1
|
Yadav R, Khatkar R, Yap KCH, Kang CYH, Lyu J, Singh RK, Mandal S, Mohanta A, Lam HY, Okina E, Kumar RR, Uttam V, Sharma U, Jain M, Prakash H, Tuli HS, Kumar AP, Jain A. The miRNA and PD-1/PD-L1 signaling axis: an arsenal of immunotherapeutic targets against lung cancer. Cell Death Discov 2024; 10:414. [PMID: 39343796 PMCID: PMC11439964 DOI: 10.1038/s41420-024-02182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Lung cancer is a severe challenge to the health care system with intrinsic resistance to first and second-line chemo/radiotherapies. In view of the sterile environment of lung cancer, several immunotherapeutic drugs including nivolumab, pembrolizumab, atezolizumab, and durvalumab are currently being used in clinics globally with the intention of releasing exhausted T-cells back against refractory tumor cells. Immunotherapies have a limited response rate and may cause immune-related adverse events (irAEs) in some patients. Hence, a deeper understanding of regulating immune checkpoint interactions could significantly enhance lung cancer treatments. In this review, we explore the role of miRNAs in modulating immunogenic responses against tumors. We discuss various aspects of how manipulating these checkpoints can bias the immune system's response against lung cancer. Specifically, we examine how altering the miRNA profile can impact the activity of various immune checkpoint inhibitors, focusing on the PD-1/PD-L1 pathway within the complex landscape of lung cancer. We believe that a clear understanding of the host's miRNA profile can influence the efficacy of checkpoint inhibitors and significantly contribute to existing immunotherapies for lung cancer patients. Additionally, we discuss ongoing clinical trials involving immunotherapeutic drugs, both as standalone treatments and in combination with other therapies, intending to advance the development of immunotherapy for lung cancer.
Collapse
Affiliation(s)
- Ritu Yadav
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Rinku Khatkar
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Kenneth C-H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chloe Yun-Hui Kang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juncheng Lyu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rahul Kumar Singh
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Surojit Mandal
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Adrija Mohanta
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rajiv Ranjan Kumar
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vivek Uttam
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Uttam Sharma
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | | | | | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Aklank Jain
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
2
|
Mousavikia SN, Darvish L, Bahreyni Toossi MT, Azimian H. Exosomes: Their role in the diagnosis, progression, metastasis, and treatment of glioblastoma. Life Sci 2024; 350:122743. [PMID: 38806071 DOI: 10.1016/j.lfs.2024.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Exosomes are crucial for the growth and spread of glioblastomas, an aggressive form of brain cancer. These tiny vesicles play a crucial role in the activation of signaling pathways and intercellular communication. They can also transfer a variety of biomolecules such as proteins, lipids and nucleic acids from donor to recipient cells. Exosomes can influence the immune response by regulating the activity of immune cells, and they are crucial for the growth and metastasis of glioblastoma cells. In addition, exosomes contribute to drug resistance during treatment, which is a major obstacle in the treatment of glioblastoma. By studying them, the diagnosis and prognosis of glioblastoma can be improved. Due to their high biocompatibility and lack of toxicity, they have become an attractive option for drug delivery. The development of exosomes as carriers of specific therapeutic agents could overcome some of the obstacles to effective treatment of glioblastoma. In this review, we address the potential of exosomes for the treatment of glioblastoma and show how they can be modified for this purpose.
Collapse
Affiliation(s)
- S N Mousavikia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - L Darvish
- Department of Radiology, Faculty of Paramedicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - M T Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Cheng HY, Su GL, Wu YX, Chen G, Yu ZL. Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects. J Pharm Anal 2024; 14:100920. [PMID: 39104866 PMCID: PMC11298875 DOI: 10.1016/j.jpha.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 08/07/2024] Open
Abstract
Drug resistance presents a significant challenge to achieving positive clinical outcomes in anti-tumor therapy. Prior research has illuminated reasons behind drug resistance, including increased drug efflux, alterations in drug targets, and abnormal activation of oncogenic pathways. However, there's a need for deeper investigation into the impact of drug-resistant cells on parental tumor cells and intricate crosstalk between tumor cells and the malignant tumor microenvironment (TME). Recent studies on extracellular vesicles (EVs) have provided valuable insights. EVs are membrane-bound particles secreted by all cells, mediating cell-to-cell communication. They contain functional cargoes like DNA, RNA, lipids, proteins, and metabolites from mother cells, delivered to other cells. Notably, EVs are increasingly recognized as regulators in the resistance to anti-cancer drugs. This review aims to summarize the mechanisms of EV-mediated anti-tumor drug resistance, covering therapeutic approaches like chemotherapy, targeted therapy, immunotherapy and even radiotherapy. Detecting EV-based biomarkers to predict drug resistance assists in bypassing anti-tumor drug resistance. Additionally, targeted inhibition of EV biogenesis and secretion emerges as a promising approach to counter drug resistance. We highlight the importance of conducting in-depth mechanistic research on EVs, their cargoes, and functional approaches specifically focusing on EV subpopulations. These efforts will significantly advance the development of strategies to overcome drug resistance in anti-tumor therapy.
Collapse
Affiliation(s)
- Hao-Yang Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Xuan Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
4
|
Trnkova L, Buocikova V, Mego M, Cumova A, Burikova M, Bohac M, Miklikova S, Cihova M, Smolkova B. Epigenetic deregulation in breast cancer microenvironment: Implications for tumor progression and therapeutic strategies. Biomed Pharmacother 2024; 174:116559. [PMID: 38603889 DOI: 10.1016/j.biopha.2024.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer comprises a substantial proportion of cancer diagnoses in women and is a primary cause of cancer-related mortality. While hormone-responsive cases generally have a favorable prognosis, the aggressive nature of triple-negative breast cancer presents challenges, with intrinsic resistance to established treatments being a persistent issue. The complexity intensifies with the emergence of acquired resistance, further complicating the management of breast cancer. Epigenetic changes, encompassing DNA methylation, histone and RNA modifications, and non-coding RNAs, are acknowledged as crucial contributors to the heterogeneity of breast cancer. The unique epigenetic landscape harbored by each cellular component within the tumor microenvironment (TME) adds great diversity to the intricate regulations which influence therapeutic responses. The TME, a sophisticated ecosystem of cellular and non-cellular elements interacting with tumor cells, establishes an immunosuppressive microenvironment and fuels processes such as tumor growth, angiogenesis, and extracellular matrix remodeling. These factors contribute to challenging conditions in cancer treatment by fostering a hypoxic environment, inducing metabolic stress, and creating physical barriers to drug delivery. This article delves into the complex connections between breast cancer treatment response, underlying epigenetic changes, and vital interactions within the TME. To restore sensitivity to treatment, it emphasizes the need for combination therapies considering epigenetic changes specific to individual members of the TME. Recognizing the pivotal role of epigenetics in drug resistance and comprehending the specificities of breast TME is essential for devising more effective therapeutic strategies. The development of reliable biomarkers for patient stratification will facilitate tailored and precise treatment approaches.
Collapse
Affiliation(s)
- Lenka Trnkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Verona Buocikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Michal Mego
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia; 2nd Department of Oncology, Comenius University, Faculty of Medicine & National Cancer Institute, Bratislava 83310, Slovakia
| | - Andrea Cumova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Monika Burikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Martin Bohac
- 2nd Department of Oncology, Comenius University, Faculty of Medicine & National Cancer Institute, Bratislava 83310, Slovakia; Regenmed Ltd., Medena 29, Bratislava 811 01, Slovakia; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava 811 08, Slovakia
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Marina Cihova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia.
| |
Collapse
|
5
|
Wang L, Wang X, Zhu X, Zhong L, Jiang Q, Wang Y, Tang Q, Li Q, Zhang C, Wang H, Zou D. Drug resistance in ovarian cancer: from mechanism to clinical trial. Mol Cancer 2024; 23:66. [PMID: 38539161 PMCID: PMC10976737 DOI: 10.1186/s12943-024-01967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Ovarian cancer is the leading cause of gynecological cancer-related death. Drug resistance is the bottleneck in ovarian cancer treatment. The increasing use of novel drugs in clinical practice poses challenges for the treatment of drug-resistant ovarian cancer. Continuing to classify drug resistance according to drug type without understanding the underlying mechanisms is unsuitable for current clinical practice. We reviewed the literature regarding various drug resistance mechanisms in ovarian cancer and found that the main resistance mechanisms are as follows: abnormalities in transmembrane transport, alterations in DNA damage repair, dysregulation of cancer-associated signaling pathways, and epigenetic modifications. DNA methylation, histone modifications and noncoding RNA activity, three key classes of epigenetic modifications, constitute pivotal mechanisms of drug resistance. One drug can have multiple resistance mechanisms. Moreover, common chemotherapies and targeted drugs may have cross (overlapping) resistance mechanisms. MicroRNAs (miRNAs) can interfere with and thus regulate the abovementioned pathways. A subclass of miRNAs, "epi-miRNAs", can modulate epigenetic regulators to impact therapeutic responses. Thus, we also reviewed the regulatory influence of miRNAs on resistance mechanisms. Moreover, we summarized recent phase I/II clinical trials of novel drugs for ovarian cancer based on the abovementioned resistance mechanisms. A multitude of new therapies are under evaluation, and the preliminary results are encouraging. This review provides new insight into the classification of drug resistance mechanisms in ovarian cancer and may facilitate in the successful treatment of resistant ovarian cancer.
Collapse
Affiliation(s)
- Ling Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xin Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xueping Zhu
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Zhong
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qingxiu Jiang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ya Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qin Tang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qiaoling Li
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Cong Zhang
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
- Biological and Pharmaceutical Engineering, School of Medicine, Chongqing University, Chongqing, China
| | - Haixia Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
6
|
Cui Y, Zhang W, Lu W, Feng Y, Wu X, Zhuo Z, Zhang D, Zhang Y. An exosome-derived lncRNA signature identified by machine learning associated with prognosis and biomarkers for immunotherapy in ovarian cancer. Front Immunol 2024; 15:1228235. [PMID: 38404588 PMCID: PMC10884316 DOI: 10.3389/fimmu.2024.1228235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Background Ovarian cancer (OC) has the highest mortality rate among gynecological malignancies. Current treatment options are limited and ineffective, prompting the discovery of reliable biomarkers. Exosome lncRNAs, carrying genetic information, are promising new markers. Previous studies only focused on exosome-related genes and employed the Lasso algorithm to construct prediction models, which are not robust. Methods 420 OC patients from the TCGA datasets were divided into training and validation datasets. The GSE102037 dataset was used for external validation. LncRNAs associated with exosome-related genes were selected using Pearson analysis. Univariate COX regression analysis was used to filter prognosis-related lncRNAs. The overlapping lncRNAs were identified as candidate lncRNAs for machine learning. Based on 10 machine learning algorithms and 117 algorithm combinations, the optimal predictor combinations were selected according to the C index. The exosome-related LncRNA Signature (ERLS) model was constructed using multivariate COX regression. Based on the median risk score of the training datasets, the patients were divided into high- and low-risk groups. Kaplan-Meier survival analysis, the time-dependent ROC, immune cell infiltration, immunotherapy response, and immune checkpoints were analyzed. Results 64 lncRNAs were subjected to a machine-learning process. Based on the stepCox (forward) combined Ridge algorithm, 20 lncRNA were selected to construct the ERLS model. Kaplan-Meier survival analysis showed that the high-risk group had a lower survival rate. The area under the curve (AUC) in predicting OS at 1, 3, and 5 years were 0.758, 0.816, and 0.827 in the entire TCGA cohort. xCell and ssGSEA analysis showed that the low-risk group had higher immune cell infiltration, which may contribute to the activation of cytolytic activity, inflammation promotion, and T-cell co-stimulation pathways. The low-risk group had higher expression levels of PDL1, CTLA4, and higher TMB. The ERLS model can predict response to anti-PD1 and anti-CTLA4 therapy. Patients with low expression of PDL1 or high expression of CTLA4 and low ERLS exhibited significantly better survival prospects, whereas patients with high ERLS and low levels of PDL1 or CTLA4 exhibited the poorest outcomes. Conclusion Our study constructed an ERLS model that can predict prognostic risk and immunotherapy response, optimizing clinical management for OC patients.
Collapse
Affiliation(s)
- Yongjia Cui
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weixuan Zhang
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenping Lu
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaogong Feng
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Xiaoqing Wu
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhili Zhuo
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongni Zhang
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yichi Zhang
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Li J, He D, Bi Y, Liu S. The Emerging Roles of Exosomal miRNAs in Breast Cancer Progression and Potential Clinical Applications. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:825-840. [PMID: 38020052 PMCID: PMC10658810 DOI: 10.2147/bctt.s432750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
Breast cancer remains the leading malignancy in terms of morbidity and mortality today. The tumor microenvironment of breast cancer includes multiple cell types, secreted proteins, and signaling components such as exosomes. Among these, exosomes have a lipid bilayer structure. Exosomes can reflect the biological traits of the parent cell and carry a variety of biologically active components, including proteins, lipids, small molecules, and non-coding RNAs, which include miRNA, lncRNA, and circRNA. MiRNAs are a group of non-coding RNAs of approximately 20-23 nucleotides in length encoded by the genome, triggering silencing and functional repression of target genes. MiRNAs have been shown to play a significant role in the development of cancer owing to their role in the prognosis, pathogenesis, diagnosis, and treatment of cancer. MiRNAs in exosomes can serve as effective mediators of information transfer from parental cells to recipient cells and trigger changes in biological traits such as proliferation, invasion, migration, and drug resistance. These changes can profoundly alter the progression of breast cancer. Therefore, here, we systematically summarize the association of exosomal miRNAs on breast cancer progression, diagnosis, and treatment in the hope of providing novel strategies and directions for subsequent breast cancer treatment.
Collapse
Affiliation(s)
- Jie Li
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, People’s Republic of China
| | - Dejiao He
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Yajun Bi
- Department of Pediatrics, Dalian Municipal Women and Children’s Medical Center (Group), Dalian Medical University, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Shengxuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| |
Collapse
|
8
|
Chen X, Li Y, Li M, Xie Y, Wang K, Zhang L, Zou Z, Xiong L. Exosomal miRNAs assist in the crosstalk between tumor cells and immune cells and its potential therapeutics. Life Sci 2023; 329:121934. [PMID: 37460057 DOI: 10.1016/j.lfs.2023.121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Exosomes are small extracellular vesicles that carry active substances (including proteins, lipids, and nucleic acids) and are essential for homeostasis and signal transmission. Recent studies have focused on the function of exosomal miRNAs in tumor progression. Researchers have expanded the use of exosomes and miRNAs as potential therapeutic tools and biomarkers to detect tumor progression. Immune cells, as an important part of the tumor microenvironment (TME), secrete a majority of exosome-derived miRNAs involved in the biological processes of malignancies. However, the underlying mechanisms remain unclear. Currently, there is no literature that systematically summarizes the communication of exosome-derived miRNAs between tumor cells and immune cells. Based on the cell specificity of exosome-derived miRNAs, this review provides the first comprehensive summary of the significant miRNAs from the standpoint of exosome sources, which are tumor cells and immune cells. Furthermore, we elaborated on the potential clinical applications of these miRNAs, attempting to propose existing difficulties and future possibilities in tumor diagnostics and therapy.
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China; Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yuqiu Li
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Miao Li
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yujie Xie
- College of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Lifang Zhang
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China
| | - Zhuoling Zou
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
9
|
Pawłowska A, Rekowska A, Kuryło W, Pańczyszyn A, Kotarski J, Wertel I. Current Understanding on Why Ovarian Cancer Is Resistant to Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:10859. [PMID: 37446039 DOI: 10.3390/ijms241310859] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The standard treatment of ovarian cancer (OC) patients, including debulking surgery and first-line chemotherapy, is unsatisfactory because of recurrent episodes in the majority (~70%) of patients with advanced OC. Clinical trials have shown only a modest (10-15%) response of OC individuals to treatment based on immune checkpoint inhibitors (ICIs). The resistance of OC to therapy is caused by various factors, including OC heterogeneity, low density of tumor-infiltrating lymphocytes (TILs), non-cellular and cellular interactions in the tumor microenvironment (TME), as well as a network of microRNA regulating immune checkpoint pathways. Moreover, ICIs are the most efficient in tumors that are marked by high microsatellite instability and high tumor mutation burden, which is rare among OC patients. The great challenge in ICI implementation is connected with distinguishing hyper-, pseudo-, and real progression of the disease. The understanding of the immunological, molecular, and genetic mechanisms of OC resistance is crucial to selecting the group of OC individuals in whom personalized treatment would be beneficial. In this review, we summarize current knowledge about the selected factors inducing OC resistance and discuss the future directions of ICI-based immunotherapy development for OC patients.
Collapse
Affiliation(s)
- Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Anna Rekowska
- Students' Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Weronika Kuryło
- Students' Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Anna Pańczyszyn
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Jan Kotarski
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Bougras-Cartron G, Nadaradjane A, Joalland MP, Lalier-Bretaudeau L, Raimbourg J, Cartron PF. Adenosine Methylation Level of miR-125a-5p Promotes Anti-PD-1 Therapy Escape through the Regulation of IGSF11/VSIG3 Expression. Cancers (Basel) 2023; 15:3188. [PMID: 37370798 DOI: 10.3390/cancers15123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Despite encouraging anti-tumour activity in lung cancer, anti-PD-1 therapy has encountered increasing resistance to treatment. Several companion diagnostic assays have been performed to identify patients who may benefit from this immunotherapy and to adapt this therapy in case of acquired resistance. METHODS A large panel of methods was used for the analysis of expression and methylation levels of miRNAs (qPCR, MemiRIP, …), protein/miRNA interactions (CLIP, oligo pull-down, …), and protein-protein interactions (CoIP) in cells and/or blood samples. RESULTS Our work highlights that the saturation of PD-1 by anti-PD1 therapies induces an immune escape phenomenon due to the overexpression of IGSF11 following adenosine methylation of miR-125a-5p. Mechanistically, we identify METTL3/KHDRBS3 and HuR as two crucial players in the methylation and the loss of the repressive function of this miRNA. Finally, our work shows that the adenosine methylation of miR-125a-5p is analyzable from EVs/exosomes from longitudinal blood samples and that such EVs/exosomes modulate the IGSF11/VSIG3 expression in lung cancer cells to promote an immune escape phenomenon. CONCLUSIONS Our data provide a biomarker (m6A-miR-125a-5p level) and two therapeutic solutions (anti-IGSF11 antibody and METTL3 inhibitor) that could potentially address the anti-PD1 therapy failure in the context of precision and personalized medicine.
Collapse
Affiliation(s)
- Gwenola Bougras-Cartron
- CRCI2NA, INSERM, Université de Nantes, 44035 Nantes, France
- Institut de Cancérologie de l'Ouest, 44805 Saint-Herblain, France
- SIRIC ILIAD, 44000 Nantes, France
| | - Arulraj Nadaradjane
- CRCI2NA, INSERM, Université de Nantes, 44035 Nantes, France
- SIRIC ILIAD, 44000 Nantes, France
| | - Marie-Pierre Joalland
- CRCI2NA, INSERM, Université de Nantes, 44035 Nantes, France
- Institut de Cancérologie de l'Ouest, 44805 Saint-Herblain, France
- SIRIC ILIAD, 44000 Nantes, France
| | - Lisenn Lalier-Bretaudeau
- CRCI2NA, INSERM, Université de Nantes, 44035 Nantes, France
- Institut de Cancérologie de l'Ouest, 44805 Saint-Herblain, France
- SIRIC ILIAD, 44000 Nantes, France
| | - Judith Raimbourg
- CRCI2NA, INSERM, Université de Nantes, 44035 Nantes, France
- Institut de Cancérologie de l'Ouest, 44805 Saint-Herblain, France
- SIRIC ILIAD, 44000 Nantes, France
| | - Pierre-François Cartron
- CRCI2NA, INSERM, Université de Nantes, 44035 Nantes, France
- Institut de Cancérologie de l'Ouest, 44805 Saint-Herblain, France
- SIRIC ILIAD, 44000 Nantes, France
| |
Collapse
|
11
|
Alzahrani B, Elderdery AY, Alsrhani A, Alzerwi NAN, Althobiti MM, Rayzah M, Idrees B, Elkhalifa AME, Subbiah SK, Mok PL. Effects of Albumin-Chlorogenic Acid Nanoparticles on Apoptosis and PI3K/Akt/mTOR Pathway Inhibitory Activity in MDA-MB-435s Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091438. [PMID: 37176983 PMCID: PMC10180018 DOI: 10.3390/nano13091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
In this study, we synthesized, characterized, and explored the anti-microbial and anti-cancer effects of albumin-chlorogenic acid nanoparticles (NPs). Characterization studies with a UV-vis spectrophotometer, FTIR, PL spectrum, TEM, FESEM, XRD, and DLA analysis showed patterns confirming the physio-chemical nature of biogenic nanocomposites. Further, anti-microbial studies using bacterial strains Staphylococcus aureus, Streptococcus pneumonia, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Vibrio cholera, and fungal strain Candida albicans showed significant (p < 0.05) anti-bacterial and anti-fungal activities. Next, we used MDA-MB-435s, a human cell line, to evaluate the anti-cancer effects of albumin-chlorogenic acid NPs. Cytotoxic studies revealed its IC50 concentration at 24 μg/mL after a 24 h treatment of MDA-MB-435s cells. We chose this IC50 dose to analyze albumin-chlorogenic acid NPs anti-cancer effects in vitro. MDA-MB-435s cells exposed to our NPs were studied via AO/EtBr staining, cell cycle analyses via PI staining, the status of whole genomic damage via comet assay, levels of apoptotic cells via annexin V/PI staining, ROS generation via DCFH-DA staining, an assay of antioxidant enzymes catalase, superoxide dismutase, and antioxidant GSH, via ELISA analyses of apoptotic markers caspase-3, 8, 9, Bax, Bcl-2, CytC, and p53, PI3/AKT/mTOR pathway. Our results collectively showed albumin-chlorogenic acid NPs induced apoptosis via p53-dependent and PI3/AKT/mTOR inhibition in MDA-MB-435s cells. Our results denote albumin-chlorogenic acid NPs can be used as an effective candidate for anti-microbial and anti-cancer applications; however, further in vivo confirmatory studies are warranted.
Collapse
Affiliation(s)
- Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nasser A N Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Maryam Musleh Althobiti
- Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City in Riyadh, Makkah Al Mukarramah Rd, As Sulimaniyah 12233, Saudi Arabia
| | - Ahmed M E Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh 11673, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti 1158, Sudan
| | - Suresh K Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
12
|
Zheng F, Wang J, Wang D, Yang Q. Clinical Application of Small Extracellular Vesicles in Gynecologic Malignancy Treatments. Cancers (Basel) 2023; 15:cancers15071984. [PMID: 37046644 PMCID: PMC10093031 DOI: 10.3390/cancers15071984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are the key mediators of intercellular communication. They have the potential for clinical use as diagnostic or therapeutic biomarkers and have been explored as vectors for drug delivery. Identification of reliable and noninvasive biomarkers, such as sEVs, is important for early diagnosis and precise treatment of gynecologic diseases to improve patient prognosis. Previous reviews have summarized routine sEVs isolation and identification methods; however, novel and unconventional methods have not been comprehensively described. This review summarizes a convenient method of isolating sEVs from body fluids and liquid biopsy-related sEV markers for early, minimally invasive diagnosis of gynecologic diseases. In addition, the characteristics of sEVs as drug carriers and in precision treatment and drug resistance are introduced, providing a strong foundation for identifying novel and potential therapeutic targets for sEV therapy. We propose potential directions for further research on the applications of sEVs in the diagnosis and treatment of gynecologic diseases.
Collapse
|
13
|
Wang S, Shi Y. Exosomes Derived from Immune Cells: The New Role of Tumor Immune Microenvironment and Tumor Therapy. Int J Nanomedicine 2022; 17:6527-6550. [PMID: 36575698 PMCID: PMC9790146 DOI: 10.2147/ijn.s388604] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Exosomes are small vesicles secreted by living cells, with a typical lipid bilayer structure. They carry a variety of proteins, lipids, RNA and other important information, play an important role in the transmission of substances and information between cells, and gradually become a marker for early diagnosis of many diseases and an important tool in drug delivery system. Immune cells are an important part of tumor microenvironment, and they can affect tumor progression by secreting a variety of immunoreactive substances. This review focuses on the effects of various immune cell-derived exosomes on tumor cells, different immune cells and other stromal cells in tumor microenvironment. Exosomes derived from different immune cells can not only reshape a pro-inflammatory microenvironment to inhibit tumor progression, but also promote tumor progression by inhibiting the killing effect of NK cells, CD8+T cells and other cells or promoting tumor cells and immunosuppressive immune cells. In addition, we also discussed that some exosomes derived from immune cells (such as DC, M1 macrophages and neutrophils) play a tumor inhibitory role after being engineered.
Collapse
Affiliation(s)
- Shiyang Wang
- Department of Geriatric Surgery, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Yue Shi
- Department of Geriatric Surgery, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China,Correspondence: Yue Shi, Department of Geriatric Surgery, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China, Tel +86-13842073309, Email
| |
Collapse
|
14
|
Yan H, Tang S, Tang S, Zhang J, Guo H, Qin C, Hu H, Zhong C, Yang L, Zhu Y, Zhou H. miRNAs in anti-cancer drug resistance of non-small cell lung cancer: Recent advances and future potential. Front Pharmacol 2022; 13:949566. [PMID: 36386184 PMCID: PMC9640411 DOI: 10.3389/fphar.2022.949566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/12/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors worldwide. Clinical success is suboptimal owing to late diagnosis, limited treatment options, high recurrence rates, and the development of drug resistance. MicroRNAs (miRNAs), a range of small endogenous non-coding RNAs that are 22 nucleotides in length, have emerged as one of the most important players in cancer initiation and progression in recent decades. Current evidence has revealed the pivotal roles of miRNAs in regulating cell proliferation, migration, invasion, and metastasis in NSCLC. Recently, several studies have demonstrated that miRNAs are strongly associated with resistance to anti-cancer drugs, ranging from traditional chemotherapeutic and immunotherapy drugs to anti-vascular drugs, and even during radiotherapy. In this review, we briefly introduce the mechanism of miRNA dysregulation and resistance to anti-tumor therapy in NSCLC, and summarize the role of miRNAs in the malignant process of NSCLC. We then discuss studies of resistance-related miRNAs in chemotherapy, radiotherapy, targeted therapy, immunotherapy, and anti-vascular therapy in NSCLC. Finally, we will explore the application prospects of miRNA, an emerging small molecule, for future anti-tumor therapy. This review is the first to summarize the latest research progress on miRNAs in anti-cancer drug resistance based on drug classification, and to discuss their potential clinical applications.
Collapse
Affiliation(s)
- Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Jun Zhang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Haiyang Guo
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Chengdu University of TCM, Chengdu, China
| | - Chao Qin
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Chuan Zhong
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Li Yang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Yunhe Zhu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- *Correspondence: Yunhe Zhu, ; Haining Zhou,
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
- Graduate School, Institute of Surgery, Chengdu University of TCM, Chengdu, China
- *Correspondence: Yunhe Zhu, ; Haining Zhou,
| |
Collapse
|
15
|
Pallozzi M, Di Tommaso N, Maccauro V, Santopaolo F, Gasbarrini A, Ponziani FR, Pompili M. Non-Invasive Biomarkers for Immunotherapy in Patients with Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Cancers (Basel) 2022; 14:cancers14194631. [PMID: 36230554 PMCID: PMC9559710 DOI: 10.3390/cancers14194631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The search for non-invasive biomarkers is a hot topic in modern oncology, since a tissue biopsy has significant limitations in terms of cost and invasiveness. The treatment perspectives have been significantly improved after the approval of immunotherapy for patients with hepatocellular carcinoma; therefore, the quick identification of responders is crucial to define the best therapeutic strategy. In this review, the current knowledge on the available non-invasive biomarkers of the response to immunotherapy is described. Abstract The treatment perspectives of advanced hepatocellular carcinoma (HCC) have deeply changed after the introduction of immunotherapy. The results in responders show improved survival compared with Sorafenib, but only one-third of patients achieve a significant benefit from treatment. As the tumor microenvironment exerts a central role in shaping the response to immunotherapy, the future goal of HCC treatment should be to identify a proxy of the hepatic tissue condition that is easy to use in clinical practice. Therefore, the search for biomarkers that are accurate in predicting prognosis will be the hot topic in the therapeutic management of HCC in the near future. Understanding the mechanisms of resistance to immunotherapy may expand the patient population that will benefit from it, and help researchers to find new combination regimens to improve patients’ outcomes. In this review, we describe the current knowledge on the prognostic non-invasive biomarkers related to treatment with immune checkpoint inhibitors, focusing on serological markers and gut microbiota.
Collapse
Affiliation(s)
- Maria Pallozzi
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Natalia Di Tommaso
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Maccauro
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: (F.R.P.); (M.P.)
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: (F.R.P.); (M.P.)
| |
Collapse
|
16
|
Liu M, Zhou X, Tang J. Non-Coding RNAs Delivery by Small Extracellular Vesicles and Their Applications in Ovarian Cancer. Front Bioeng Biotechnol 2022; 10:876151. [PMID: 35662846 PMCID: PMC9161355 DOI: 10.3389/fbioe.2022.876151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer (OC) is the most fatal gynecological malignancy because of its early asymptomatic nature and acquired resistance to chemotherapy. Small extracellular vesicles (sEVs) are a heterogeneous group of biological vesicles with a diameter <200 nm released by cells under physiological or pathological conditions. sEVs-derived non-coding RNAs (ncRNAs) are the essential effectors in the biological environment. sEVs-ncRNAs have critical roles in tumor progression via regulating mRNA expression of target cells to affect cell signaling. In addition, the status of parental cells can be disclosed via analyzing the composition of sEVs-ncRNAs, and their “cargoes” with specific changes can be used as key biomarkers for the diagnosis and prognosis of OC. Accumulating evidence has demonstrated that sEVs-ncRNAs are involved in multiple key processes that mediate the development of metastasis and chemotherapeutic resistance in OC: epithelial–mesenchymal transition; tumorigenicity of mesenchymal stem cells; immune evasion; angiogenesis. The nanomedicine delivery system based on engineering sEVs is expected to be a novel therapeutic strategy for OC. Insights into the biological roles of sEVs-ncRNAs in the invasion, metastasis, immune regulation, and chemoresistance of OC will contribute to discovery of novel biomarkers and molecular targets for early detection and innovative therapy. In this review, we highlight recent advances and applications of sEVs-ncRNAs in OC diagnosis and treatment. We also outline current challenges and knowledge gaps.
Collapse
Affiliation(s)
- Mu Liu
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaofang Zhou
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Gynecologic Oncology, Hunan Gynecologic Cancer Research Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Jie Tang,
| |
Collapse
|
17
|
Console L, Scalise M. Extracellular Vesicles and Cell Pathways Involved in Cancer Chemoresistance. Life (Basel) 2022; 12:life12050618. [PMID: 35629286 PMCID: PMC9143651 DOI: 10.3390/life12050618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 02/07/2023] Open
Abstract
Chemoresistance is a pharmacological condition that allows transformed cells to maintain their proliferative phenotype in the presence of administered anticancer drugs. Recently, extracellular vesicles, including exosomes, have been identified as additional players responsible for the chemoresistance of cancer cells. These are nanovesicles that are released by almost all cell types in both physiological and pathological conditions and contain proteins and nucleic acids as molecular cargo. Extracellular vesicles released in the bloodstream reach recipient cells and confer them novel metabolic properties. Exosomes can foster chemoresistance by promoting prosurvival and antiapoptotic pathways, affecting cancer stem cells and immunotherapies, and stimulating drug efflux. In this context, a crucial role is played by membrane transporters belonging to ABC, SLC, and P-type pump families. These proteins are fundamental in cell metabolism and drug transport in either physiological or pathological conditions. In this review, different roles of extracellular vesicles in drug resistance of cancer cells will be explored.
Collapse
Affiliation(s)
- Lara Console
- Correspondence: (L.C.); (M.S.); Tel.: +39-0984-492919 (L.C.); +39-0984-492938 (M.S.)
| | | |
Collapse
|
18
|
Zhu M, Zhang H, Pedersen KS, Foster NR, Jaszewski BL, Liu X, Hirdler JB, An Z, Bekaii-Saab TS, Halfdanarson TR, Boland PM, Yan Y, Hubbard JH, Ma WW, Yoon HH, Revzin A, Fernandez-Zapico ME, Overman MJ, McWilliams RR, Dong H. Understanding Suboptimal Response to Immune Checkpoint Inhibitors. Adv Biol (Weinh) 2022; 7:e2101319. [PMID: 35343107 DOI: 10.1002/adbi.202101319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitors (ICIs), as a novel class of anticancer therapy, can be more efficacious and less toxic than chemotherapy, but their clinical success is confined to certain tumor types. Elucidating their targets, mechanisms and scope of action, and potential synergism with chemotherapy and/or targeted therapies are critical to widen their clinical indications. Treatment response to an ICI targeting programmed death-1 (anti-PD-1) is sought to be understood here by conducting a preplanned correlative analysis of a phase II clinical trial in patients with small bowel adenocarcinoma (SBA). The cytolytic capacity of circulating immune cells in cancer patients using a novel ex vivo cytotoxicity assay is evaluated, and the utility of circulating biomarkers is investigated to predict and monitor the treatment effect of anti-PD-1. Baseline expression of Bim and NKG7 and upregulation of CX3CR1 in circulating T cells are associated with the clinical benefit of anti-PD-1 in patients with SBA. Overall, these findings suggest that the frequency and cytolytic capacity of circulating, effector immune cells may differentiate clinical response to ICIs, providing a strong rationale to support immune monitoring using patient peripheral blood.
Collapse
Affiliation(s)
- Mojun Zhu
- Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Henan Zhang
- Urology and Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Nathan R Foster
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brandy L Jaszewski
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xin Liu
- Urology and Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jacob B Hirdler
- Urology and Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zesheng An
- Urology and Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Patrick M Boland
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Yiyi Yan
- Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Wen Wee Ma
- Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Harry H Yoon
- Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alexander Revzin
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | | | - Haidong Dong
- Urology and Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
19
|
Pandey PR, Young KH, Kumar D, Jain N. RNA-mediated immunotherapy regulating tumor immune microenvironment: next wave of cancer therapeutics. Mol Cancer 2022; 21:58. [PMID: 35189921 PMCID: PMC8860277 DOI: 10.1186/s12943-022-01528-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
AbstractAccumulating research suggests that the tumor immune microenvironment (TIME) plays an essential role in regulation of tumor growth and metastasis. The cellular and molecular nature of the TIME influences cancer progression and metastasis by altering the ratio of immune- suppressive versus cytotoxic responses in the vicinity of the tumor. Targeting or activating the TIME components show a promising therapeutic avenue to combat cancer. The success of immunotherapy is both astounding and unsatisfactory in the clinic. Advancements in RNA-based technology have improved understanding of the complexity and diversity of the TIME and its effects on therapy. TIME-related RNA or RNA regulators could be promising targets for anticancer immunotherapy. In this review, we discuss the available RNA-based cancer immunotherapies targeting the TIME. More importantly, we summarize the potential of various RNA-based therapeutics clinically available for cancer treatment. RNA-dependent targeting of the TIME, as monotherapy or combined with other evolving therapeutics, might be beneficial for cancer patients’ treatment in the near future.
Collapse
|
20
|
Zheng Y, Li M, Weng B, Mao H, Zhao J. Exosome-based delivery nanoplatforms: Next-generation theranostic platforms for breast cancer. Biomater Sci 2022; 10:1607-1625. [DOI: 10.1039/d2bm00062h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Breast cancer is the most frequent type of malignancy, and the leading cause of cancer-related death in women across the globe. Exosomes are naturally derived 50-150 nm nanovesicles with a...
Collapse
|
21
|
Abu N, Rus Bakarurraini NAA. The interweaving relationship between extracellular vesicles and T cells in cancer. Cancer Lett 2021; 530:1-7. [PMID: 34906625 DOI: 10.1016/j.canlet.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022]
Abstract
The interdependency between cancer cells and immune cells is an important link in understanding cancer pathogenesis. T cells are important immune cells that are able to either impede or promote tumor growth. Extracellular vesicles or EVs are membrane-encapsulated vesicles that are released by both cancer and immune cells that can act as communicators. Studies have shown that tumor-derived EVs can interact with immune cells, particularly T cells. Vice versa, T cells-derived EVs have also been shown to possess immunomodulatory roles. Therefore, the purpose of this mini-review is to understand the role of tumor-derived EVs and T-cells derived EVs on cancer immunosuppression especially the interweaving role of different types of EVs and how it affects tumor immunity. We also discuss the role of EVs in different types of T cells namely CD8+, CD4+ Th17 and Treg cells. More importantly, we include the limitations and future directions involving this type of research. This will further elucidate our understanding of the important functions of these tiny mediators.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, 56000, Kuala Lumpur, Malaysia.
| | | |
Collapse
|
22
|
Yang T, Huo J, Xu R, Su Q, Tang W, Zhang D, Zhu M, Zhan Y, Dai B, Zhang Y. Selenium sulfide disrupts the PLAGL2/C-MET/STAT3-induced resistance against mitochondrial apoptosis in hepatocellular carcinoma. Clin Transl Med 2021; 11:e536. [PMID: 34586726 PMCID: PMC8441139 DOI: 10.1002/ctm2.536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Overexpression of pleomorphic adenoma gene like-2 (PLAGL2) is associated with tumorigenesis. However, its function in HCC is unclear, and there are currently no anti-HCC drugs that target PLAGL2. Drug repositioning may facilitate the development of PLAGL2-targeted drug candidates. METHODS The expression of PLAGL2 in HCC clinical tissue samples and HCC cell lines was analyzed by western blotting. The constructed HCC cell models were used to confirm the underlying function of PLAGL2 as a therapeutic target. Multiple in vitro and in vivo assays were conducted to determine the anti-proliferative and apoptosis-inducing effects of selenium sulfide (SeS2 ), which is clinically used for the treatment of seborrheic dermatitis and tinea versicolor. RESULTS PLAGL2 expression was higher in HCC tumor tissues than in normal adjacent tissues. Its overexpression promoted the resistance of HCC cells of mitochondrial apoptosis through the regulation of the downstream C-MET/STAT3 signaling axis. SeS2 exerted significant anti-proliferative and apoptosis-inducing effects on HCC cells in a PLAGL2-dependent manner. Mechanistically, SeS2 suppressed C-MET/STAT3, AKT/mTOR, and MAPK signaling and triggered Bcl-2/Cyto C/Caspase-mediated intrinsic mitochondrial apoptosis both in vitro and in vivo. CONCLUSIONS Our data reveal an important role of PLAGL2 in apoptosis resistance in HCC and highlight the potential of using SeS2 as a PLAGL2 inhibitor in patients with HCC.
Collapse
Affiliation(s)
- Tianfeng Yang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Jian Huo
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Rui Xu
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Qi Su
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Wenjuan Tang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Dongdong Zhang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Man Zhu
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Yingzhuan Zhan
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Bingling Dai
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| | - Yanmin Zhang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anP. R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and EngineeringXi'anP. R. China
| |
Collapse
|
23
|
Honrubia-Peris B, Garde-Noguera J, García-Sánchez J, Piera-Molons N, Llombart-Cussac A, Fernández-Murga ML. Soluble Biomarkers with Prognostic and Predictive Value in Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy. Cancers (Basel) 2021; 13:4280. [PMID: 34503087 PMCID: PMC8428366 DOI: 10.3390/cancers13174280] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023] Open
Abstract
Numerous targeted therapies have been evaluated for the treatment of non-small cell lung cancer (NSCLC). To date, however, only a few agents have shown promising results. Recent advances in cancer immunotherapy, most notably immune checkpoint inhibitors (ICI), have transformed the treatment scenario for these patients. Although some patients respond well to ICIs, many patients do not benefit from ICIs, leading to disease progression and/or immune-related adverse events. New biomarkers capable of reliably predicting response to ICIs are urgently needed to improve patient selection. Currently available biomarkers-including programmed death protein 1 (PD-1) and its ligand (PD-L1), and tumor mutational burden (TMB)-have major limitations. At present, no well-validated, reliable biomarkers are available. Ideally, these biomarkers would be obtained through less invasive methods such as plasma determination or liquid biopsy. In the present review, we describe recent advances in the development of novel soluble biomarkers (e.g., circulating immune cells, TMB, circulating tumor cells, circulating tumor DNA, soluble factor PD-L1, tumor necrosis factor, etc.) for patients with NSCLC treated with ICIs. We also describe the potential use of these biomarkers as prognostic indicators of treatment response and toxicity.
Collapse
Affiliation(s)
| | - Javier Garde-Noguera
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria i Biomédica de la Comunidad Valenciana (FISABIO), 46020 Valencia, Spain; (B.H.-P.); (J.G.-S.); (N.P.-M.); (A.L.-C.)
| | | | | | | | | |
Collapse
|
24
|
Mondal P, Kaur B, Natesh J, Meeran SM. The emerging role of miRNA in the perturbation of tumor immune microenvironment in chemoresistance: Therapeutic implications. Semin Cell Dev Biol 2021; 124:99-113. [PMID: 33865701 DOI: 10.1016/j.semcdb.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Chemoresistance is a major hindrance in cancer chemotherapies, a leading cause of tumor recurrence and cancer-related deaths. Cancer cells develop numerous strategies to elude immune attacks and are regulated by immunological factors. Cancer cells can alter the expression of several immune modulators to upregulate the activities of immune checkpoint pathways. Targeting the immune checkpoint inhibitors is a part of the cancer immunotherapy altered during carcinogenesis. These immune modulators have the capability to reprogram the tumor microenvironment, thereby change the efficacy of chemotherapeutics. In general, the sensitivity of drugs is reduced in the immunosuppressive tumor microenvironment, resulting in chemoresistance and tumor relapse. The regulation of microRNAs (miRNAs) is well established in cancer initiation, progression, and therapy. Intriguingly, miRNA affects cancer immune surveillance and immune response by targeting immune checkpoint inhibitors in the tumor microenvironment. miRNAs alter the gene expression at the post-transcriptional level, which modulates both innate and adaptive immune systems. Alteration of tumor immune microenvironment influences drug sensitivity towards cancer cells. Besides, the expression profile of immune-modulatory miRNAs can be used as a potential biomarker to predict the response and clinical outcomes in cancer immunotherapy and chemotherapy. Recent evidences have revealed that cancer-derived immune-modulatory miRNAs might be promising targets to counteract cancer immune escape, thereby increasing drug efficacy. In this review, we have compiled the role of miRNAs in overcoming the chemoresistance by modulating tumor microenvironment and discussed their preclinical and clinical implications.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavjot Kaur
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
25
|
Khan P, Siddiqui JA, Lakshmanan I, Ganti AK, Salgia R, Jain M, Batra SK, Nasser MW. RNA-based therapies: A cog in the wheel of lung cancer defense. Mol Cancer 2021; 20:54. [PMID: 33740988 PMCID: PMC7977189 DOI: 10.1186/s12943-021-01338-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease consisting mainly of two subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and remains the leading cause of death worldwide. Despite recent advances in therapies, the overall 5-year survival rate of LC remains less than 20%. The efficacy of current therapeutic approaches is compromised by inherent or acquired drug-resistance and severe off-target effects. Therefore, the identification and development of innovative and effective therapeutic approaches are critically desired for LC. The development of RNA-mediated gene inhibition technologies was a turning point in the field of RNA biology. The critical regulatory role of different RNAs in multiple cancer pathways makes them a rich source of targets and innovative tools for developing anticancer therapies. The identification of antisense sequences, short interfering RNAs (siRNAs), microRNAs (miRNAs or miRs), anti-miRs, and mRNA-based platforms holds great promise in preclinical and early clinical evaluation against LC. In the last decade, RNA-based therapies have substantially expanded and tested in clinical trials for multiple malignancies, including LC. This article describes the current understanding of various aspects of RNA-based therapeutics, including modern platforms, modifications, and combinations with chemo-/immunotherapies that have translational potential for LC therapies.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Apar Kishor Ganti
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA
- Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|