1
|
Li W, Liu H, Zheng J, Wang D, Wang Z, Hong M, Zhou Y. Kaempferol modulates ɑ2M secretion in bone marrow-derived macrophages by downregulating GR/PER1-mediated lipid metabolism to attenuate the emotional stress-aggravated metastasis of prostate cancer. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119162. [PMID: 39603396 DOI: 10.1016/j.jep.2024.119162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prostate cancer patients often suffer from depression during androgen deprivation therapy. Chaihu-Shugan-San (CSS) can prevent prostate cancer metastasis caused by chronic unpredictable mild stress (CUMS), but its active ingredients and molecular mechanism remain unelucidated. AIM OF STUDY This study aims to explore the potential targets and molecular mechanisms of CSS in the treatment of emotional stress-aggravated metastasis of prostate cancer. RESULTS Stress induces nuclear translocation of GR, initiating the transcription of PER1, which leads to an enhanced lipid metabolism and decreased secretion of α2M in BMDMs. CSS, a classical Traditional Chinese Medicine (TCM) formula for alleviating depression, can improve prostate cancer metastasis caused by CUMS. Of the active ingredients in CSS, kaempferol demonstrated the highest potency for enhancing α2M secretion in BMDMs and inhibiting prostate cancer cell migration. Kaempferol also inhibited nuclear translocation of GR and the GR/PER1 pathway in Per1-overexpressed BMDMs. CONCLUSIONS These findings reveal that emotional stress-aggravated prostate cancer growth and metastasis rely on the GR/PER1 pathway and lipid metabolism, as the suppression of this pathway ultimately leads to an increase in α2M secretion in BMDMs and inhibition of PC-3 cell metastasis.
Collapse
Affiliation(s)
- Wei Li
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dechao Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Zhiying Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
2
|
Wang F, Huang J, Zeng S, Pan Y, Zhou H. ETS homologous factor, controlled by lysine-specific demethylase 5B, suppresses clear cell renal cell carcinoma by inducing Filamin-B. Gene 2024; 927:148702. [PMID: 38880187 DOI: 10.1016/j.gene.2024.148702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) remains a deadly disease with a poor prognosis. Here, we identified the ETS homologous factor (EHF) and its target Filamin-B (FLNB) as molecules related to immune evasion in ccRCC. We also explored the upstream modifier that manipulates EHF in ccRCC. DESIGN Cell proliferation and apoptosis assay, wound healing assay, and Transwell assay were designed to analyze the effects of EHF or FLNB knockdown on the biological activity of ccRCC cells. The growth of differently treated ccRCC cells was assessed by orthotopic tumors. ccRCC cells with different treatments were co-cultured with macrophages, and the role of the lysine-specific demethylase 5B (KDM5B)/EHF/FLNB axis on macrophage polarization or ccRCC progression was characterized by detecting the expression of M2 macrophage markers in the co-culture system or tumor tissues of tumor-bearing mice. RESULTS The expression of EHF and FLNB was higher, while KDM5B was lower in HK2 cells than in ccRCC cells. EHF overexpression inhibited the biological behavior of ccRCC cells and tumor growth in mice. EHF activated FLNB transcription. Knockdown of FLNB supported the biological activity of ccRCC cells and tumor growth and reversed M2 macrophage polarization in tumor tissues of mice in the presence of EHF. KDM5B inhibited EHF expression by H3K4me3 demethylation, and EHF knockdown potentiated M2 macrophage polarization and tumor growth in vivo repressed by KDM5B knockdown. CONCLUSIONS KDM5B inhibited the expression of EHF by repressing H3K4me3 modification and the transcription of FLNB by EHF to promote immune evasion and progression of ccRCC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Medicine, Changsha Social Work College, Changsha 410004, Hunan, PR China
| | - Jiangbo Huang
- Department of Urology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, Hunan, PR China
| | - Shun Zeng
- Department of Urology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, Hunan, PR China
| | - Ying Pan
- Department of Urology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, Hunan, PR China
| | - Hao Zhou
- Department of Urology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, Hunan, PR China.
| |
Collapse
|
3
|
Fei X, Xue JW, Wu JZ, Yang CY, Wang KJ, Ma Q. Promising therapy for neuroendocrine prostate cancer: current status and future directions. Ther Adv Med Oncol 2024; 16:17588359241269676. [PMID: 39131727 PMCID: PMC11311189 DOI: 10.1177/17588359241269676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly aggressive variant of castration-resistant prostate cancer. It is characterized by low or no expression of the androgen receptor (AR), activation of AR-independent signaling, and increased neuroendocrine phenotype. Most of NEPC is induced by treatment of androgen deprivation therapy and androgen receptor pathway inhibitors (ARPIs). Currently, the treatment of NEPC follows the treatment strategy for small-cell lung cancer, lacking effective drugs and specific treatment options. This review summarizes potential novel targets and therapies for NEPC treatment, including epigenetic regulators (zeste homolog 2 inhibitors, lysine-specific demethylase 1 inhibitors), aurora kinase A inhibitors, poly-ADP-ribose polymerase inhibitors, delta-like ligand 3 targeted therapies, a combination of immunotherapies, etc. Other promising targets and future directions are also discussed in this review. These novel targets and therapies may provide new opportunities for the treatment of NEPC.
Collapse
Affiliation(s)
- Xin Fei
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jia-Wei Xue
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Urology, The First Hospital of Ninghai, Ningbo, China
| | - Ji-zhongrong Wu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Urology, Shengzhou People’s Hospital, Shaoxing, China
| | - Chong-Yi Yang
- Department of Urology, The First Hospital of Ninghai, 142 Taoyuan Middle Road, Yuelong Street, Ninghai county, Ningbo, Zhejiang 315699, China
| | - Ke-Jie Wang
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, 52, Liuting Street, Haishu District, Ningbo, Zhejiang 315010, China
| | - Qi Ma
- Department of Urology, the First Affiliated Hospital of Ningbo University, 52, Liuting Street, Haishu District,Ningbo, Zhejiang 315010, China
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, 52, Liuting Street, Haishu District, Ningbo, Zhejiang 315010, China
- Yi-Huan Genitourinary Cancer Group, 52, Liuting Street, Haishu District, Ningbo,Zhejiang 315010, China
| |
Collapse
|
4
|
Elbialy A, Kappala D, Desai D, Wang P, Fadiel A, Wang SJ, Makary MS, Lenobel S, Sood A, Gong M, Dason S, Shabsigh A, Clinton S, Parwani AV, Putluri N, Shvets G, Li J, Liu X. Patient-Derived Conditionally Reprogrammed Cells in Prostate Cancer Research. Cells 2024; 13:1005. [PMID: 38920635 PMCID: PMC11201841 DOI: 10.3390/cells13121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Prostate cancer (PCa) remains a leading cause of mortality among American men, with metastatic and recurrent disease posing significant therapeutic challenges due to a limited comprehension of the underlying biological processes governing disease initiation, dormancy, and progression. The conventional use of PCa cell lines has proven inadequate in elucidating the intricate molecular mechanisms driving PCa carcinogenesis, hindering the development of effective treatments. To address this gap, patient-derived primary cell cultures have been developed and play a pivotal role in unraveling the pathophysiological intricacies unique to PCa in each individual, offering valuable insights for translational research. This review explores the applications of the conditional reprogramming (CR) cell culture approach, showcasing its capability to rapidly and effectively cultivate patient-derived normal and tumor cells. The CR strategy facilitates the acquisition of stem cell properties by primary cells, precisely recapitulating the human pathophysiology of PCa. This nuanced understanding enables the identification of novel therapeutics. Specifically, our discussion encompasses the utility of CR cells in elucidating PCa initiation and progression, unraveling the molecular pathogenesis of metastatic PCa, addressing health disparities, and advancing personalized medicine. Coupled with the tumor organoid approach and patient-derived xenografts (PDXs), CR cells present a promising avenue for comprehending cancer biology, exploring new treatment modalities, and advancing precision medicine in the context of PCa. These approaches have been used for two NCI initiatives (PDMR: patient-derived model repositories; HCMI: human cancer models initiatives).
Collapse
Affiliation(s)
- Abdalla Elbialy
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Deepthi Kappala
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Dhruv Desai
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Peng Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Ahmed Fadiel
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Shang-Jui Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mina S. Makary
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Vascular and Interventional Radiology, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott Lenobel
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Musculoskeletal Imaging, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Akshay Sood
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Michael Gong
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shawn Dason
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmad Shabsigh
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Steven Clinton
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Anil V. Parwani
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Jenny Li
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xuefeng Liu
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Granata I, Barboro P. Identification of Molecular Markers Associated with Prostate Cancer Subtypes: An Integrative Bioinformatics Approach. Biomolecules 2024; 14:87. [PMID: 38254687 PMCID: PMC10813078 DOI: 10.3390/biom14010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer (PCa) is characterised by androgen dependency. Unfortunately, under anti-androgen treatment pressure, castration-resistant prostate cancer (CRPC) emerges, characterised by heterogeneous cell populations that, over time, lead to the development of different androgen-dependent or -independent phenotypes. Despite important advances in therapeutic strategies, CRPC remains incurable. Context-specific essential genes represent valuable candidates for targeted anti-cancer therapies. Through the investigation of gene and protein annotations and the integration of published transcriptomic data, we identified two consensus lists to stratify PCa patients' risk and discriminate CRPC phenotypes based on androgen receptor activity. ROC and Kaplan-Meier survival analyses were used for gene set validation in independent datasets. We further evaluated these genes for their association with cancer dependency. The deregulated expression of the PCa-related genes was associated with overall and disease-specific survival, metastasis and/or high recurrence risk, while the CRPC-related genes clearly discriminated between adeno and neuroendocrine phenotypes. Some of the genes showed context-specific essentiality. We further identified candidate drugs through a computational repositioning approach for targeting these genes and treating lethal variants of PCa. This work provides a proof-of-concept for the use of an integrative approach to identify candidate biomarkers involved in PCa progression and CRPC pathogenesis within the goal of precision medicine.
Collapse
Affiliation(s)
- Ilaria Granata
- High Performance Computing and Networking Institute (ICAR), National Council of Research (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Paola Barboro
- Proteomic and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy;
| |
Collapse
|
6
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA, Alotaibi TM. From inflammation to metastasis: The central role of miR-155 in modulating NF-κB in cancer. Pathol Res Pract 2024; 253:154962. [PMID: 38006837 DOI: 10.1016/j.prp.2023.154962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Cancer is a multifaceted, complex disease characterized by unchecked cell growth, genetic mutations, and dysregulated signalling pathways. These factors eventually cause evasion of apoptosis, sustained angiogenesis, tissue invasion, and metastasis, which makes it difficult for targeted therapeutic interventions to be effective. MicroRNAs (miRNAs) are essential gene expression regulators linked to several biological processes, including cancer and inflammation. The NF-κB signalling pathway, a critical regulator of inflammatory reactions and oncogenesis, has identified miR-155 as a significant participant in its modulation. An intricate network of transcription factors known as the NF-κB pathway regulates the expression of genes related to inflammation, cell survival, and immunological responses. The NF-κB pathway's dysregulation contributes to many cancer types' development, progression, and therapeutic resistance. In numerous cancer models, the well-studied miRNA miR-155 has been identified as a crucial regulator of NF-κB signalling. The p65 subunit and regulatory molecules like IκB are among the primary targets that miR-155 directly targets to alter NF-κB activity. The molecular processes by which miR-155 affects the NF-κB pathway are discussed in this paper. It also emphasizes the miR-155's direct and indirect interactions with important NF-κB cascade elements to control the expression of NF-κB subunits. We also investigate how miR-155 affects NF-κB downstream effectors in cancer, including inflammatory cytokines and anti-apoptotic proteins.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al, Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | |
Collapse
|
7
|
Li W, Zhou R, Zheng J, Sun B, Jin X, Hong M, Chen R. Chaihu-Shugan-San ameliorates tumor growth in prostate cancer promoted by depression via modulating sphingolipid and glycerinphospholipid metabolism. Front Pharmacol 2022; 13:1011450. [PMID: 36545317 PMCID: PMC9760688 DOI: 10.3389/fphar.2022.1011450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Psychologic depression is a pivotal pathological characteristic and has been shown to promote prostate cancer (PCa) progression. Chaihu-Shugan-San (CSS), a well-known Chinese herbal decoction, exhibits efficacy in the treatment of stress-accelerated PCa. However, the underlying mechanism of CSS in resisting PCa growth is still unknown, and further study is needed. Objective: To evaluate the effects of CSS on stress-accelerated PCa in a BALB/C nude mice model and to investigate the underlying mechanisms. Methods: PC-3 cells were implanted into BALB/C nude mice, and the stressed mice were exposed to chronic unpredictable mild stress (CUMS) to study the effects of CSS. The PCa growth were evaluated by tumor volume and tumor weight. Analyses of depression-like behaviors were evaluated by sucrose consumption test, tail suspension test and open field test. Network pharmacology was used to analyze the potential targets and signaling pathways of CSS against PCa. Untargeted lipidomics were used to analyze the serum lipid profiles and further elucidate the possible mechanism. Results: In the CUMS stressed PCa mice, CSS can restrain tumor growth with reduced tumor volume and tumor weight, and depression-like behaviors with increased sucrose consumption, reduced immobility duration, and increased total distance and center distance. Network pharmacology suggested that the lipid metabolism-related pathways are the most likely potential targets of CSS against PCa. Using untargeted lipidomics analysis, 62 lipids were found to have significant changes in PCa mice under CUMS treatment. The levels of glycerophospholipids containing phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylglycerol (PG), except PC (18:0_22:6) and PC (18:0_20:4), were significantly increased. Likewise, the levels of all sphingolipids (including sphingomyelin (SM), ceramides (Cer) and hexosyl-1-ceramide (Hex1Cer)) and diglyceride (DG) (32:1e) were significantly increased. CSS water extract was found to contribute to restore 32 lipids including 6 sphingolipids, 25 glycerophospholipids and 1 glyceride. Conclusion: This study is the first to delineate the lipid profile of stressed PCa BALB/C nude mice using untargeted lipidomics analysis. CSS restrained tumor growth and ameliorated depression-like behaviors by reprogramming lipid metabolism. Intervention of lipid metabolism could be a preventive and therapeutic approach for PCa patients with depression.
Collapse
Affiliation(s)
- Wei Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,Institute of TCM-Related Comorbid Depression, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Runze Zhou
- Institute of TCM-Related Comorbid Depression, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,School of Medicine and Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Sun
- Institute of TCM-Related Comorbid Depression, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Jin
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruini Chen
- School of Medicine and Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Ruini Chen,
| |
Collapse
|
8
|
Zhou H, He Q, Li C, Alsharafi BLM, Deng L, Long Z, Gan Y. Focus on the tumor microenvironment: A seedbed for neuroendocrine prostate cancer. Front Cell Dev Biol 2022; 10:955669. [PMID: 35938167 PMCID: PMC9355504 DOI: 10.3389/fcell.2022.955669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) is a microecology consisting of tumor and mesenchymal cells and extracellular matrices. The TME plays important regulatory roles in tumor proliferation, invasion, metastasis, and differentiation. Neuroendocrine differentiation (NED) is a mechanism by which castration resistance develops in advanced prostate cancer (PCa). NED is induced after androgen deprivation therapy and neuroendocrine prostate cancer (NEPC) is established finally. NEPC has poor prognosis and short overall survival and is a major cause of death in patients with PCa. Both the cellular and non-cellular components of the TME regulate and induce NEPC formation through various pathways. Insights into the roles of the TME in NEPC evolution, growth, and progression have increased over the past few years. These novel insights will help refine the NEPC formation model and lay the foundation for the discovery of new NEPC therapies targeting the TME.
Collapse
Affiliation(s)
- Hengfeng Zhou
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangrong He
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Chao Li
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Liang Deng
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Long
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| |
Collapse
|
9
|
Scimeca M, Montanaro M, Bonfiglio R, Anemona L, Agrò EF, Asimakopoulos AD, Bei R, Manzari V, Urbano N, Giacobbi E, Servadei F, Bonanno E, Schillaci O, Mauriello A. The ETS Homologous Factor (EHF) Represents a Useful Immunohistochemical Marker for Predicting Prostate Cancer Metastasis. Diagnostics (Basel) 2022; 12:800. [PMID: 35453848 PMCID: PMC9025154 DOI: 10.3390/diagnostics12040800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The main aim of this study was to investigate the risk of prostate cancer metastasis formation associated with the expression of ETS homologous factor (EHF) in a cohort of bioptic samples. To this end, the expression of EHF was evaluated in a cohort of 152 prostate biopsies including primary prostate cancers that developed metastatic lesions, primary prostate cancers that did not develop metastasis, and benign lesions. Data here reported EHF as a candidate immunohistochemical prognostic biomarker for prostate cancer metastasis formation regardless of the Gleason scoring system. Indeed, our data clearly show that primary lesions with EHF positive cells ≥40% had a great risk of developing metastasis within five years from the first diagnosis. Patients with these lesions had about a 40-fold increased risk of developing metastasis as compared with patients with prostate lesions characterized by a percentage of EHF positive cells ≤30%. In conclusion, the immunohistochemical evaluation of EHF could significantly improve the management of prostate cancer patients by optimizing the diagnostic and therapeutic health procedures and, more important, ameliorating the patient's quality of life.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
- San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
- Faculty of Medicine, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| | - Rita Bonfiglio
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| | - Lucia Anemona
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| | - Enrico Finazzi Agrò
- Department of Surgical Sciences, Division of Urology, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.A.); (A.D.A.)
| | - Anastasios D. Asimakopoulos
- Department of Surgical Sciences, Division of Urology, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.A.); (A.D.A.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (V.M.)
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (V.M.)
| | - Nicoletta Urbano
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy;
| | - Erica Giacobbi
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| | - Francesca Servadei
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense, 18, 86077 Pozzilli, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| |
Collapse
|
10
|
Deng L, Li C, He Q, Huang C, Chen Q, Zhang S, Wang L, Gan Y, Long Z. Superselective Prostate Artery Embolization for Treatment of Severe Haematuria Secondary to Rapid Progression of Treatment-Induced Neuroendocrine Prostate Cancer: A Case Report. Onco Targets Ther 2022; 15:67-75. [PMID: 35082500 PMCID: PMC8786387 DOI: 10.2147/ott.s345193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Treatment-induced neuroendocrine prostate cancer (t-NEPC) represents a highly aggressive subtype of castration-resistant prostate cancer that commonly arises from prostate adenocarcinoma (AdPC) after continuous androgen deprivation therapy (ADT). However, current treatments for t-NEPC are limited and far from satisfactory. According to our limited knowledge, report regarding the management of t-NEPC related hemorrhage is rare. Here, we report a case of t-NEPC formation after chronic hormonal therapy accompanying with severe bleeding in primary tumor and share our experiences to deal with the severe hematuria resulting from the progression of t-NEPC tumor. Case Presentation An 80-year-old man with a significantly high prostate-specific antigen was diagnosed via pathology as advanced AdPC due to multiple bone metastases. He then received ADT including bicalutamide and goserelin. After 20 months of stable disease, the cancer rapidly progressed and presented with severe gross hematuria caused by bleeding of the primary tumor. The histopathologic analysis of a secondary biopsy of the primary tumor confirmed neuroendocrine prostate cancer, and subsequent genetic testing revealed germ-line mutations in the RB1 and FOXA1. To control the bleeding and relieve symptoms, the patient was treated with superselective prostate artery embolization (PAE). After the left internal pudendal artery and the right prostatic artery were embolized, hematuria was quickly alleviated and disappeared. However, the patient was not a suitable candidate to platinum-based chemotherapy due to weak constitution. Goserelin was continuously applied to maintain castration level of serum testosterone. Meanwhile, palliative radiotherapy to the prostate tumor, high-risk lymph node drainage areas (including iliac and para-aortic lymph nodes, internal iliac lymph nodes, presacral lymph nodes and obturator nerve lymph nodes) and bone metastases (right sacroiliac joint and thoracic vertebra) was performed and relieved the pain. Unfortunately, this patient eventually died of cachexia and multiple organ failure nearly 27 months after initial diagnosis. Conclusion To treat severe hematuria caused by progression of t-NEPC, superselective PAE may be a rapid and efficient way to stop bleeding.
Collapse
Affiliation(s)
- Liang Deng
- Andrology Center, Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, 410013, People’s Republic of China
| | - Chao Li
- Andrology Center, Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, 410013, People’s Republic of China
| | - Qiangrong He
- Andrology Center, Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, 410013, People’s Republic of China
| | - Chenghui Huang
- Department of Medical Oncology, The Third Xiangya Hospital of Central South University, Changsha, 410013, People’s Republic of China
| | - Qian Chen
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, 410013, People’s Republic of China
| | - Shengwang Zhang
- Department of Radiation Oncology, The Third Xiangya Hospital of Central South University, Changsha, 410013, People’s Republic of China
| | - Long Wang
- Andrology Center, Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, 410013, People’s Republic of China
| | - Yu Gan
- Department of Urology, Xiangya Hospital of Central South University, Changsha, 410008, People’s Republic of China
- Correspondence: Yu Gan, Department of Urology, Xiangya Hospital of Central South University, 87 Xiang Road, Changsha, Hunan, People’s Republic of China, Tel +86 15111140206, Fax +86 73184327332, Email
| | - Zhi Long
- Andrology Center, Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, 410013, People’s Republic of China
- Zhi Long, Andrology Center, Department of Urology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, People’s Republic of China, Tel +86 13755076226, Fax +86 73188618028 Email
| |
Collapse
|
11
|
Slabáková E, Kahounová Z, Procházková J, Souček K. Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040075. [PMID: 34940756 PMCID: PMC8704250 DOI: 10.3390/ncrna7040075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients’ expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.
Collapse
|
12
|
Ganini C, Amelio I, Bertolo R, Candi E, Cappello A, Cipriani C, Mauriello A, Marani C, Melino G, Montanaro M, Natale ME, Tisone G, Shi Y, Wang Y, Bove P. Serine and one-carbon metabolisms bring new therapeutic venues in prostate cancer. Discov Oncol 2021; 12:45. [PMID: 35201488 PMCID: PMC8777499 DOI: 10.1007/s12672-021-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Serine and one-carbon unit metabolisms are essential biochemical pathways implicated in fundamental cellular functions such as proliferation, biosynthesis of important anabolic precursors and in general for the availability of methyl groups. These two distinct but interacting pathways are now becoming crucial in cancer, the de novo cytosolic serine pathway and the mitochondrial one-carbon metabolism. Apart from their role in physiological conditions, such as epithelial proliferation, the serine metabolism alterations are associated to several highly neoplastic proliferative pathologies. Accordingly, prostate cancer shows a deep rearrangement of its metabolism, driven by the dependency from the androgenic stimulus. Several new experimental evidence describes the role of a few of the enzymes involved in the serine metabolism in prostate cancer pathogenesis. The aim of this study is to analyze gene and protein expression data publicly available from large cancer specimens dataset, in order to further dissect the potential role of the abovementioned metabolism in the complex reshaping of the anabolic environment in this kind of neoplasm. The data suggest a potential role as biomarkers as well as in cancer therapy for the genes (and enzymes) belonging to the one-carbon metabolism in the context of prostatic cancer.
Collapse
Affiliation(s)
- Carlo Ganini
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Ivano Amelio
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Riccardo Bertolo
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Angela Cappello
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Carla Marani
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Maria Emanuela Natale
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Yufang Shi
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Pierluigi Bove
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| |
Collapse
|