1
|
HUO Y, XU X, MA X, FENG Y. [GINS1 Enhances Glycolysis, Proliferation and Metastasis in Lung Adenocarcinoma Cells by Activating the Notch/PI3K/AKT/mTORC1 Signaling Pathway]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:735-744. [PMID: 39631830 PMCID: PMC11629005 DOI: 10.3779/j.issn.1009-3419.2024.101.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Lung cancer is the most common type of cancer, accounting for more than half of all cancer cases, with lung adenocarcinoma (LUAD) representing over half of lung cancer patients. Currently, the 5-year survival rate for metastatic LUAD patients remains low and there is an urgent need for new biomarkers as targets for targeted therapy. Go-Ichi-Ni-San 1 (GINS1), an important member of the GINS family, is closely related to the occurrence and development of human malignant tumors. This study aims to explore the role of GINS1 in glycolysis, proliferation, and metastasis of LUAD cells and the related molecular mechanisms. METHODS The expression of GINS1 was analysed using bioinformatics between LUAD patients and healthy controls. The expression levels of GINS1 in LUAD and adjacent tissues were detected by immunohistochemistry and Western blot. Western blot and real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) were used to detect the expression of GINS1 in LUAD cell lines A549, SK-LU-1, Calu-3, H1299 and BEAS-2B. Stably knockdown GINS1 in A549 cells and its negative control cell line, as well as stably overexpress GINS1 in H1299 cells and its negative control cell line, were constructed by lentiviral transduction. Colony formation test was used to detect cell proliferation. Scratch test was used to detect cell migration. Transwell test was used to detect cell invasion, and the test kits were used to detect glucose consumption and lactate production. The expression levels of glycolysis-related proteins, Notch signaling pathway proteins and phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway proteins were detected by Western blot. The Notch receptor agonist Jagged1 was added to cells from the shGINS1-A549 group and the Notch receptor inhibitor LY3039478 was added to cells from the GINS1-OE-H1299 group for the regression assay. RESULTS The expression of GINS1 was up-regulated in LUAD patients, tissues and cell lines, and correlated with overall survival (P<0.05). Knockdown of GINS1 significantly inhibited the proliferation, migration and invasion of A549 cells (P<0.05), while overexpression of GINS1 significantly enhanced the proliferation, migration and invasion of H1299 cells (P<0.05). Furthermore, knockdown of GINS1 resulted in reduced glucose consumption, reduced lactate production, and reduced expression levels of glycolytic-related proteins in A549 cells (P<0.05); overexpression of GINS1 enhanced glycolytic level in H1299 cells (P<0.05). The expression levels of Notch1, Notch3, phosphorylated-PI3K (p-PI3K), phosphorylated-AKT (p-AKT) and phosphorylated-mTORC1 (Ser2448)[p-mTORC1 (Ser2448)] in A549 cells were significantly decreased by GINS1 knockdown (P<0.05), while the expression levels of PI3K, AKT, mTOR and p-mTORC2 (Ser2481) were not significantly changed (P>0.05). Overexpression of GINS1 increased the levels of Notch1, Notch3 and PI3K/AKT/mTORC1 pathway phosphorylated proteins in H1299 cells (P<0.05). Jagged1 significantly reversed the inhibition of glycolysis, proliferation and metastasis induced by GINS1 knockdown in A549 cells (P<0.05), and LY3039478 significantly inhibited the enhancement of glycolysis, proliferation and metastasis induced by GINS1 overexpression in H1299 cells (P<0.05). CONCLUSIONS The expression of GINS1 enhances the expression of Notch1 and Notch3 receptors, and then phosphorylates and activates the downstream PI3K/AKT/mTORC1 signaling pathway to enhance the glycolysis, proliferation and metastasis of LUAD cells.
Collapse
|
2
|
Wang G, Wu Y, Su Y, Qu N, Chen B, Zhou D, Yuan L, Yin M, Liu M, Zhou W. TCF12-regulated GRB7 facilitates the HER2+ breast cancer progression by activating Notch1 signaling pathway. J Transl Med 2024; 22:745. [PMID: 39113057 PMCID: PMC11304905 DOI: 10.1186/s12967-024-05536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/24/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2-positive (HER2+) breast cancer (BC), which accounts for approximately one-fifth of all BCs, are highly invasive with a high rate of recurrence and a poor prognosis. Several studies have shown that growth factor receptor-bound protein 7 (GRB7) might be a potential therapeutic target for tumor diagnosis and prognosis. Nevertheless, the role of GRB7 in HER2+ BC and its underlying mechanisms have not been fully elucidated. The aim of this study was to investigate the biological function and regulatory mechanism of GRB7 in HER2+ BC. METHODS Bioinformatics analysis was performed using the TCGA, GEO and CancerSEA databases to evaluate the clinical significance of GRB7. RT quantitative PCR, western blot and immunofluorescence were conducted to assess the expression of GRB7 in BC cell lines and tissues. MTT, EdU, colony formation, wound healing, transwell, and xenograft assays were adopted to explore the biological function of GRB7 in HER2+ BC. RNA sequencing was performed to analyze the signaling pathways associated with GRB7 in SK-BR-3 cells after the cells were transfected with GRB7 siRNA. Chromatin immunoprecipitation analysis (ChIP) and luciferase reporter assay were employed to elucidate the potential molecular regulatory mechanisms of GRB7 in HER2+ BC. RESULTS GRB7 was markedly upregulated and associated with poor prognosis in BC, especially in HER2+ BC. Overexpression of GRB7 increased the proliferation, migration, invasion, and colony formation of HER2+ BC cells, while depletion of GRB7 had the opposite effects in HER2+ BC cells and inhibited xenograft growth. ChIP-PCR and luciferase reporter assay revealed that TCF12 directly bound to the promoter of the GRB7 gene to promote its transcription. GRB7 facilitated HER2+ BC epithelial-mesenchymal transition (EMT) progression by interacting with Notch1 to activate Wnt/β-catenin pathways and other signaling (i.e., AKT, ERK). Moreover, forced GRB7 overexpression activated Wnt/β-catenin to promote EMT progression, and partially rescued the inhibition of HER2+ BC proliferation, migration and invasion induced by TCF12 silencing. CONCLUSIONS Our work elucidates the oncogenic role of GRB7 in HER2+ BC, which could serve as a prognostic indicator and promising therapeutic target.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanli Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Su
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Na Qu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Manjialan Yin
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Mingpu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China.
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Chen HF, Wu KJ. LncRNAs and asymmetric cell division: the epigenetic mechanisms. Biomed J 2024:100774. [PMID: 39059582 DOI: 10.1016/j.bj.2024.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024] Open
Abstract
Asymmetric cell division (ACD) plays a pivotal role in development, tissue homeostasis, and stem cell maintenance. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are key regulators of ACD, orchestrating the intricate molecular machinery that governs cell fate determination. This review summarizes current literature to elucidate the diverse roles of lncRNAs in modulating ACD across various biological contexts. The regulatory mechanisms of asymmetric cell division mediated by lncRNAs, including their interactions with protein effectors, epigenetic regulation, and subcellular localization are explored. Additionally, we discuss the implications of dysregulated lncRNAs in mediating ACD that lead to tumorigenesis. By integrating findings from diverse experimental models and cell types, this review provides insights into the multifaceted roles of lncRNAs in governing asymmetric cell division, shedding light on fundamental biological processes. Further research in this area may lead to the development of novel therapies targeting dysregulated lncRNAs to restore proper cell division and function. The knowledge of lncRNAs regulating ACD could potentially revolutionize the field of regenerative medicine and cancer therapy by targeting specific lncRNAs involved in ACD. By unraveling the complex interactions between lncRNAs and cellular processes, the potential novel opportunities for precision medicine approaches may be uncovered.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Graduate Institutes of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Graduate Institutes of Cell Biology, China Medical University, Taichung 404, Taiwan.
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan Dist., Taoyuan 333, Taiwan.
| |
Collapse
|
4
|
Wei H, Zhang S, Lin X, Fang R, Li L. Differential expression and clinical significance of long non-coding RNAs in the development and progression of lung adenocarcinoma. Front Oncol 2024; 14:1411672. [PMID: 38912059 PMCID: PMC11190727 DOI: 10.3389/fonc.2024.1411672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/15/2024] [Indexed: 06/25/2024] Open
Abstract
With the development of gene testing technology, we have found many different genes, and lncRNA is one of them. LncRNAs refer to a non-protein coding RNA molecule with a length of more than 200bp, which is one of the focuses of research on human malignant diseases such as LUAD. LncRNAs act as an oncogene or inhibitor to regulate the occurrence and progression of tumors. The differential expression of LncRNAs promotes or inhibits the progression of lung adenocarcinoma by affecting cell proliferation, metastasis, invasion, and apoptosis, thus affecting the prognosis and survival rate of patients. Therefore, LncRNAs can be used as a potential target for diagnosis and treatment of cancer. The early diagnosis of the disease was made through the detection of tumor markers. Because lung adenocarcinoma is not easy to diagnose in the early stage and tumor markers are easy to ignore, LncRNAs play an important role in the diagnosis and treatment of lung adenocarcinoma. The main purpose of this article is to summarize the known effects of LncRNAs on lung adenocarcinoma, the effect of differential expression of LncRNAs on the progression of lung adenocarcinoma, and related signal transduction pathways. And to provide a new idea for the future research of lung adenocarcinoma-related LncRNAs.
Collapse
Affiliation(s)
- Haitao Wei
- Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Sa Zhang
- Institute of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Xiaojin Lin
- Institute of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Ruirui Fang
- Institute of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Li Li
- Huaihe Hospital of Henan University, Kaifeng, Henan, China
- Institute of Nursing and Health, Henan University, Kaifeng, Henan, China
| |
Collapse
|
5
|
ZENG F, ZHAO J, TONG M, HE W, LI N, FAN Y, ZHU Y, ZHANG L, ZHANG H. CircRNA LDLR promotes proliferation and aerobic glycolysis of gastric cancer cells by targeting CHD1 with miR-449b-5p. Turk J Biol 2023; 48:46-58. [PMID: 38665782 PMCID: PMC11042865 DOI: 10.55730/1300-0152.2681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/27/2024] [Accepted: 12/07/2023] [Indexed: 04/28/2024] Open
Abstract
Background/aim Circular RNAs can serve as detection biomarkers and therapeutic targets for tumors. Our study aimed to elucidate the mechanisms associated with circRNA LDLR (circLDLR) in gastric cancer (GC) proliferation and aerobic glycolysis. Materials and methods Expression signatures of circLDLR, miR-449b-5p, and CHD1 were examined in GC samples using quantitative PCR. Proliferation ability of MKN-45 cells was assessed via CCK-8 and EdU assays, and cell apoptosis was measured by flow cytometry. Glucose uptake, lactate production, ATP/ADP ratios, and NAD+/NADH ratios in cell supernatants were quantified to evaluate aerobic glycolysis. Subcellular isolation assay, quantitative PCR, immunoblot analysis, RNA immunoprecipitation (RIP), and dual luciferase reporter assay were employed to investigate the relationship between genes. Results Expression of circLDLR and CHD1 was elevated, while miR-449b-5p expression decreased in GC. Functionally, overexpression of circLDLR enhanced proliferation and aerobic glycolysis and hampered apoptosis of MKN-45 cells. However, upregulation of miR-449b-5p or downregulation of CHD1 reversed these effects. CircLDLR acted as an miRNA spongeand regulated the expression of miR-449b-5p, thereby affecting CHD1 and accelerating GC malignant progression. Conclusion CircLDLR drives the proliferation and aerobic glycolysis of GC cells by targeting CHD1 with miR-449b-5p, which is an ideal potential target for early diagnosis and clinical treatment of GC.
Collapse
Affiliation(s)
- FanYe ZENG
- Department of Oncology, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region,
China
| | - JunTao ZHAO
- Department of Oncology, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region,
China
| | - MengTing TONG
- Department of Oncology, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region,
China
| | - WenTing HE
- Department of Oncology, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region,
China
| | - Nan LI
- Department of Oncology, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region,
China
| | - YuXiang FAN
- Department of Oncology, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region,
China
| | - YanHua ZHU
- Department of Oncology, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region,
China
| | - LiPing ZHANG
- Department of Oncology, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region,
China
| | - HongLiang ZHANG
- Department of Oncology, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region,
China
| |
Collapse
|
6
|
Ao YQ, Gao J, Jiang JH, Wang HK, Wang S, Ding JY. Comprehensive landscape and future perspective of long noncoding RNAs in non-small cell lung cancer: it takes a village. Mol Ther 2023; 31:3389-3413. [PMID: 37740493 PMCID: PMC10727995 DOI: 10.1016/j.ymthe.2023.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a distinct subtype of RNA that lack protein-coding capacity but exert significant influence on various cellular processes. In non-small cell lung cancer (NSCLC), dysregulated lncRNAs act as either oncogenes or tumor suppressors, contributing to tumorigenesis and tumor progression. LncRNAs directly modulate gene expression, act as competitive endogenous RNAs by interacting with microRNAs or proteins, and associate with RNA binding proteins. Moreover, lncRNAs can reshape the tumor immune microenvironment and influence cellular metabolism, cancer cell stemness, and angiogenesis by engaging various signaling pathways. Notably, lncRNAs have shown great potential as diagnostic or prognostic biomarkers in liquid biopsies and therapeutic strategies for NSCLC. This comprehensive review elucidates the significant roles and diverse mechanisms of lncRNAs in NSCLC. Furthermore, we provide insights into the clinical relevance, current research progress, limitations, innovative research approaches, and future perspectives for targeting lncRNAs in NSCLC. By summarizing the existing knowledge and advancements, we aim to enhance the understanding of the pivotal roles played by lncRNAs in NSCLC and stimulate further research in this field. Ultimately, unraveling the complex network of lncRNA-mediated regulatory mechanisms in NSCLC could potentially lead to the development of novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Wang H, He D. LINC01123 acts as an oncogenic driver in lung adenocarcinoma by regulating the miR-4766-5p/PYCR1 axis. Histol Histopathol 2023; 38:1475-1486. [PMID: 36994814 DOI: 10.14670/hh-18-610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
BACKGROUND Lung adenocarcinoma remains one of the most significant threats to human life as it involves multiple etiologies, including alteration of oncogenes or tumor-inhibitory genes. Long non-coding RNAs (lncRNAs) have been reported to have both cancer promoting and cancer inhibiting effects. In this work, we investigated the function and mechanism of lncRNA LINC01123 in lung adenocarcinoma. METHODS The expression of LINC01123, miR-4766-5p, and PYCR1 (pyrroline-5-carboxylate reductase 1) mRNA was analyzed by RT-qPCR. The protein expression levels of PYCR1 and the apoptosis-related proteins (Bax and Bcl-2) were determined by western blotting. Cell proliferation and migration were determined by CCK-8 and wound-healing assays, respectively. Tumor growth in nude mice and Ki67 immunohistochemical staining were used to determine the in vivo role of LINC01123. The putative binding relationships miR-4766-5p has with LINC01123 and PYCR1, which had been identified by analysis of public databases, were validated through RIP and dual-luciferase reporter assays. RESULTS LINC01123 and PYCR1 overexpression and miR-4766-5p downregulation were shown to occur in lung adenocarcinoma samples. LINC01123 depletion repressed lung adenocarcinoma cell growth and migration and blocked the development of solid tumors in an animal model. Moreover, LINC01123 bound directly to miR-4766-5p, the downregulation of which attenuated the anticancer effects of LINC01123 depletion in lung adenocarcinoma cells. MiR-4766-5p directly targeted downstream PYCR1 to suppress PYCR1 expression. The repressive effects of PYCR1 knockdown on the migration and proliferation of lung adenocarcinoma cells were also partly abolished by miR-4766-5p downregulation. CONCLUSION Downregulation of LINC01123 represses lung adenocarcinoma progression. This suggests that LINC01123 functions as an oncogenic driver in lung adenocarcinoma by controlling the miR-4766-5p/PYCR1 axis.
Collapse
Affiliation(s)
- Hong Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
| | - Dongsheng He
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Zhao F, He Y, Zhao Z, He J, Huang H, Ai K, Liu L, Cai X. The Notch signaling-regulated angiogenesis in rheumatoid arthritis: pathogenic mechanisms and therapeutic potentials. Front Immunol 2023; 14:1272133. [PMID: 38022508 PMCID: PMC10643158 DOI: 10.3389/fimmu.2023.1272133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Angiogenesis plays a key role in the pathological process of inflammation and invasion of the synovium, and primarily drives the progression of rheumatoid arthritis (RA). Recent studies have demonstrated that the Notch signaling may represent a new therapeutic target of RA. Although the Notch signaling has been implicated in the M1 polarization of macrophages and the differentiation of lymphocytes, little is known about its role in angiogenesis in RA. In this review, we discourse the unique roles of stromal cells and adipokines in the angiogenic progression of RA, and investigate how epigenetic regulation of the Notch signaling influences angiogenesis in RA. We also discuss the interaction of the Notch-HIF signaling in RA's angiogenesis and the potential strategies targeting the Notch signaling to improve the treatment outcomes of RA. Taken together, we further suggest new insights into future research regarding the challenges in the therapeutic strategies of RA.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihao Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Huang
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiong Cai
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
9
|
Czerwonka A, Kałafut J, Nees M. Modulation of Notch Signaling by Small-Molecular Compounds and Its Potential in Anticancer Studies. Cancers (Basel) 2023; 15:4563. [PMID: 37760535 PMCID: PMC10526229 DOI: 10.3390/cancers15184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is responsible for conveying messages between cells through direct contact, playing a pivotal role in tissue development and homeostasis. The modulation of Notch-related processes, such as cell growth, differentiation, viability, and cell fate, offer opportunities to better understand and prevent disease progression, including cancer. Currently, research efforts are mainly focused on attempts to inhibit Notch signaling in tumors with strong oncogenic, gain-of-function (GoF) or hyperactivation of Notch signaling. The goal is to reduce the growth and proliferation of cancer cells, interfere with neo-angiogenesis, increase chemosensitivity, potentially target cancer stem cells, tumor dormancy, and invasion, and induce apoptosis. Attempts to pharmacologically enhance or restore disturbed Notch signaling for anticancer therapies are less frequent. However, in some cancer types, such as squamous cell carcinomas, preferentially, loss-of-function (LoF) mutations have been confirmed, and restoring but not blocking Notch functions may be beneficial for therapy. The modulation of Notch signaling can be performed at several key levels related to NOTCH receptor expression, translation, posttranslational (proteolytic) processing, glycosylation, transport, and activation. This further includes blocking the interaction with Notch-related nuclear DNA transcription. Examples of small-molecular chemical compounds, that modulate individual elements of Notch signaling at the mentioned levels, have been described in the recent literature.
Collapse
Affiliation(s)
- Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (M.N.)
| | | | | |
Collapse
|
10
|
Hua X, Bao M, Mo H, Sun Z, Xu M, Chen X, Mo X, Hu G, Tao M, Song J. STING regulates the transformation of the proinflammatory macrophage phenotype by HIF1A into autoimmune myocarditis. Int Immunopharmacol 2023; 121:110523. [PMID: 37354779 DOI: 10.1016/j.intimp.2023.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Macrophages play an essential role in the pathogenesis of autoimmune myocarditis, but the molecular mechanism remains largely unknown. Here, the role of Stimulator of interferon gene (Sting) in autoimmune myocarditis was investigated. Six-week-old male BALB/c mice received two subcutaneous injections of 250 μg α-MyHC peptide to establish experimental autoimmune myocarditis (EAM). With single-cell RNA sequencing analysis of cardiac immune (Cd45+) cells, Sting was found to initiate proinflammatory macrophage differentiation related to the acute EAM phase. Furthermore, proinflammatory macrophages contribute to the pathogenesis of EAM via hypoxia-inducible factor-1α (Hif1α). A higher expression level of Sting was detected in macrophages from myocarditis, which was positively correlated with Hif1α expression. Single-stranded DNA (ssDNA) accumulation in macrophages in myocarditis was observed in the hearts of EAM mice. Pharmacological blockade of STING by C-176 (a specific inhibitor) ameliorated the inflammatory response of EAM and reduced proinflammatory molecule (Ifn-β, Tnf-α, Ccl2, and F4/80) expression and Hif1α expression. In vitro studies revealed that ssDNA activated the expression of Sting; in turn, Sting accelerated proinflammatory molecule expression in mouse macrophages. Inhibition of Hif1α expression could reduce Sting-associated cardiac inflammation and proinflammatory molecule expression. In addition, the expression of STING and ssDNA accumulation in macrophages were observed in human autoimmune myocarditis heart samples. STING activated proinflammatory macrophage via HIF1A, promoting the development of autoimmune myocarditis. The STING signaling pathway might provide a novel mechanism of autoimmune myocarditis and serve as a potential therapeutic target for autoimmune myocarditis patients.
Collapse
Affiliation(s)
- Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China; Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Cardiomyopathy Research Group at Fuwai Hospital
| | - Mengni Bao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Zhe Sun
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Mengda Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital
| | - Xiuxue Mo
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China
| | - Menghao Tao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China; Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Cardiomyopathy Research Group at Fuwai Hospital; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.
| |
Collapse
|
11
|
Tang P, Sun D, Xu W, Li H, Chen L. Long non‑coding RNAs as potential therapeutic targets in non‑small cell lung cancer (Review). Int J Mol Med 2023; 52:68. [PMID: 37350412 PMCID: PMC10413047 DOI: 10.3892/ijmm.2023.5271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/02/2023] [Indexed: 06/24/2023] Open
Abstract
Non‑small cell lung cancer (NSCLC) is one of the most common malignancies with a high morbidity and mortality rate. Long non‑coding RNAs (lncRNAs) have been reported to be closely associated with the occurrence and progression of NSCLC. In addition, lncRNAs have been documented to participate in the development of drug resistance and radiation sensitivity in patients with NSCLC. Due to their extensive functional characterization, high tissue specificity and sex specificity, lncRNAs have been proposed to be novel biomarkers and therapeutic targets for NSCLC. Therefore, in the current review, the functional classification of lncRNAs were presented, whilst the potential roles of lncRNAs in NSCLC were also summarized. Various physiological aspects, including proliferation, invasion and drug resistance, were all discussed. It is anticipated that the present review will provide a perspective on lncRNAs as potential diagnostic molecular biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Peiyu Tang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| | - Wei Xu
- Institute of Structural Pharmacology and TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
- Institute of Structural Pharmacology and TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016
| |
Collapse
|
12
|
Gao Y, Cheng X, Han M. ZEB1-activated Notch1 promotes circulating tumor cell migration and invasion in lung squamous cell carcinoma. Clin Transl Oncol 2023; 25:817-829. [PMID: 36418641 DOI: 10.1007/s12094-022-02993-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is recognized as the major subtypes of non-small cell lung cancer (NSCLC). Circulating tumor cells (CTCs) are critical players in tumor metastasis. A molecular profiling of CTCs has previously identified notch receptor 1 (Notch1) as an important mediator in NSCLC. Therefore, we investigate Notch1 roles in LUSC and its related mechanisms. METHODS The serum levels of Notch1 were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The CTCs isolated from blood samples were characterized via an immunofluorescence method. Cell motion was determined using Transwell chambers. The regulatory relationship between Notch1 and zinc finger E-box-binding homeobox 1 (ZEB1) was verified by chromatin immunoprecipitation (ChIP) and luciferase reporter assays. The protein levels were detected by western blotting. RESULTS Higher Notch1 expression in patients with LUSC than that in normal controls was observed. Notch1 knockdown inhibited cell motion and epithelial-mesenchymal transition (EMT). ZEB1 transcriptionally activated Notch1. ZEB1 upregulation exacerbated the malignant phenotypes of CTCs. CONCLUSION ZEB1-activated Notch1 promotes malignant phenotypes of CTCs in LUSC and indicates poor prognosis.
Collapse
Affiliation(s)
- Yong Gao
- Department of Clinical Laboratory, Fuyang Second People's Hospital, Fuyang Infectious Disease Clinical College, Anhui Medical University, Fuyang, 236015, Anhui, China
| | - Xinyuan Cheng
- Ocean University of China, Qingdao, 266100, Shandong, China
| | - Mingfeng Han
- Department of Respiratory, Fuyang Second People's Hospital, Fuyang Infectious Disease Clinical College, Anhui Medical University, No. 1088, Yinghe West Road, Yingzhou District, Fuyang, 236015, Anhui, China.
| |
Collapse
|
13
|
Saproo S, Sarkar SS, Gupta E, Chattopadhyay S, Charaya A, Kalra S, Ahuja G, Naidu S. MiR-330-5p and miR-1270 target essential components of RNA polymerase I transcription and exhibit a novel tumor suppressor role in lung adenocarcinoma. Cancer Gene Ther 2023; 30:288-301. [PMID: 36253542 DOI: 10.1038/s41417-022-00544-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Abstract
Upregulation of RNA polymerase I (Pol I) transcription and the overexpression of Pol I transcriptional machinery are crucial molecular alterations favoring malignant transformation. However, the causal molecular mechanism(s) of this aberration remain largely unknown. Here, we found that Pol I transcription and its core machinery are upregulated in lung adenocarcinoma (LUAD). We show that the loss of miRNAs (miR)-330-5p and miR-1270 expression contributes to the upregulation of Pol I transcription in LUAD. Constitutive overexpression of these miRs in LUAD cell lines suppressed the expression of core components of Pol I transcription, and reduced global ribosomal RNA synthesis. Importantly, miR-330-5p/miR-1270-mediated repression of Pol I transcription exerted multiple tumor suppressive functions including reduced proliferation, cell cycle arrest, enhanced apoptosis, reduced migration, increased drug sensitivity, and reduced tumor burden in a mouse xenograft model. Mechanistically, the downregulation of miR-330-5p and miR-1270 is regulated by Pol I subunit-derived circular RNA circ_0055467 and DNA hypermethylation, respectively. This study uncovers a novel miR-330-5p/miR-1270 mediated post-transcriptional regulation of Pol I transcription, and establish tumor suppressor properties of these miRs in LUAD. Ultimately, our findings provide a rationale for the therapeutic targeting of Pol I transcriptional machinery for LUAD.
Collapse
Affiliation(s)
- Sheetanshu Saproo
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Shashanka S Sarkar
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Ekta Gupta
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Sourav Chattopadhyay
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Aarzoo Charaya
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Siddhant Kalra
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, New Delhi, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, New Delhi, India
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
14
|
Sonawala K, Ramalingam S, Sellamuthu I. Influence of Long Non-Coding RNA in the Regulation of Cancer Stem Cell Signaling Pathways. Cells 2022; 11:3492. [PMID: 36359888 PMCID: PMC9656902 DOI: 10.3390/cells11213492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
Over the past two decades, cancer stem cells (CSCs) have emerged as an immensely studied and experimental topic, however a wide range of questions concerning the topic still remain unanswered; in particular, the mechanisms underlying the regulation of tumor stem cells and their characteristics. Understanding the cancer stem-cell signaling pathways may pave the way towards a better comprehension of these mechanisms. Signaling pathways such as WNT, STAT, Hedgehog, NOTCH, PI3K/AKT/mTOR, TGF-β, and NF-κB are responsible not only for modulating various features of CSCs but also their microenvironments. Recently, the prominent roles of various non-coding RNAs such as small non-coding RNAs (sncRNAs) and long non-coding RNAs (lncRNAs) in developing and enhancing the tumor phenotypes have been unfolded. This review attempts to shed light on understanding the influence of long non- coding RNAs in the modulation of various CSC-signaling pathways and its impact on the CSCs and tumor properties; highlighting the protagonistic and antagonistic roles of lncRNAs.
Collapse
Affiliation(s)
| | | | - Iyappan Sellamuthu
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603202, India
| |
Collapse
|
15
|
Li Z, Wang P, Cui W, Yong H, Wang D, Zhao T, Wang W, Shi M, Zheng J, Bai J. Tumour-associated macrophages enhance breast cancer malignancy via inducing ZEB1-mediated DNMT1 transcriptional activation. Cell Biosci 2022; 12:176. [PMID: 36273188 PMCID: PMC9587673 DOI: 10.1186/s13578-022-00913-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Background DNMT1 has been shown to be highly expressed in a variety of cancers, including breast cancer. However, the mechanism is not very clear. Therefore, we aim to reveal the mechanism of DNMT1 highly express in breast cancer. And we also want to explore the role of DNMT1 in tumour microenvironment promoting breast cancer progression. Results In this study, we demonstrate that DNMT1 is overexpressed in breast cancer and that DNMT1 promotes breast cancer tumorigenesis and metastasis. We discovered that ZEB1 activates DNMT1 expression in breast cancer cells by recruiting P300 binding to the DNMT1 promoter and increasing its acetylation. Moreover, we revealed that tumour-associated macrophages (TAMs) increase DNMT1 expression in breast cancer cells via the IL-6-pSTAT3-ZEB1-DNMT1 axis in the tumour microenvironment. DNMT1 is required for TAM-mediated breast cancer cell migration. In addition, we confirmed that there were positive correlations among CD163 (TAM marker) expression, ZEB1 expression and DNMT1 expression in breast cancer patient tissues. Conclusions Our study indicates that DNMT1 is necessary for TAM-mediated breast cancer metastasis. Decitabine (DAC), as a specific DNA methylation inhibitor and FDA-approved drug, is a bona fide drug for breast cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00913-4.
Collapse
Affiliation(s)
- Zhongwei Li
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| | - Pengfei Wang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| | - Wenjie Cui
- grid.417303.20000 0000 9927 0537Department of Respiratory and Critical Care Medicine, The Municipal Hospital, Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Hongmei Yong
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| | - Diandian Wang
- grid.413389.40000 0004 1758 1622Intensive Care Unit, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tiesuo Zhao
- grid.412990.70000 0004 1808 322XDepartment of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan China
| | - Wenwen Wang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| | - Ming Shi
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| | - Junnian Zheng
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| | - Jin Bai
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| |
Collapse
|
16
|
Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22:316. [PMID: 36229883 PMCID: PMC9558410 DOI: 10.1186/s12935-022-02736-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent digestive cancers, ranking the 2nd cause of cancer-related fatality worldwide. The worldwide burden of CRC is predicted to rise by 60% by 2030. Environmental factors drive, first, inflammation and hence, cancer incidence increase. Main The Notch-signaling system is an evolutionarily conserved cascade, has role in the biological normal developmental processes as well as malignancies. Long non-coding RNAs (LncRNAs) have become major contributors in the advancement of cancer by serving as signal pathways regulators. They can control gene expression through post-translational changes, interactions with micro-RNAs or down-stream effector proteins. Recent emerging evidence has emphasized the role of lncRNAs in controlling Notch-signaling activity, regulating development of several cancers including CRC. Conclusion Notch-associated lncRNAs might be useful prognostic biomarkers or promising potential therapeutic targets for CRC treatment. Therefore, here-in we will focus on the role of “Notch-associated lncRNAs in CRC” highlighting “the impact of Notch-associated lncRNAs as player for cancer induction and/or progression.” Graphical Abstract ![]()
Collapse
Affiliation(s)
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
17
|
Cai S, Du R, Zhang Y, Yuan Z, Shang J, Yang Y, Han B, Zhong W, Yuan H, Li Z. Construction and Comprehensive Analysis of ceRNA Networks and Tumor-Infiltrating Immune Cells in Hepatocellular Carcinoma With Vascular Invasion. FRONTIERS IN BIOINFORMATICS 2022; 2:836981. [PMID: 36304284 PMCID: PMC9580849 DOI: 10.3389/fbinf.2022.836981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a common malignant cancer. Metastasis plays a critical role in tumor progression, and vascular invasion is considered one of the most crucial factors for HCC metastasis. However, comprehensive analysis focusing on competitive endogenous RNA (ceRNA) and immune infiltration in the vascular invasion of HCC is lacking. Methods: The gene expression profiles of 321 samples, including 210 primary HCC cases and 111 HCC cases with vascular invasion, were downloaded from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma project, and used in identifying significant differentially expressed lncRNAs (DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs). The RNAs associated with vascular invasion were used in constructing a ceRNA network. A multigene-based risk signature was constructed using the least absolute shrinkage and selection operator algorithm. We detected the fractions of 28 immune cell types in HCC through single-sample gene set enrichment analysis (ssGSEA). Finally, the relationship between the ceRNA network and immune cells was determined through correlation analysis and used in clarifying the potential mechanism involved in vascular invasion. Results: Overall, 413 DElncRNAs, 27 DEmiRNAs, and 397 DEmRNAs were recognized in HCC. A specific ceRNA network based on the interaction among 3 lncRNA–miRNA pairs and 24 miRNA–mRNA pairs were established. A ceRNA-based prognostic signature was constructed and used in dividing samples into high- and low-risk subgroups. The signature showed significant efficacy; its 3- and 5-year areas under the receiver operating characteristic curves were 0.712 and 0.653, respectively. ceRNA and ssGSEA integration analysis demonstrated that PART1 (p = 0, R = −0.33) and CDK5R2 (p = 0.01, R = −0.15) were negatively correlated to natural killer cells. Conclusion: This study demonstrated that vascular invasion in HCC might be related to PART1, and its role in regulating CDK5R2 and NK cells. A nomogram was developed to predict the prognosis of patients with HCC and demonstrated the value of the ceRNA network and tumor-infiltrating immune cells value in improving personalized management.
Collapse
Affiliation(s)
- Shijiao Cai
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Renle Du
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhengyi Yuan
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Shang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Yang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Han
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Weilong Zhong, ; Hengjie Yuan, ; Zhengxiang Li,
| | - Hengjie Yuan
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Weilong Zhong, ; Hengjie Yuan, ; Zhengxiang Li,
| | - Zhengxiang Li
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Weilong Zhong, ; Hengjie Yuan, ; Zhengxiang Li,
| |
Collapse
|
18
|
Kim EJ, Kim JS, Lee S, Cheon I, Kim SR, Ko YH, Kang K, Tan X, Kurie JM, Ahn YH. ZEB1-regulated lnc-Nr2f1 promotes the migration and invasion of lung adenocarcinoma cells. Cancer Lett 2022; 533:215601. [PMID: 35176421 DOI: 10.1016/j.canlet.2022.215601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Numerous long non-coding RNAs (lncRNAs) are differentially expressed in cancer cells compared with normal cells and are involved in tumor progression and metastasis. Metastasis is initiated by the epithelial-to-mesenchymal transition (EMT) process, which can also be regulated by lncRNAs. Given that ZEB1 is an important transcription factor inducing EMT, we screened lncRNAs controlled by ZEB1 using RNA sequencing in murine lung adenocarcinoma cells. Among several lncRNAs regulated by ZEB1, we selected lnc-Nr2f1. Lnc-Nr2f1 is upregulated by ZEB1 and TGF-β, a potent EMT signal. Growth, migration, and invasion of lung adenocarcinoma cells were decreased after lnc-Nr2f1 knockdown and increased after lnc-Nr2f1 overexpression. Interestingly, lnc-Nr2f1 was transcriptionally controlled by NR2F1, a transcription factor that is transcribed in the antisense direction. NR2F1 was also upregulated and positively correlated with ZEB1, forming a ZEB1/NR2F1/lnc-Nr2f1 axis. Lnc-Nr2f1, in turn, promoted Twist2 transcription through direct binding to its genomic DNA region. Collectively, lnc-Nr2f1 was upregulated by ZEB1 and NR2F1, and promoted migration and invasion of lung adenocarcinoma cells via TWIST2 regulation.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Jeong Seon Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Sieun Lee
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Inyoung Cheon
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Seo Ree Kim
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Chungnam, 31116, South Korea
| | - Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Young-Ho Ahn
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
| |
Collapse
|
19
|
Dai S, Liu T, Liu YY, He Y, Liu T, Xu Z, Wang ZW, Luo F. Long Non-Coding RNAs in Lung Cancer: The Role in Tumor Microenvironment. Front Cell Dev Biol 2022; 9:795874. [PMID: 35047506 PMCID: PMC8762058 DOI: 10.3389/fcell.2021.795874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
The development of various therapeutic interventions, particularly immune checkpoint inhibitor therapy, have effectively induced tumor remission for patients with advanced lung cancer. However, few cancer patients can obtain significant and long-lasting therapeutic effects for the limitation of immunological nonresponse and resistance. For this case, it’s urgent to identify new biomarkers and develop therapeutic targets for future immunotherapy. Over the past decades, tumor microenvironment (TME)-related long non-coding RNAs (lncRNAs) have gradually become well known to us. A large number of existing studies have indicated that TME-related lncRNAs are one of the major factors to realize precise diagnosis and treatment of lung cancer. Herein, this paper discusses the roles of lncRNAs in TME, and the potential application of lncRNAs as biomarkers or therapeutic targets for immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Yang Liu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingying He
- Oncology Department, People's Hospital of Deyang City, Deyang, China
| | - Tao Liu
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Wu Wang
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Ning J, Wang F, Zhu K, Li B, Shu Q, Liu W. Characterizing the Copy Number Variation of Non-Coding RNAs Reveals Potential Therapeutic Targets and Prognostic Markers of LUSC. Front Genet 2021; 12:779155. [PMID: 34925461 PMCID: PMC8672037 DOI: 10.3389/fgene.2021.779155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) has a poor clinical prognosis and a lack of available targeted therapies. Therefore, there is an urgent need to identify novel prognostic markers and therapeutic targets to assist in the diagnosis and treatment of LUSC. With the development of high-throughput sequencing technology, integrated analysis of multi-omics data will provide annotation of pathogenic non-coding variants and the role of non-coding sequence variants in cancers. Here, we integrated RNA-seq profiles and copy number variation (CNV) data to study the effects of non-coding variations on gene regulatory network. Furthermore, the 372 long non-coding RNAs (lncRNA) regulated by CNV were used as candidate genes, which could be used as biomarkers for clinical application. Nine lncRNAs including LINC00896, MCM8-AS1, LINC01251, LNX1-AS1, GPRC5D-AS1, CTD-2350J17.1, LINC01133, LINC01121, and AC073130.1 were recognized as prognostic markers for LUSC. By exploring the association of the prognosis-related lncRNAs (pr-lncRNAs) with immune cell infiltration, GPRC5D-AS1 and LINC01133 were highlighted as markers of the immunosuppressive microenvironment. Additionally, the cascade response of pr-lncRNA-CNV-mRNA-physiological functions was revealed. Taken together, the identification of prognostic markers and carcinogenic regulatory mechanisms will contribute to the individualized treatment for LUSC and promote the development of precision medicine.
Collapse
Affiliation(s)
- Jinfeng Ning
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fengjiao Wang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kaibin Zhu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Binxi Li
- Department of Management Science and Engineering, Harbin Engineering University, Harbin, China
| | - Qing Shu
- Department of Medical Imaging, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
21
|
Gao Y, Liu J, Cai B, Chen Q, Wang G, Lu Z, Jiang K, Miao Y. Development of epithelial-mesenchymal transition-related lncRNA signature for predicting survival and immune microenvironment in pancreatic cancerwithexperiment validation. Bioengineered 2021; 12:10553-10567. [PMID: 34854360 PMCID: PMC8809919 DOI: 10.1080/21655979.2021.2000197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) have crucial function in epithelial–mesenchymal transition (EMT) in pancreatic cancer. It is necessary to comprehensively analyze the potential role of EMT-related lncRNA in pancreatic cancer. In the present study, genomic data of pancreatic cancer from the TCGA database were downloaded and we found 368 EMT-related lncRNAs. According to the expression characteristics of prognostic-related lncRNAs, all samples could be divided into two clusters with different clinical outcomes and different tumor microenvironments. Moreover, an eleven EMT-related lncRNAs signature was established and verified. Patients with pancreatic cancer in the high-risk group had a shorter overall survival than those in the low-risk group and the signature could act as an independent prognostic factor. Further analysis suggested that the EMT-related lncRNAs might affect the prognosis of patients through immune mechanisms. All findings indicated that the signature and eleven lncRNAs might serve as potential prognostic biomarkers and therapeutic targets in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yong Gao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Baobao Cai
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qun Chen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangfu Wang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zipeng Lu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kuirong Jiang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yi Miao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Pancreas Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
22
|
Qin H, Wang C, Hua Y. LINC01123 is associated with prognosis of oral squamous cell carcinoma and involved in tumor progression by sponging miR-34a-5p. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 133:50-59. [PMID: 34511356 DOI: 10.1016/j.oooo.2021.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/22/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is a malignant tumor. This study aimed to investigate the role of a long noncoding RNA (lncRNA), LINC01123, in OSCC prognosis and progression and to explore the underlying mechanisms. STUDY DESIGN OSCC tissues were collected from 102 patients, and 4 OSCC cell lines were analyzed. The expression levels of LINC01123 and miR-34a-5p were estimated using quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8) and Transwell assays were used to assess the proliferation, migration, and invasion of OSCC cells. Kaplan-Meier survival analysis was used to analyze the prognostic value of LINC01123 in OSCC. RESULTS The analysis results showed that LINC01123 was overexpressed in OSCC tumor tissues; also, the prognosis of patients with OSCC with high LINC01123 expression levels was poor. The knockdown of LINC01123 inhibited the proliferation, migration, and invasion of OCSS cells. MiR-34a-5p was a target of LINC01123, and its inhibitor could reverse the effect of silenced LINC01123 on the progression of OSCC. CONCLUSIONS Highly expressed LINC01123 was associated with poor prognosis of OSCC and regulated OSCC cell proliferation, invasion, and migration by sponging miR-34a-5p. Therefore, the LINC01123/miR-34a-5p axis may provide new ideas for the prognosis and treatment of OSCC.
Collapse
Affiliation(s)
- Huan Qin
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Changlei Wang
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Yingjie Hua
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China..
| |
Collapse
|
23
|
ceRNA network development and tumor-infiltrating immune cell analysis in hepatocellular carcinoma. Med Oncol 2021; 38:85. [PMID: 34148185 DOI: 10.1007/s12032-021-01534-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the primary causes of cancer deaths globally. Despite efforts to understand liver cancer, its high morbidity and mortality remain high. Herein, we constructed two nomograms based on competing endogenous RNA (ceRNA) networks and invading immune cells to describe the molecular mechanisms along with the clinical prognosis of HCC patients. RNA maps of tumors and normal samples were downloaded from The Cancer Genome Atlas database. HTseq counts and fragments per megapons per thousand bases were read from 421 samples, including 371 tumor samples and 50 normal samples. We established a ceRNA network based on differential gene expression in normal versus tumor subjects. CIBERSORT was employed to differentiate 22 immune cell types according to tumor transcriptomes. Kaplan-Meier along with Cox proportional hazard analyses were employed to determine the prognosis-linked factors. Nomograms were constructed based on prognostic immune cells and ceRNAs. We employed Receiver operating characteristic (ROC) and calibration curve analyses to estimate these nomogram. The difference analysis found 2028 messenger RNAs (mRNAs), 128 micro RNAs (miRNAs), and 136 long non-coding RNAs (lncRNAs) to be significantly differentially expressed in tumor samples relative to normal samples. We set up a ceRNA network containing 21 protein-coding mRNAs, 12 miRNAs, and 3 lncRNAs. In Kaplan-Meier analysis, 21 of the 36 ceRNAs were considered significant. Of the 22 cell types, resting dendritic cell levels were markedly different in tumor samples versus normal controls. Calibration and ROC curve analysis of the ceRNA network, as well as immune infiltration of tumor showed restful accuracy (3-year survival area under curve (AUC): 0.691, 5-year survival AUC: 0.700; 3-year survival AUC: 0.674, 5-year survival AUC: 0.694). Our data suggest that Tregs, CD4 T cells, mast cells, SNHG1, HMMR and hsa-miR-421 are associated with HCC based on ceRNA immune cells co-expression patterns. On the basis of ceRNA network modeling and immune cell infiltration analysis, our study offers an effective bioinformatics strategy for studying HCC molecular mechanisms and prognosis.
Collapse
|
24
|
Jia B, Zheng X, Qiu X, Jiang X, Liu J, Huang Z, Xiang S, Chen G, Zhao J. Long non‑coding RNA MIR4713HG aggravates malignant behaviors in oral tongue squamous cell carcinoma via binding with microRNA let‑7c‑5p. Int J Mol Med 2021; 47:84. [PMID: 33760127 PMCID: PMC7992924 DOI: 10.3892/ijmm.2021.4917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Oral tongue squamous cell carcinoma (OTSCC) is one of the most aggressive pathological types of head and neck squamous cell carcinoma, and presents with rapid local invasion and metastasis. The present study confirmed that the long non‑coding (lnc) RNA MIR4713HG was markedly upregulated in both OTSCC tissues and cell lines and associated with poor survival. The present study performed a series of experiments to investigate the impact of MIR4713HG on OTSCC and revealed that upregulation of MIR4713HG had a crucial role in promoting cell proliferation and metastasis of OTSCC cell lines both in vitro and in vivo. By applying bioinformatics analyses, micro RNA let‑7c‑5p was observed to physically bind with MIR4713HG, and the knockdown of let‑7c‑5p could counteract the influence of MIR4713HG on OTSCC. Furthermore, the present study demonstrated that let‑7c‑5p performed its regulating role in OTSCC via affecting the expression level of transmembrane channel like 7 (TMC7). In conclusion, the present study demonstrated that lncRNA MIR4713HG acted as a pro‑tumor factor facilitating cell proliferation and metastasis of OTSCC via affecting the let‑7c‑5p/TMC7 signaling pathway, which presents as a promising therapeutic target in OTSCC.
Collapse
Affiliation(s)
- Bo Jia
- Department of Stomatology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xianghuai Zheng
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xiaoling Qiu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xiao Jiang
- Department of Stomatology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jingpeng Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Shijian Xiang
- Department of Pharmacy, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Guodong Chen
- Department of Stomatology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Jianjiang Zhao
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
25
|
Yang R, Liu Y, Wang Y, Wang X, Ci H, Song C, Wu S. Low PRRX1 expression and high ZEB1 expression are significantly correlated with epithelial-mesenchymal transition and tumor angiogenesis in non-small cell lung cancer. Medicine (Baltimore) 2021; 100:e24472. [PMID: 33530259 PMCID: PMC7850718 DOI: 10.1097/md.0000000000024472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Paired related homeobox 1 (PRRX1) and zinc finger E-box binding homeobox 1 (ZEB1) have been observed to play a vital role in the epithelial-mesenchymal transition (EMT) process in different types of cancer. The microvessel density (MVD) is the most common indicator used to quantify angiogenesis. This study aimed to investigate expression of PRRX1 and ZEB1 in non-small cell lung cancer (NSCLC) and to explore associations between these factors and tumor prognosis, EMT markers and angiogenesis. METHODS Data for a total of 111 surgically resected NSCLC cases from January 2013 to December 2014 were collected. We used an immunohistochemical method to detect expression levels of PRRX1, ZEB1, and E-cadherin, and to assess MVD (marked by CD34 staining). SPSS 26.0 was employed to evaluate the connection between these factors and clinical and histopathological features, overall survival (OS) and tumor angiogenesis. RESULTS PRRX1 expression was obviously lower in tumor samples than in control samples. Low expression of PRRX1, which was more common in the high-MVD group than in the low-MVD group (P = .009), correlated positively with E-cadherin expression (P < .001). Additionally, we showed that ZEB1 was expressed at higher levels in tumor samples than in normal samples. High expression of ZEB1 was associated negatively with E-cadherin expression (P < .001) and positively associated with high MVD (P = .001). Based on Kaplan-Meier and multivariate survival analyses, we found that PRRX1, ZEB1, E-cadherin and the MVD had predictive value for OS in NSCLC patients. CONCLUSIONS These findings suggest that PRRX1 and ZEB1 may serve as novel prognostic biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Ruixue Yang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Yuanqun Liu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Yufei Wang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Xiaolin Wang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Hongfei Ci
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Chao Song
- Department of Thoracic Surgery, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| |
Collapse
|
26
|
Piacentini M, Shi Y, Simon HU. 10 years of Cell Death & Disease. Cell Death Dis 2020; 11:1064. [PMID: 33311494 PMCID: PMC7733591 DOI: 10.1038/s41419-020-03287-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy. .,National Institute for infectious Disease IRCCS"Lazzaro Spallanzani", Rome, Italy.
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.,The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| |
Collapse
|