1
|
Eintracht J, Owen N, Harding P, Moosajee M. Disruption of common ocular developmental pathways in patient-derived optic vesicle models of microphthalmia. Stem Cell Reports 2024; 19:839-858. [PMID: 38821055 PMCID: PMC11390689 DOI: 10.1016/j.stemcr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Genetic perturbations influencing early eye development can result in microphthalmia, anophthalmia, and coloboma (MAC). Over 100 genes are associated with MAC, but little is known about common disease mechanisms. In this study, we generated induced pluripotent stem cell (iPSC)-derived optic vesicles (OVs) from two unrelated microphthalmia patients and healthy controls. At day 20, 35, and 50, microphthalmia patient OV diameters were significantly smaller, recapitulating the "small eye" phenotype. RNA sequencing (RNA-seq) analysis revealed upregulation of apoptosis-initiating and extracellular matrix (ECM) genes at day 20 and 35. Western blot and immunohistochemistry revealed increased expression of lumican, nidogen, and collagen type IV, suggesting ECM overproduction. Increased apoptosis was observed in microphthalmia OVs with reduced phospho-histone 3 (pH3+) cells confirming decreased cell proliferation at day 35. Pharmacological inhibition of caspase-8 activity with Z-IETD-FMK decreased apoptosis in one patient model, highlighting a potential therapeutic approach. These data reveal shared pathophysiological mechanisms contributing to a microphthalmia phenotype.
Collapse
Affiliation(s)
| | | | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
2
|
Fu J, Tong Y, Xu Z, Li Y, Zhao Y, Wang T, Li C, Cang S. Impact of TP53 Mutations on EGFR-Tyrosine Kinase Inhibitor Efficacy and Potential Treatment Strategy. Clin Lung Cancer 2023; 24:29-39. [PMID: 36117108 DOI: 10.1016/j.cllc.2022.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/26/2022] [Accepted: 08/04/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND We investigated the impact of factors that influence TP53 mutations on the efficacy of EGFR-tyrosine kinase inhibitors and potential treatment strategies. MATERIALS AND METHODS Tumor samples were collected to screen gene mutations by next-generation sequencing, as well as the patients' baseline characteristics. The overall response to treatment with TKIs was evaluated based on interval computed tomography scans at each follow-up time point. A Fisher's exact test and log-rank test were used to determine the statistical differences in this study. RESULTS A total of 1134 clinical samples were collected from NSCLC patients, and TP53mut was identified in 644 cases and EGFRmut in 622 cases. A low frequency of TP53mut or more than 50% EGFR co-mutation rate were related to the prognosis of TKI-treated patients. In addition, TP53mut in the region outside of the DB domain had the strongest correlation with TKI resistance, whereas various types of mutations in the DB domain only had an impact on PFS. A grouping study of EGFR-TKI-based treatment revealed that EGFR-TKIs with chemotherapy were associated with more significant survival benefits for patients with prognostic TP53mut, whereas EGFR-TKI therapy was favorable for TP53wt patients. Furthermore, TP53mut could shorten the time to the relapse of postoperative patients, who will also likely respond well to EGFR-TKIs with chemotherapy. CONCLUSION Various characteristics of TP53mut affect the prognosis of TKI-treated patients to varying degrees. EGFR-TKIs with chemotherapy were benefit for patients' survival with prognostic TP53mut, which provides an important reference for treatment management of EGFRmut patients.
Collapse
Affiliation(s)
- Jing Fu
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Yuyang Tong
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Ziguang Xu
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Yaonan Li
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Ya Zhao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Tao Wang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China.
| |
Collapse
|
3
|
Rosales M, Rodríguez-Ulloa A, Pérez GV, Besada V, Soto T, Ramos Y, González LJ, Zettl K, Wiśniewski JR, Yang K, Perera Y, Perea SE. CIGB-300-Regulated Proteome Reveals Common and Tailored Response Patterns of AML Cells to CK2 Inhibition. Front Mol Biosci 2022; 9:834814. [PMID: 35359604 PMCID: PMC8962202 DOI: 10.3389/fmolb.2022.834814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 01/13/2023] Open
Abstract
Protein kinase CK2 is a highly pleiotropic and ubiquitously expressed Ser/Thr kinase with instrumental roles in normal and pathological states, including neoplastic phenotype in solid tumor and hematological malignancies. In line with previous reports, CK2 has been suggested as an attractive prognostic marker and molecular target in acute myeloid leukemia (AML), a blood malignant disorder that remains as an unmet medical need. Accordingly, this work investigates the complex landscape of molecular and cellular perturbations supporting the antileukemic effect exerted by CK2 inhibition in AML cells. To identify and functionally characterize the proteomic profile differentially modulated by the CK2 peptide-based inhibitor CIGB-300, we carried out LC-MS/MS and bioinformatic analysis in human cell lines representing two differentiation stages and major AML subtypes. Using this approach, 109 and 129 proteins were identified as significantly modulated in HL-60 and OCI-AML3 cells, respectively. In both proteomic profiles, proteins related to apoptotic cell death, cell cycle progression, and transcriptional/translational processes appeared represented, in agreement with previous results showing the impact of CIGB-300 in AML cell proliferation and viability. Of note, a group of proteins involved in intracellular redox homeostasis was specifically identified in HL-60 cell-regulated proteome, and flow cytometric analysis also confirmed a differential effect of CIGB-300 over reactive oxygen species (ROS) production in AML cells. Thus, oxidative stress might play a relevant role on CIGB-300-induced apoptosis in HL-60 but not in OCI-AML3 cells. Importantly, these findings provide first-hand insights concerning the CIGB-300 antileukemic effect and draw attention to the existence of both common and tailored response patterns triggered by CK2 inhibition in different AML backgrounds, a phenomenon of particular relevance with regard to the pharmacologic blockade of CK2 and personalized medicine.
Collapse
Affiliation(s)
- Mauro Rosales
- Department of Animal and Human Biology, Faculty of Biology, University of Havana (UH), Havana, Cuba
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Arielis Rodríguez-Ulloa
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, CIGB, Havana, Cuba
| | - George V. Pérez
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Vladimir Besada
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, CIGB, Havana, Cuba
| | - Thalia Soto
- Department of Animal and Human Biology, Faculty of Biology, University of Havana (UH), Havana, Cuba
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Yassel Ramos
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, CIGB, Havana, Cuba
| | - Luis J. González
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, CIGB, Havana, Cuba
| | - Katharina Zettl
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Munich, Germany
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Munich, Germany
| | - Ke Yang
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd., Yongzhou, China
- *Correspondence: Ke Yang, ; Yasser Perera, ; Silvio E. Perea,
| | - Yasser Perera
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd., Yongzhou, China
- *Correspondence: Ke Yang, ; Yasser Perera, ; Silvio E. Perea,
| | - Silvio E. Perea
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
- *Correspondence: Ke Yang, ; Yasser Perera, ; Silvio E. Perea,
| |
Collapse
|
4
|
Matos-Rodrigues GE, Martins RAP. An Eye in the Replication Stress Response: Lessons From Tissue-Specific Studies in vivo. Front Cell Dev Biol 2021; 9:731308. [PMID: 34805142 PMCID: PMC8599991 DOI: 10.3389/fcell.2021.731308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022] Open
Abstract
Several inherited human syndromes that severely affect organogenesis and other developmental processes are caused by mutations in replication stress response (RSR) genes. Although the molecular machinery of RSR is conserved, disease-causing mutations in RSR-genes may have distinct tissue-specific outcomes, indicating that progenitor cells may differ in their responses to RSR inactivation. Therefore, understanding how different cell types respond to replication stress is crucial to uncover the mechanisms of RSR-related human syndromes. Here, we review the ocular manifestations in RSR-related human syndromes and summarize recent findings investigating the mechanisms of RSR during eye development in vivo. We highlight a remarkable heterogeneity of progenitor cells responses to RSR inactivation and discuss its implications for RSR-related human syndromes.
Collapse
Affiliation(s)
- Gabriel E Matos-Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo A P Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Zhang J, Bellani MA, Huang J, James RC, Pokharel D, Gichimu J, Gali H, Stewart G, Seidman MM. Replication of the Mammalian Genome by Replisomes Specific for Euchromatin and Heterochromatin. Front Cell Dev Biol 2021; 9:729265. [PMID: 34532320 PMCID: PMC8438199 DOI: 10.3389/fcell.2021.729265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022] Open
Abstract
Replisomes follow a schedule in which replication of DNA in euchromatin is early in S phase while sequences in heterochromatin replicate late. Impediments to DNA replication, referred to as replication stress, can stall replication forks triggering activation of the ATR kinase and downstream pathways. While there is substantial literature on the local consequences of replisome stalling-double strand breaks, reversed forks, or genomic rearrangements-there is limited understanding of the determinants of replisome stalling vs. continued progression. Although many proteins are recruited to stalled replisomes, current models assume a single species of "stressed" replisome, independent of genomic location. Here we describe our approach to visualizing replication fork encounters with the potent block imposed by a DNA interstrand crosslink (ICL) and our discovery of an unexpected pathway of replication restart (traverse) past an intact ICL. Additionally, we found two biochemically distinct replisomes distinguished by activity in different stages of S phase and chromatin environment. Each contains different proteins that contribute to ICL traverse.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, Institute for Advanced Study, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Marina A. Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jing Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, China
| | - Ryan C. James
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Durga Pokharel
- Horizon Discovery Group plc, Lafayette, CO, United States
| | - Julia Gichimu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Himabindu Gali
- Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Grant Stewart
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, United Kingdom
| | - Michael M. Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
6
|
Matos-Rodrigues GE, Tan PB, Rocha-Martins M, Charlier CF, Gomes AL, Cabral-Miranda F, Grigaravicius P, Hofmann TG, Frappart PO, Martins RAP. Progenitor death drives retinal dysplasia and neuronal degeneration in a mouse model of ATRIP-Seckel syndrome. Dis Model Mech 2020; 13:dmm045807. [PMID: 32994318 PMCID: PMC7648607 DOI: 10.1242/dmm.045807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/27/2020] [Indexed: 01/03/2023] Open
Abstract
Seckel syndrome is a type of microcephalic primordial dwarfism (MPD) that is characterized by growth retardation and neurodevelopmental defects, including reports of retinopathy. Mutations in key mediators of the replication stress response, the mutually dependent partners ATR and ATRIP, are among the known causes of Seckel syndrome. However, it remains unclear how their deficiency disrupts the development and function of the central nervous system (CNS). Here, we investigated the cellular and molecular consequences of ATRIP deficiency in different cell populations of the developing murine neural retina. We discovered that conditional inactivation of Atrip in photoreceptor neurons did not affect their survival or function. In contrast, Atrip deficiency in retinal progenitor cells (RPCs) led to severe lamination defects followed by secondary photoreceptor degeneration and loss of vision. Furthermore, we showed that RPCs lacking functional ATRIP exhibited higher levels of replicative stress and accumulated endogenous DNA damage that was accompanied by stabilization of TRP53. Notably, inactivation of Trp53 prevented apoptosis of Atrip-deficient progenitor cells and was sufficient to rescue retinal dysplasia, neurodegeneration and loss of vision. Together, these results reveal an essential role of ATRIP-mediated replication stress response in CNS development and suggest that the TRP53-mediated apoptosis of progenitor cells might contribute to retinal malformations in Seckel syndrome and other MPD disorders.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gabriel E Matos-Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Pedro B Tan
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Maurício Rocha-Martins
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Clara F Charlier
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Anielle L Gomes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Felipe Cabral-Miranda
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | | | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55131 Germany
| | - Pierre-Olivier Frappart
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55131 Germany
| | - Rodrigo A P Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| |
Collapse
|