1
|
Zhang T, Pan W, Tan X, Yu J, Cheng S, Wei S, Fan K, Wang L, Luo H, Hu X. A novel L-shaped ortho-quinone analog suppresses glioblastoma progression by targeting acceleration of AR degradation and regulating PI3K/AKT pathway. Biochem Pharmacol 2024; 226:116398. [PMID: 38944395 DOI: 10.1016/j.bcp.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Glioblastoma (GBM) is a primary intracranial malignant tumor with the highest mortality and morbidity among all malignant central nervous system tumors. Tanshinone IIA is a fat-soluble active ingredient obtained from Salvia miltiorrhiza, which has an inhibitory effect against various cancers. We designed and synthesized a novel L-shaped ortho-quinone analog TE5 with tanshinone IIA as the lead compound and tested its antitumor activity against GBM. The results indicated that TE5 effectively inhibited the proliferation, migration, and invasion of GBM cells, and demonstrated low toxicity in vitro. We found that TE5 may bind to androgen receptors and promote their degradation through the proteasome. Inhibition of the PI3K/AKT signaling pathway was also observed in TE5 treated GBM cells. Additionally, TE5 arrested the cell cycle at the G2/M phase and induced mitochondria-dependent apoptosis. In vivo experiments further confirmed the anti-tumor activity, safety, and effect on androgen receptor level of TE5 in animal models of GBM. Our results suggest that TE5 may be a potential therapeutic drug to treat GBM.
Collapse
Affiliation(s)
- Tao Zhang
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Xin Tan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Shinan Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Kuan Fan
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Lu Wang
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou Province, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China.
| | - Xiao Hu
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China.
| |
Collapse
|
2
|
Wang J, Liu H, Yu Z, Zhou Q, Sun F, Han J, Gao L, Dou B, Zhang H, Fu J, Jia W, Chen W, Hu J, Han B. Reciprocal regulation between RACGAP1 and AR contributes to endocrine therapy resistance in prostate cancer. Cell Commun Signal 2024; 22:339. [PMID: 38898473 PMCID: PMC11186203 DOI: 10.1186/s12964-024-01703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Endocrine resistance driven by sustained activation of androgen receptor (AR) signaling pathway in advanced prostate cancer (PCa) is fatal. Characterization of mechanisms underlying aberrant AR pathway activation to search for potential therapeutic strategy is particularly important. Rac GTPase-activating protein 1 (RACGAP1) is one of the specific GTPase-activating proteins. As a novel tumor proto-oncogene, overexpression of RACGAP1 was related to the occurrence of various tumors. METHODS Bioinformatics methods were used to analyze the relationship of expression level between RACGAP1 and AR as well as AR pathway activation. qRT-PCR and western blotting assays were performed to assess the expression of AR/AR-V7 and RACGAP1 in PCa cells. Immunoprecipitation and immunofluorescence experiments were conducted to detect the interaction and co-localization between RACGAP1 and AR/AR-V7. Gain- and loss-of-function analyses were conducted to investigate the biological roles of RACGAP1 in PCa cells, using MTS and colony formation assays. In vivo experiments were conducted to evaluate the effect of RACGAP1 inhibition on the tumor growth. RESULTS RACGAP1 was a gene activated by AR, which was markedly upregulated in PCa patients with CRPC and enzalutamide resistance. AR transcriptionally activated RACGAP1 expression by binding to its promoter region. Reciprocally, nuclear RACGAP1 bound to the N-terminal domain (NTD) of both AR and AR-V7, blocking their interaction with the E3 ubiquitin ligase MDM2. Consequently, this prevented the degradation of AR/AR-V7 in a ubiquitin-proteasome-dependent pathway. Notably, the positive feedback loop between RACGAP1 and AR/AR-V7 contributed to endocrine therapy resistance of CRPC. Combination of enzalutamide and in vivo cholesterol-conjugated RIG-I siRNA drugs targeting RACGAP1 induced potent inhibition of xenograft tumor growth of PCa. CONCLUSION In summary, our results reveal that reciprocal regulation between RACGAP1 and AR/AR-V7 contributes to the endocrine resistance in PCa. These findings highlight the therapeutic potential of combined RACGAP1 inhibition and enzalutamide in treatment of advanced PCa.
Collapse
Affiliation(s)
- Jiajia Wang
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Hui Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Zeyuan Yu
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Qianqian Zhou
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Feifei Sun
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jingying Han
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Baokai Dou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hanwen Zhang
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Jiawei Fu
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
| | - Wenqiao Jia
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Hu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, China.
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Department of Pathology, School of Basic Medical Sciences, Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Culig Z, Puhr M. Androgen Receptor-Interacting Proteins in Prostate Cancer Development and Therapy Resistance. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:324-334. [PMID: 38104650 DOI: 10.1016/j.ajpath.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/04/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Endocrine therapy for prostate cancer is based on the use of drugs that diminish androgen concentration and androgen receptor (AR) signaling inhibitors and is limited by the functional consequences of AR point mutations and increased expression of constitutively active receptors. Many coactivators (>280) interact with different AR regions. Most studies have determined the expression of coactivators and their effects in the presence of increasing concentrations of androgen or the antiandrogen enzalutamide. The p160 group of coactivators (SRC-1, SRC-2, and SRC-3) is highly expressed in prostate cancer and contributes to ligand-dependent activation of the receptor in models that represent therapy-sensitive and therapy-resistant cell lines. The transcriptional coactivators p300 and CREB-binding protein (CBP) are implicated in the regulation of a large number of cellular events, such as proliferation, apoptosis, migration, and invasion. AR coactivators also may predict biochemical and clinical recurrence. The AR coactivator expression, which is enhanced in enzalutamide resistance, includes growth regulating estrogen receptor binding 1 (GREB1) and GATA-binding protein 2 (GATA2). Several coactivators also activate AR-unrelated signaling pathways, such as those of insulin-like growth factors, which inhibit apoptosis in cancer cells. They are expressed in multiple models of resistance to therapy and can be targeted by various inhibitors in vitro and in vivo. The role of the glucocorticoid receptor in endocrine therapy-resistant prostate cancer has been documented previously. Specific coactivators may interact with the glucocorticoid receptor, thus contributing to therapy failure.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Martin Puhr
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Long X, Jiang H, Liu Z, Liu J, Hu R. Long noncoding RNA LINC00675 drives malignancy in acute myeloid leukemia via the miR-6809 -CDK6 axis. Pathol Res Pract 2024; 255:155221. [PMID: 38422911 DOI: 10.1016/j.prp.2024.155221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Hematological malignancies such as acute myeloid leukemia (AML) have a low cure rate and a high recurrence rate. Long noncoding RNAs (LNCs) are essential regulators of tumorigenesis and progression. The role of lncRNA LINC00675 in AML has rarely been reported. This study revealed elevated LINC00675 expression in AML that promotes proliferation and inhibits apoptosis. Mechanistically, LINC00675 combines with miR-6809 to promote the expression of CDK6 in vitro and in vivo. Immune-checkpoint genes were expressed more highly in LINC00675-high patients. A high level of LINC00675 expression may make patients more susceptible to palbociclib treatments. In conclusion, our study demonstrated that LINC00675 is an oncogenic lncRNA that enhances the malignancy of AML by upregulating CDK6 expression through miR-6809 sponging, providing a new perspective and feasible target for the diagnosis and treatment of AML.
Collapse
Affiliation(s)
- Xinyi Long
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang 110000, China; Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huinan Jiang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Hu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
5
|
Sarfraz M, Abida, Eltaib L, Asdaq SMB, Guetat A, Alzahrani AK, Alanazi SS, Aaghaz S, Singla N, Imran M. Overcoming chemoresistance and radio resistance in prostate cancer: The emergent role of non-coding RNAs. Pathol Res Pract 2024; 255:155179. [PMID: 38320439 DOI: 10.1016/j.prp.2024.155179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Prostate cancer (PCa) continues to be a major health concern worldwide, with its resistance to chemotherapy and radiation therapy presenting major hurdles in successful treatment. While patients with localized prostate cancer generally have a good survival rate, those with metastatic prostate cancer often face a grim prognosis, even with aggressive treatments using various methods. The high mortality rate in severe cases is largely due to the lack of treatment options that can offer lasting results, especially considering the significant genetic diversity found in tumors at the genomic level. This comprehensive review examines the intricate molecular mechanisms governing resistance in PCa, emphasising the pivotal contributions of non-coding RNAs (ncRNAs). We delve into the diverse roles of microRNAs, long ncRNAs, and other non-coding elements as critical regulators of key cellular processes involved in CR & RR. The review emphasizes the diagnostic potential of ncRNAs as predictive biomarkers for treatment response, offering insights into patient stratification and personalized therapeutic approaches. Additionally, we explore the therapeutic implications of targeting ncRNAs to overcome CR & RR, highlighting innovative strategies to restore treatment sensitivity. By synthesizing current knowledge, this review not only provides a comprehension of the chemical basis of resistance in PCa but also identifies gaps in knowledge, paving the way for future research directions. Ultimately, this exploration of ncRNA perspectives offers a roadmap for advancing precision medicine in PCa, potentially transforming therapeutic paradigms and improving outcomes for patients facing the challenges of treatment resistance.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain 64141, United Arab Emirates
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | | | - Arbi Guetat
- Department of Biological Sciences, College of Sciences, Northern Border University, Arar 73213, Saudi Arabia
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Medical Applied Science, Northern Border University, Arar 91431, Saudi Arabia
| | | | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| |
Collapse
|
6
|
Wang Y, Wang P, Wang Q, Chen S, Wang X, Zhong X, Hu W, Thorne RF, Han S, Wu M, Zhang L. The long noncoding RNA HNF1A-AS1 with dual functions in the regulation of cytochrome P450 3A4. Biochem Pharmacol 2024; 220:116016. [PMID: 38176619 DOI: 10.1016/j.bcp.2023.116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most important and abundant drug-metabolizing enzyme in the human liver. Inter-individual differences in the expression and activity of CYP3A4 affect clinical and precision medicine. Increasing evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the regulation of CYP3A4 expression. Here, we showed that lncRNA hepatocyte nuclear factor 1 alpha-antisense 1 (HNF1A-AS1) exerted dual functions in regulating CYP3A4 expression in Huh7 and HepG2 cells. Mechanistically, HNF1A-AS1 served as an RNA scaffold to interact with both protein arginine methyltransferase 1 and pregnane X receptor (PXR), thereby facilitating their protein interactions and resulting in the transactivation of PXR and transcriptional alteration of CYP3A4 via histone modifications. Furthermore, HNF1A-AS1 bound to the HNF1A protein, a liver-specific transcription factor, thereby blocking its interaction with the E3 ubiquitin ligase tripartite motif containing 25, ultimately preventing HNF1A ubiquitination and protein degradation, further regulating the expression of CYP3A4. In summary, these results reveal the novel functions of HNF1A-AS1 as the transcriptional and post-translational regulator of CYP3A4; thus, HNF1A-AS1 may serve as a new indicator for establishing or predicting individual differences in CYP3A4 expression.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China; Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Qi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Shitong Chen
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Xiaofei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Xiaobo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 06269 Storrs, CT, USA
| | - Wanglai Hu
- Translational Research Institute, Zhengzhou University People's Hospital, Academy of Medical Science, Zhengzhou University, 450003 Zhengzhou, China
| | - Rick F Thorne
- Translational Research Institute, Zhengzhou University People's Hospital, Academy of Medical Science, Zhengzhou University, 450003 Zhengzhou, China
| | - Shengna Han
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China.
| | - Mian Wu
- Translational Research Institute, Zhengzhou University People's Hospital, Academy of Medical Science, Zhengzhou University, 450003 Zhengzhou, China.
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China.
| |
Collapse
|
7
|
Haghighi R, Castillo-Acobo RY, H Amin A, Ehymayed HM, Alhili F, Mirzaei M, Mohammadzadeh Saliani S, Kheradjoo H. A thorough understanding of the role of lncRNA in prostate cancer pathogenesis; Current knowledge and future research directions. Pathol Res Pract 2023; 248:154666. [PMID: 37487316 DOI: 10.1016/j.prp.2023.154666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
In the entire world, prostate cancer (PCa) is one of the most common and deadly cancers. Treatment failure is still common among patients, despite PCa diagnosis and treatment improvements. Inadequate early diagnostic markers and the emergence of resistance to conventional therapeutic approaches, particularly androgen-deprivation therapy, are the causes of this. Long non-coding RNAs (lncRNAs), as an essential group of regulatory molecules, have been reported to be dysregulated through prostate tumorigenesis and hold great promise as diagnostic targets. Besides, lncRNAs regulate the malignant features of PCa cells, such as proliferation, invasion, metastasis, and drug resistance. These multifunctional RNA molecules interact with other molecular effectors like miRNAs and transcription factors to modulate various signaling pathways, including AR signaling. This study aimed to compile new knowledge regarding the role of lncRNA through prostate tumorigenesis in terms of their effects on the various malignant characteristics of PCa cells; in light of these characteristics and the significant potential of lncRNAs as diagnostic and therapeutic targets for PCa. AVAILABILITY OF DATA AND MATERIALS: Not applicable.
Collapse
Affiliation(s)
- Ramin Haghighi
- Department of Urology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | | | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | | | - Farah Alhili
- Medical technical college, Al-Farahidi University, Iraq
| | - Mojgan Mirzaei
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | |
Collapse
|
8
|
Gao K, Li X, Ni J, Wu B, Guo J, Zhang R, Wu G. Non-coding RNAs in enzalutamide resistance of castration-resistant prostate cancer. Cancer Lett 2023; 566:216247. [PMID: 37263338 DOI: 10.1016/j.canlet.2023.216247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Enzalutamide (Enz) is a next-generation androgen receptor (AR) antagonist used to treat castration-resistant prostate cancer (CRPC). Unfortunately, the relapsing nature of CRPC results in the development of Enz resistance in many patients. Non-coding RNAs (ncRNAs) are RNA molecules that do not encode proteins, which include microRNAs (miRNA), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs with known and unknown functions. Recently, dysregulation of ncRNAs in CRPC, particularly their regulatory function in drug resistance, has attracted more and more attention. Herein, we introduce the roles of dysregulation of different ncRNAs subclasses in the development of CRPC progression and Enz resistance. Recently determined mechanisms of Enz resistance are discussed, focusing mainly on the role of AR-splice variant-7 (AR-V7), mutations, circRNAs and lncRNAs that act as miRNA sponges. Also, the contributions of epithelial-mesenchymal transition and glucose metabolism to Enz resistance are discussed. We summarize the different mechanisms of miRNAs, lncRNAs, and circRNAs in the progression of CRPC and Enz resistance, and highlight the prospect of future therapeutic strategies against Enz resistance.
Collapse
MESH Headings
- Male
- Humans
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/therapeutic use
- RNA, Circular/genetics
- Drug Resistance, Neoplasm/genetics
- Neoplasm Recurrence, Local
- Nitriles
- Androgen Receptor Antagonists/therapeutic use
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- Cell Line, Tumor
Collapse
Affiliation(s)
- Ke Gao
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Xiaoshun Li
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Jianxin Ni
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Bin Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Jiaheng Guo
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China; The State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Guojun Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| |
Collapse
|
9
|
Ge Y, Zhan Z, Ye M, Jin X. The crosstalk between ubiquitination and endocrine therapy. J Mol Med (Berl) 2023; 101:461-486. [PMID: 36961537 DOI: 10.1007/s00109-023-02300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/25/2023]
Abstract
Endocrine therapy (ET), also known as hormone therapy, refers to the treatment of tumors by regulating and changing the endocrine environment and hormone levels. Its related mechanism is mainly through reducing hormone levels and blocking the binding of hormones to corresponding receptors, thus blocking the signal transduction pathway to stimulate tumor growth. However, with the application of ET, some patients show resistance to ET, which is attributed to abnormal accumulation of hormone receptors (HRs) and the production of multiple mutants of HRs. The targeted degradation of abnormal accumulation protein mediated by ubiquitination is an important approach that regulates the protein level and function of intracellular proteins in eukaryotes. Here, we provide a brief description of the traditional and novel drugs available for ET in this review. Then, we introduce the link between ubiquitination and ET. In the end, we elaborate the clinical application of ET combined with ubiquitination-related molecules. KEY MESSAGES: • A brief description of the traditional and novel drugs available for endocrine therapy (ET). • The link between ubiquitination and ET. • The clinical application of ET combined with ubiquitination-related molecules.
Collapse
Affiliation(s)
- Yidong Ge
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ziqing Zhan
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Meng Ye
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Xiaofeng Jin
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
10
|
Lin Y, Tan H, Yu G, Zhan M, Xu B. Molecular Mechanisms of Noncoding RNA in the Occurrence of Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24021305. [PMID: 36674820 PMCID: PMC9860629 DOI: 10.3390/ijms24021305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Although several therapeutic options have been shown to improve survival of most patients with prostate cancer, progression to castration-refractory state continues to present challenges in clinics and scientific research. As a highly heterogeneous disease entity, the mechanisms of castration-resistant prostate cancer (CRPC) are complicated and arise from multiple factors. Among them, noncoding RNAs (ncRNAs), the untranslated part of the human transcriptome, are closely related to almost all biological regulation, including tumor metabolisms, epigenetic modifications and immune escape, which has encouraged scientists to investigate their role in CRPC. In clinical practice, ncRNAs, especially miRNAs and lncRNAs, may function as potential biomarkers for diagnosis and prognosis of CRPC. Therefore, understanding the molecular biology of CRPC will help boost a shift in the treatment of CRPC patients. In this review, we summarize the recent findings of miRNAs and lncRNAs, discuss their potential functional mechanisms and highlight their clinical application prospects in CRPC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| |
Collapse
|
11
|
Huang G, Cao H, Liu G, Chen J. Role of androgen receptor signaling pathway-related lncRNAs in the prognosis and immune infiltration of breast cancer. Sci Rep 2022; 12:20631. [PMID: 36450882 PMCID: PMC9712677 DOI: 10.1038/s41598-022-25231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Androgen receptor (AR) is strong association with breast cancer (BRCA). We aimed to investigate the effect of the androgen receptor signaling pathway-related long non-coding RNAs (ARSP-related lncRNAs) on the process of subtype classification and the tumor microenvironment (TME) of breast cancer (BRCA). Our study screen ARSP-related lncRNAs for the construction of a risk model. The single-sample gene set enrichment analysis (ssGSEA) method was used to detect the differences between the immune responses generated by the patients belonging to the low- and high-risk groups. The relationship between the ARSP-related lncRNAs and TME was explored following the process of cluster analysis. The univariate Cox analysis and the Lasso regression analysis method was used to screen nine of these lncRNAs to develop a risk model. It was observed that risk score could function as an independent prognostic factor, affecting the prognoses of patients suffering from BRCA. The validity of the model was assessed by analyzing the generated calibration curves and a nomogram. Additionally, the effect of the risk score on the extent of immune cell infiltration realized in TME was explored. M2 macrophages correlated positively, whereas NK cells, CD4+ T cells, and naive B cells correlated negatively with the risk score. Results obtained using the cluster analysis indicated that immune scores correlated with clustered subtypes. Finally, the risk score and cluster subtypes were analyzed to study the sensitivity of the patients toward different drugs to identify the appropriate therapeutic agents. The prognoses of patients suffering from BRCA can be accurately predicted by ARSP-related lncRNAs.
Collapse
Affiliation(s)
- Guo Huang
- grid.412017.10000 0001 0266 8918Hengyang Medical School, University of South China, Hengyang, 421001 Hunan People’s Republic of China ,grid.412017.10000 0001 0266 8918Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, 421001 Hunan People’s Republic of China ,grid.413432.30000 0004 1798 5993Department of Breast and Thyroid Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001 Hunan China
| | - Hong Cao
- grid.413432.30000 0004 1798 5993Department of Breast and Thyroid Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001 Hunan China
| | - Guowen Liu
- grid.452847.80000 0004 6068 028XDepartment of Thyroid and Breast Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
| | - Juan Chen
- grid.412017.10000 0001 0266 8918Department of Radiotherapy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan China
| |
Collapse
|
12
|
Eptaminitaki GC, Stellas D, Bonavida B, Baritaki S. Long Non-coding RNAs (lncRNAs) signaling in Cancer Chemoresistance: From Prediction to Druggability. Drug Resist Updat 2022; 65:100866. [DOI: 10.1016/j.drup.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
|
13
|
Shen D, Peng H, Xia C, Deng Z, Tong X, Wang G, Qian K. The Role of Long Non-Coding RNAs in Epithelial-Mesenchymal Transition-Related Signaling Pathways in Prostate Cancer. Front Mol Biosci 2022; 9:939070. [PMID: 35923466 PMCID: PMC9339612 DOI: 10.3389/fmolb.2022.939070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common male malignancies with frequent remote invasion and metastasis, leading to high mortality. Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development and plays a key role in tumor proliferation, invasion and metastasis. Numerous long non-coding RNAs (lncRNAs) could regulate the occurrence and development of EMT through various complex molecular mechanisms involving multiple signaling pathways in PCa. Given the importance of EMT and lncRNAs in the progression of tumor metastasis, we recapitulate the research progress of EMT-related signaling pathways regulated by lncRNAs in PCa, including AR signaling, STAT3 signaling, Wnt/β-catenin signaling, PTEN/PI3K/AKT signaling, TGF-β/Smad and NF-κB signaling pathways. Furthermore, we summarize four modes of how lncRNAs participate in the EMT process of PCa via regulating relevant signaling pathways.
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Hongwei Peng
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Caixia Xia
- President’s Office, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Tong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| |
Collapse
|
14
|
Kim DH, Im E, Lee DY, Lee H, Sim DY, Park JE, Ahn C, Koo JI, Pak J, Kim S. Antitumor mechanism of combination of
Angelica gigas
and
Torilis japonica
in
LNCaP
prostate cancer cells via
G1
arrest and inhibition of Wnt/β‐catenin and androgen receptor signaling. Phytother Res 2022; 36:2999-3008. [DOI: 10.1002/ptr.7494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Dong Hee Kim
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Eunji Im
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research National Institute of Horticultural and Herbal Science Eumseong Republic of Korea
| | - Hyo‐Jung Lee
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Chi‐Hoon Ahn
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Ja Il Koo
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Ji‐Na Pak
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Sung‐Hoon Kim
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| |
Collapse
|
15
|
Dathathri E, Isebia KT, Abali F, Lolkema MP, Martens JWM, Terstappen LWMM, Bansal R. Liquid Biopsy Based Circulating Biomarkers in Metastatic Prostate Cancer. Front Oncol 2022; 12:863472. [PMID: 35669415 PMCID: PMC9165750 DOI: 10.3389/fonc.2022.863472] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer is the most dominant male malignancy worldwide. The clinical presentation of prostate cancer ranges from localized indolent to rapidly progressing lethal metastatic disease. Despite a decline in death rate over the past years, with the advent of early diagnosis and new treatment options, challenges remain towards the management of metastatic prostate cancer, particularly metastatic castration sensitive prostate cancer (mCSPC) and castration resistant prostate cancer (mCRPC). Current treatments involve a combination of chemotherapy with androgen deprivation therapy and/or androgen receptor signalling inhibitors. However, treatment outcomes are heterogeneous due to significant tumor heterogeneity indicating a need for better prognostic biomarkers to identify patients with poor outcomes. Liquid biopsy has opened a plethora of opportunities from early diagnosis to (personalized) therapeutic disease interventions. In this review, we first provide recent insights about (metastatic) prostate cancer and its current treatment landscape. We highlight recent studies involving various circulating biomarkers such as circulating tumor cells, genetic markers, circulating nucleic acids, extracellular vesicles, tumor-educated platelets, and the secretome from (circulating) tumor cells and tumor microenvironment in metastatic prostate cancer. The comprehensive array of biomarkers can provide a powerful approach to understanding the spectrum of prostate cancer disease and guide in developing improved and personalized treatments for patients.
Collapse
Affiliation(s)
- Eshwari Dathathri
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, Netherlands
| | - Khrystany T. Isebia
- Erasmus Medical Center Cancer Institute, University Medical Center Rotterdam, Department of Medical Oncology, Rotterdam, Netherlands
| | - Fikri Abali
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, Netherlands
| | - Martijn P. Lolkema
- Erasmus Medical Center Cancer Institute, University Medical Center Rotterdam, Department of Medical Oncology, Rotterdam, Netherlands
| | - John W. M. Martens
- Erasmus Medical Center Cancer Institute, University Medical Center Rotterdam, Department of Medical Oncology, Rotterdam, Netherlands
| | - Leon W. M. M. Terstappen
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, Netherlands
| | - Ruchi Bansal
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, Netherlands
| |
Collapse
|
16
|
Deng T, Xiao Y, Dai Y, Xie L, Li X. Roles of Key Epigenetic Regulators in the Gene Transcription and Progression of Prostate Cancer. Front Mol Biosci 2021; 8:743376. [PMID: 34977151 PMCID: PMC8714908 DOI: 10.3389/fmolb.2021.743376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is a top-incidence malignancy, and the second most common cause of death amongst American men and the fifth leading cause of cancer death in men around the world. Androgen receptor (AR), the key transcription factor, is critical for the progression of PCa by regulating a series of target genes by androgen stimulation. A number of co-regulators of AR, including co-activators or co-repressors, have been implicated in AR-mediated gene transcription and PCa progression. Epigenetic regulators, by modifying chromatin integrity and accessibility for transcription regulation without altering DNA sequences, influence the transcriptional activity of AR and further regulate the gene expression of AR target genes in determining cell fate, PCa progression and therapeutic response. In this review, we summarized the structural interaction of AR and epigenetic regulators including histone or DNA methylation, histone acetylation or non-coding RNA, and functional synergy in PCa progression. Importantly, epigenetic regulators have been validated as diagnostic markers and therapeutic targets. A series of epigenetic target drugs have been developed, and have demonstrated the potential to treat PCa alone or in combination with antiandrogens.
Collapse
Affiliation(s)
- Tanggang Deng
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yugang Xiao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Dai
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Xie
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiong Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
Chen Y, Long W, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Yang Z, Wen Q, Yi T, Xiao Z, Shen J. Functional Peptides Encoded by Long Non-Coding RNAs in Gastrointestinal Cancer. Front Oncol 2021; 11:777374. [PMID: 34888249 PMCID: PMC8649637 DOI: 10.3389/fonc.2021.777374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal cancer is by far the most common malignancy and the most common cause of cancer-related deaths worldwide. Recent studies have shown that long non-coding RNAs (lncRNAs) play an important role in the epigenetic regulation of cancer cells and regulate tumor progression by affecting chromatin modifications, gene transcription, translation, and sponge to miRNAs. In particular, lncRNA has recently been found to possess open reading frame (ORF), which can encode functional small peptides or proteins. These peptides interact with its targets to regulate transcription or the signal axis, thus promoting or inhibiting the occurrence and development of tumors. In this review, we summarize the involvement of lncRNAs and the function of lncRNAs encoded small peptides in gastrointestinal cancer.
Collapse
Affiliation(s)
- Yao Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Weili Long
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Taheri M, Khoshbakht T, Jamali E, Kallenbach J, Ghafouri-Fard S, Baniahmad A. Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer. Cells 2021; 10:3198. [PMID: 34831421 PMCID: PMC8619311 DOI: 10.3390/cells10113198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily and has three functional domains, namely the N-terminal, DNA binding, and C-terminal domain. The N-terminal domain harbors potent transactivation functions, whereas the C-terminal domain binds to androgens and antiandrogens used to treat prostate cancer. AR has genomic activity being DNA binding-dependent or through interaction with other DNA-bound transcription factors, as well as a number of non-genomic, non-canonical functions, such as the activation of the ERK, AKT, and MAPK pathways. A bulk of evidence indicates that non-coding RNAs have functional interactions with AR. This type of interaction is implicated in the pathogenesis of human malignancies, particularly prostate cancer. In the current review, we summarize the available data on the role of microRNAs, long non-coding RNAs, and circular RNAs on the expression of AR and modulation of AR signaling, as well as the effects of AR on their expression. Recognition of the complicated interaction between non-coding RNAs and AR has practical importance in the design of novel treatment options, as well as modulation of response to conventional therapeutics.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| |
Collapse
|
19
|
Fan S, Wang L. N 6-Methyladenosine-regulated LINC00675 Suppress the Proliferation, Migration and Invasion of Breast Cancer cells via Inhibiting miR-513b-5p. Bioengineered 2021; 12:10690-10702. [PMID: 34738869 PMCID: PMC8810037 DOI: 10.1080/21655979.2021.2001905] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Breast cancer (BC) is the most common cancer among women. LINC00675 and miR-513b-5p has been reported to be abnormally expressed in multiple types of cancers and modulate malignant phenotypes of cancer cells. However, to date, the functional role and underlying regulatory mechanism of LINC00675 and miR-513b-5p in BC remains largely unknown. Here, we found that LINC00675 was significantly downregulated in BC tissues and cell lines. Decrease of LINC00675 expression associated with higher tumor grade, lymphovascular invasion and shorter survival in BC patients. Functional experiments demonstrated that overexpression of LINC00675 suppressed BC cell proliferation, migration and invasion, whereas depletion of LINC00675 exerted opposite effects. Mechanistically, LINC00675 functioned as a competing endogenous RNA (ceRNA) to interact with miR-513b-5p and suppress its expression. Moreover, METTL3 increased the m6A methylation of LINC00675, which enhanced the association between LINC00675 and miR-513b-5p. Collectively, the central findings of our study suggest that LINC00675 represses BC progression through the inhibition of miR-513b-5p in a m6A-dependent manner.
Collapse
Affiliation(s)
- Shenglan Fan
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology and Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan, Hubei, 430079, China
| | - Liping Wang
- Department of Gynecological Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430079, China
| |
Collapse
|
20
|
Zhen H, Du P, Yi Q, Tang X, Wang T. LINC00958 promotes bladder cancer carcinogenesis by targeting miR-490-3p and AURKA. BMC Cancer 2021; 21:1145. [PMID: 34702201 PMCID: PMC8549181 DOI: 10.1186/s12885-021-08882-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/19/2021] [Indexed: 02/01/2023] Open
Abstract
Background Bladder cancer is a prevalent malignancy of the urinary system, in which long non-coding RNAs (lncRNAs) are highly associated. We aimed to elucidate the role of LINC00958 in bladder cancer. Methods LINC00958 expression levels were measured using qRT-PCR. The interaction of LINC00958-miR-490-3p-AURKA was analyzed by luciferase, RIP, and RNA pull-down assays. The biological roles of LINC00958, miR-490-3p, and AURKA in bladder cancer cells were analyzed using CCK8, BrdU, and transwell assays. Results Increased expression of LINC00958 and AURKA was observed in bladder cancer tissues and cell lines. Decreased LINC00958 expression repressed bladder cancer progression and downregulation of miR-490-3p accelerated bladder cancer cell progression. Moreover, LINC00958 sponges miR-490-3p to upregulate AURKA expression, thereby promoting carcinogenesis in bladder cancer cells. Conclusions Our study revealed that LINC00958 facilitated cell proliferation and invasion, and suppressed cell apoptosis by sponging miR-490-3p and upregulating AURKA, thus inspiring a new treatment method for bladder cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08882-6.
Collapse
Affiliation(s)
- Hongtao Zhen
- Department of Urology Ward 1, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 195 Tongbai Road, Zhongyuan District, Zhengzhou, 450007, Henan, China.
| | - Peng Du
- Department of Urology, Peking University Cancer Hospital, Beijing, 100142, China
| | - Qiang Yi
- Department of Urology Ward 1, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 195 Tongbai Road, Zhongyuan District, Zhengzhou, 450007, Henan, China
| | - Xiaolong Tang
- Department of Urology Ward 1, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 195 Tongbai Road, Zhongyuan District, Zhengzhou, 450007, Henan, China
| | - Tongqing Wang
- Department of Urology Ward 1, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 195 Tongbai Road, Zhongyuan District, Zhengzhou, 450007, Henan, China
| |
Collapse
|
21
|
Singla RK, Sharma P, Dubey AK, Gundamaraju R, Kumar D, Kumar S, Madaan R, Shri R, Tsagkaris C, Parisi S, Joon S, Singla S, Kamal MA, Shen B. Natural Product-Based Studies for the Management of Castration-Resistant Prostate Cancer: Computational to Clinical Studies. Front Pharmacol 2021; 12:732266. [PMID: 34737700 PMCID: PMC8560712 DOI: 10.3389/fphar.2021.732266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: With prostate cancer being the fifth-greatest cause of cancer mortality in 2020, there is a dire need to expand the available treatment options. Castration-resistant prostate cancer (CRPC) progresses despite androgen depletion therapy. The mechanisms of resistance are yet to be fully discovered. However, it is hypothesized that androgens depletion enables androgen-independent cells to proliferate and recolonize the tumor. Objectives: Natural bioactive compounds from edible plants and herbal remedies might potentially address this need. This review compiles the available cheminformatics-based studies and the translational studies regarding the use of natural products to manage CRPC. Methods: PubMed and Google Scholar searches for preclinical studies were performed, while ClinicalTrials.gov and PubMed were searched for clinical updates. Studies that were not in English and not available as full text were excluded. The period of literature covered was from 1985 to the present. Results and Conclusion: Our analysis suggested that natural compounds exert beneficial effects due to their broad-spectrum molecular disease-associated targets. In vitro and in vivo studies revealed several bioactive compounds, including rutaecarpine, berberine, curcumin, other flavonoids, pentacyclic triterpenoids, and steroid-based phytochemicals. Molecular modeling tools, including machine and deep learning, have made the analysis more comprehensive. Preclinical and clinical studies on resveratrol, soy isoflavone, lycopene, quercetin, and gossypol have further validated the translational potential of the natural products in the management of prostate cancer.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
- Khalsa College of Pharmacy, Amritsar, India
| | | | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Sri Sai College of Pharmacy, Amritsar, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Salvatore Parisi
- Lourdes Matha Institute of Hotel Management and Catering Technology, Thiruvananthapuram, India
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Long non-coding RNA VPS9D1-AS1 promotes growth of colon adenocarcinoma by sponging miR-1301-3p and CLDN1. Hum Cell 2021; 34:1775-1787. [PMID: 34519940 DOI: 10.1007/s13577-021-00604-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
Colon adenocarcinoma is a frequent malignancy among all colon cancer types. Long non-coding RNAs (lncRNAs) are involved in the progression of colon adenocarcinoma. This study aimed to uncover the molecular mechanism of VPS9D1-AS1 in regulating colon adenocarcinoma development. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) revealed that VPS9D1-AS1 expression was markedly upregulated in colon adenocarcinoma tissues and cell lines. Cell functional experiments showed that knockdown of VPS9D1-AS1 repressed the growth and invasion of colon adenocarcinoma cells but upregulated cell apoptosis. In addition, we confirmed the interaction of VPS9D1-AS1-miR-1301-3p-CLDN1 using a luciferase assay. Downregulation of miR-1301-3p promoted the progression of colon adenocarcinoma cells. In conclusion, VPS9D1-AS1 facilitated cell growth and suppressed apoptosis of colon adenocarcinoma cells by sponging miR-1301-3p and upregulating CLDN1, which may be effective therapeutic strategies for patients with colon adenocarcinoma.
Collapse
|
23
|
Ding L, Wang R, Shen D, Cheng S, Wang H, Lu Z, Zheng Q, Wang L, Xia L, Li G. Role of noncoding RNA in drug resistance of prostate cancer. Cell Death Dis 2021; 12:590. [PMID: 34103477 PMCID: PMC8187453 DOI: 10.1038/s41419-021-03854-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Prostate cancer is one of the most prevalent forms of cancer around the world. Androgen-deprivation treatment and chemotherapy are the curative approaches used to suppress prostate cancer progression. However, drug resistance is extensively and hard to overcome even though remarkable progress has been made in recent decades. Noncoding RNAs, such as miRNAs, lncRNAs, and circRNAs, are a group of cellular RNAs which participate in various cellular processes and diseases. Recently, accumulating evidence has highlighted the vital role of non-coding RNA in the development of drug resistance in prostate cancer. In this review, we summarize the important roles of these three classes of noncoding RNA in drug resistance and the potential therapeutic applications in this disease.
Collapse
Affiliation(s)
- Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Cheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liya Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
24
|
The Role of Androgens and Androgen Receptor in Human Bladder Cancer. Biomolecules 2021; 11:biom11040594. [PMID: 33919565 PMCID: PMC8072960 DOI: 10.3390/biom11040594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (urothelial carcinoma) is one of the most frequently diagnosed neoplasms, with an estimated half a million new cases and 200,000 deaths per year worldwide. This pathology mainly affects men. Men have a higher risk (4:1) of developing bladder cancer than women. Cigarette smoking and exposure to chemicals such as aromatic amines, and aniline dyes have been established as risk factors for bladder cancer and may contribute to the sex disparity. Male internal genitalia, including the urothelium and prostate, are derived from urothelial sinus endoderm; both tissues express the androgen receptor (AR). Several investigations have shown evidence that the AR plays an important role in the initiation and development of different types of cancer including bladder cancer. In this article, we summarize the available data that help to explain the role of the AR in the development and progression of bladder cancer, as well as the therapies used for its treatment.
Collapse
|
25
|
Cui Z, Gao H, Yan N, Dai Y, Wang H, Wang M, Wang J, Zhang D, Sun P, Qi T, Wang Q, Kang W, Jin X. LncRNA PlncRNA-1 accelerates the progression of prostate cancer by regulating PTEN/Akt axis. Aging (Albany NY) 2021; 13:12113-12128. [PMID: 33848262 PMCID: PMC8109094 DOI: 10.18632/aging.202919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs are key regulators of tumor development and progression, with the potential to be biomarkers of tumors. This study aimed to explore the role of PlncRNA-1 in the progression of prostate cancer (PCa). We found that PlncRNA-1 was up-regulated in 85.29% of PCa tissues and could predict the T stage of PCa patients to a certain extent. Results showed that inhibition of PlncRNA-1 expression potentially promoted cell apoptosis, suppressed the proliferation, migration, and invasion of cells, and triggered G2/M cycle arrest in vitro and in vivo. PlncRNA-1 was mainly localized in the nucleus and PlncRNA-1 expression and phosphatase and tensin homologue (PTEN) expression were negatively correlated. Mechanistically, knockdown of PlncRNA-1 increased expression levels of PTEN protein and phosphorylated PTEN protein, and decreased expression levels of Akt protein and phosphorylated Akt protein. Rescue experiments demonstrated that PTEN inhibitors abolished the changes in PTEN/Akt pathway caused by PlncRNA-1 interference. PlncRNA-1 can promote the occurrence and development of PCa via the PTEN/Akt pathway. PlncRNA-1 may, therefore, be a new candidate target for the treatment of PCa.
Collapse
Affiliation(s)
- Zilian Cui
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Hui Gao
- Department of Urology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Ning Yan
- Department of Plastic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
| | - Yun Dai
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.,Department of Ultrasound, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Hanbo Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Muwen Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Dong Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Peng Sun
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Taiguo Qi
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Qiang Wang
- Department of Human Resources, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.,Department of Human Resources, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Weiting Kang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xunbo Jin
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
26
|
Chen L, Han L, Mao S, Xu P, Xu X, Zhao R, Wu Z, Zhong K, Yu G, Wang X. Discovery of A031 as effective proteolysis targeting chimera (PROTAC) androgen receptor (AR) degrader for the treatment of prostate cancer. Eur J Med Chem 2021; 216:113307. [PMID: 33652354 DOI: 10.1016/j.ejmech.2021.113307] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/31/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Androgen receptor (AR) is an effective therapeutic target for the treatment of prostate cancer. We report herein the design, synthesis, and biological evaluation of highly effective proteolysis targeting chimeras (PROTAC) androgen receptor (AR) degraders, such as compound A031. It could induce the degradation of AR protein in VCaP cell lines in a time-dependent manner, achieving the IC 50 value of less than 0.25 μM. The A031 is 5 times less toxic than EZLA and works with an appropriate half-life (t 1/2) or clearance rate (Cl). Also, it has a significant inhibitory effect on tumor growth in zebrafish transplanted with human prostate cancer (VCaP). Therefore, A031 provides a further idea of developing novel drugs for prostate cancer.
Collapse
Affiliation(s)
- Linrong Chen
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, 222 S. Tianshui Rd, Lanzhou, 730000, PR China
| | - Liuquan Han
- Suzhou Degen Bio-medical Co., Ltd, No.1 Huayun Road, SIP, Suzhou, 215000, PR China
| | - Shujun Mao
- Suzhou Degen Bio-medical Co., Ltd, No.1 Huayun Road, SIP, Suzhou, 215000, PR China
| | - Ping Xu
- Suzhou Degen Bio-medical Co., Ltd, No.1 Huayun Road, SIP, Suzhou, 215000, PR China
| | - Xinxin Xu
- Suzhou Degen Bio-medical Co., Ltd, No.1 Huayun Road, SIP, Suzhou, 215000, PR China
| | - Ruibo Zhao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, 222 S. Tianshui Rd, Lanzhou, 730000, PR China
| | - Zhihua Wu
- School of Pharmacy, Lanzhou University, 222 S. Tianshui Rd, Lanzhou, 730000, PR China
| | - Kai Zhong
- Suzhou Degen Bio-medical Co., Ltd, No.1 Huayun Road, SIP, Suzhou, 215000, PR China.
| | - Guangliang Yu
- Suzhou Degen Bio-medical Co., Ltd, No.1 Huayun Road, SIP, Suzhou, 215000, PR China.
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, 222 S. Tianshui Rd, Lanzhou, 730000, PR China.
| |
Collapse
|