors are benign, characterized by microvascular alteration, and mostly found in the subungual region of the hand. They are rare and associated with paroxysmal pain, tenderness on palpation, and thermal sensitivity. The aim of the present research was to analyze the epidemiology of glomus tumors and relate each of the variables with cases of recurrence.
Materials and Methods A retrospective review of medical records was undertaken in our hospital to collect epidemiological numerical variables (time between the onset of symptoms and diagnosis and surgery, age, size of the tumor on magnetic resonance imaging and the histopathological examination, time until recurrence and reoperation after surgery, duration of the follow-up) and categorical variables (gender, ethnicity, laterality, affected finger, location in the hand, surgical technique, smoking, preoperative symptoms, recurrence, and comorbidities). Then, we performed a statistical analysis to identify possible associations of the hand tumors with recurrences.
Results The review identified 66 patients with glomus tumors 52 of which were located in the hand. The mean age of the sample was 49 years, and it was mostly composed of white female patients. Pain was the main related symptom, and most tumors presented sizes between 5 mm and 1 cm. Among the 52 patients, 11 cases presented recurrences, with a mean time until onset of 39.4 months, but 3 of them were initially operated on at other hospitals. None of the variables was shown to be a predictor of recurrence, although we saw that bone involvement on radiographs was only present in certain cases of recurrence.
Conclusion The sample studied was large for this rare disease, and reinforced previous results regarding its epidemiology. As 54% of the cases of recurrence occurred at least twice, we think that genetic, histological and immunohistochemical analyses should be the focus of futures studies, as well as a search for bone and tendon involvement.
Collapse
Affiliation(s)
- Giovanni Vilardo Cerqueira Guedes
- Division of Hand Surgery, Department of Orthopedics and Traumatology, Instituto Nacional de Traumatologia e Ortopedia Jammil Haddad (INTO), Rio de Janeiro, RJ, Brazil
| | - Daniel Torres Jácome
- Division of Hand Surgery, Department of Orthopedics and Traumatology, Instituto Nacional de Traumatologia e Ortopedia Jammil Haddad (INTO), Rio de Janeiro, RJ, Brazil
| | - Gabriel Farias Alves
- Department of Orthopedics and Traumatology, Instituto Nacional de Traumatologia e Ortopedia Jammil Haddad (INTO), Rio de Janeiro, RJ, Brazil
| | - Anderson Vieira Monteiro
- Division of Hand Surgery, Department of Orthopedics and Traumatology, Instituto Nacional de Traumatologia e Ortopedia Jammil Haddad (INTO), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Chen W, Dai G, Qian Y, Wen L, He X, Liu H, Gao Y, Tang X, Dong B. PIK3CA mutation affects the proliferation of colorectal cancer cells through the PI3K-MEK/PDK1-GPT2 pathway. Oncol Rep 2021; 47:11. [PMID: 34751411 DOI: 10.3892/or.2021.8222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/07/2021] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol‑3‑kinase catalytic subunit α (PIK3CA) gene is mutated in numerous human cancers. This mutation promotes the proliferation of tumor cells; however, the underlying mechanism is still not clear. In the present study, it was revealed that the PIK3CA mutation in colorectal cancer (CRC) HCT116 (MUT) rendered the cells more dependent on glutamine by regulating the glutamic‑pyruvate transaminase 2 (GPT2). The dependence of glutamine increased the proliferation of cells in a normal environment and resistance to a suboptimal environment. Further study revealed that the mutated PIK3CA could regulate GPT2 expression not only through signal transduction molecule 3‑phosphoinositide‑dependent kinase (PDK1) but also through mitogen‑activated protein kinase (MEK) molecules. In HCT116 cells, MEK inhibitor treatment could reduce the expression of GPT2 signaling molecules, thereby inhibiting the proliferation of CRC cells. A new signal transduction pathway, the PI3K/MEK/GPT2 pathway was identified. Based on these findings, MEK and PDK1 inhibitors were combined to inhibit the aforementioned pathway. It was revealed that the combined application of MEK and PDK1 inhibitors could promisingly inhibit the proliferation of MUT compared with the application of PI3K inhibitors, PDK1 inhibitors, or MEK inhibitors alone. In vivo, MEK inhibitors alone and combined inhibitors had stronger tumor‑suppressing effects. There was no significant difference between the PDK1‑inhibitor group and normal group in vivo. Thus, these results indicated that mutated PI3K affected GPT2 mediated by the MEK/PDK1 dual pathway, and that the PI3K/MEK/GPT2 pathway was more important in vivo. Inhibiting MEK and PDK1 concurrently could effectively inhibit the proliferation of CRC cells. Targeting the MEK and PDK1 signaling pathway may provide a novel strategy for the treatment of PIK3CA‑mutated CRC.
Collapse
Affiliation(s)
- Wenli Chen
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Guangli Dai
- Department of Obstetrics and Gynecology, Wuhu Traditional Chinese Medicine Hospital, Wuhu, Anhui 241003, P.R. China
| | - Yike Qian
- Department of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Lian Wen
- Department of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Xueqing He
- Department of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Hui Liu
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yunxing Gao
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Xingli Tang
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Bohan Dong
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|