1
|
Pomella S, Melaiu O, Dri M, Martelli M, Gargari M, Barillari G. Effects of Angiogenic Factors on the Epithelial-to-Mesenchymal Transition and Their Impact on the Onset and Progression of Oral Squamous Cell Carcinoma: An Overview. Cells 2024; 13:1294. [PMID: 39120324 PMCID: PMC11311310 DOI: 10.3390/cells13151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
High levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)-2 and angiopoietin (ANG)-2 are found in tissues from oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). As might be expected, VEGF, FGF-2, and ANG-2 overexpression parallels the development of new blood and lymphatic vessels that nourish the growing OPMDs or OSCCs and provide the latter with metastatic routes. Notably, VEGF, FGF-2, and ANG-2 are also linked to the epithelial-to-mesenchymal transition (EMT), a trans-differentiation process that respectively promotes or exasperates the invasiveness of normal and neoplastic oral epithelial cells. Here, we have summarized published work regarding the impact that the interplay among VEGF, FGF-2, ANG-2, vessel generation, and EMT has on oral carcinogenesis. Results from the reviewed studies indicate that VEGF, FGF-2, and ANG-2 spark either protein kinase B (AKT) or mitogen-activated protein kinases (MAPK), two signaling pathways that can promote both EMT and new vessels' formation in OPMDs and OSCCs. Since EMT and vessel generation are key to the onset and progression of OSCC, as well as to its radio- and chemo-resistance, these data encourage including AKT or MAPK inhibitors and/or antiangiogenic drugs in the treatment of this malignancy.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Maria Dri
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Mirko Martelli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Marco Gargari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| |
Collapse
|
2
|
Zhang L, Qian Y. An epithelial-mesenchymal transition-related prognostic model for colorectal cancer based on weighted gene co-expression network analysis. J Int Med Res 2022; 50:3000605221140683. [PMID: 36510452 DOI: 10.1177/03000605221140683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To identify susceptibility modules and genes for colorectal cancer (CRC) using weighted gene co-expression network analysis (WGCNA). METHODS Four microarray datasets were downloaded from the Gene Expression Omnibus database. We divided the tumor samples into three subgroups based on consensus clustering of gene expression, and analyzed the correlations between the subgroups and clinical features. The genetic features of the subgroups were investigated by gene set enrichment analysis (GSEA). A gene expression network was constructed using WGCNA, and a protein-protein interaction (PPI) network was used to identify the key genes. Gene modules were annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. RESULTS We divided the cancer cases into three subgroups based on consensus clustering (subgroups I, II, III). The green module identified by WGCNA was correlated with clinical characteristics. Ten key genes were identified according to their degree of connectivity in the protein-protein interaction network: FYN, SEMA3A, AP2M1, L1CAM, NRP1, TLN1, VWF, ITGB3, ILK, and ACTN1. CONCLUSION We identified 10 hub genes as candidate biomarkers for CRC. These key genes may provide a theoretical basis for targeted therapy against CRC.
Collapse
Affiliation(s)
- Lina Zhang
- Department of General Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang, China
| | - Yucheng Qian
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
3
|
Gao S, Xue J, Wu X, Zhong T, Zhang Y, Li S. The relation of blood cell division control protein 42 level with disease risk, comorbidity, tumor features/markers, and prognosis in colorectal cancer patients. J Clin Lab Anal 2022; 36:e24572. [PMID: 35735582 PMCID: PMC9279954 DOI: 10.1002/jcla.24572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cell division control protein 42 (CDC42) is involved in colorectal cancer (CRC) progression by modulating CD8+ T cell activation, immune escape, and direct oncogenetic biological processes. This study aimed to explore the correlation of blood CDC42 with disease risk, comorbidities, disease features, tumor markers, and prognosis among CRC patients. METHODS CDC42 in peripheral blood mononuclear cells was detected by reverse transcription-quantitative polymerase chain reaction from 250 resectable CRC patients and 50 healthy controls (HCs). CDC42 was divided by quartiles, as well as high and low expressions in CRC patients for correlation and survival analysis. RESULTS CDC42 was elevated in CRC patients vs. HCs (p < 0.001), which had a good ability to distinguish CRC patients from HCs with the area under the curve (95% confidence interval) of 0.889 (0.841-0.937). In CRC patients, CDC42 was not associated with demographics or comorbidities (all p > 0.05), while its higher quartile was linked to increased T stage (p < 0.001), N stage (p = 0.009), TNM stage (p < 0.001), abnormal carcinoembryonic antigen (p = 0.043), and adjuvant chemotherapy administration (p = 0.002). Higher CDC42 quartile (p = 0.002) and CDC42 high (vs. low) (p < 0.001) were related to worse disease-free survival (DFS); meanwhile, elevated CDC42 quartile (p = 0.002) and CDC42 high (vs. low) (p = 0.001) were also linked to poor overall survival (OS). Multivariate Cox's regression analysis presented that CDC42 quartile 3 and 4 (vs. quartile 1) independently predicted declined DFS and OS (all p < 0.05). CONCLUSION Circulating CDC42 relates to higher disease risk, T, N, and TNM stage, abnormal tumor marker, and poor prognosis among CRC patients.
Collapse
Affiliation(s)
- Shuquan Gao
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Tingting Zhong
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yingchun Zhang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Shaodong Li
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
4
|
Huang J, Zhou Q. Gene Biomarkers Related to Th17 Cells in Macular Edema of Diabetic Retinopathy: Cutting-Edge Comprehensive Bioinformatics Analysis and In Vivo Validation. Front Immunol 2022; 13:858972. [PMID: 35651615 PMCID: PMC9149582 DOI: 10.3389/fimmu.2022.858972] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous studies have shown that T-helper 17 (Th17) cell-related cytokines are significantly increased in the vitreous of proliferative diabetic retinopathy (PDR), suggesting that Th17 cells play an important role in the inflammatory response of diabetic retinopathy (DR), but its cell infiltration and gene correlation in the retina of DR, especially in diabetic macular edema (DME), have not been studied. Methods The dataset GSE160306 was downloaded from the Gene Expression Omnibus (GEO) database, which contains 9 NPDR samples and 10 DME samples. ImmuCellAI algorithm was used to estimate the abundance of Th17 cells in 24 kinds of infiltrating immune cells. The differentially expressed Th17 related genes (DETh17RGs) between NPDR and DME were documented by difference analysis and correlation analysis. Through aggregate analyses such as gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis, a protein-protein interaction (PPI) network was constructed to analyze the potential function of DETh17RGs. CytoHubba plug-in algorithm, Lasso regression analysis and support vector machine recursive feature elimination (SVM-RFE) were implemented to comprehensively identify Hub DETh17RGs. The expression archetypes of Hub DETh17RGs were further verified in several other independent datasets related to DR. The Th17RG score was defined as the genetic characterization of six Hub DETh17RGs using the GSVA sample score method, which was used to distinguish early and advanced diabetic nephropathy (DN) as well as normal and diabetic nephropathy. Finally, real-time quantitative PCR (qPCR) was implemented to verify the transcription levels of Hub DETh17RGs in the STZ-induced DR model mice (C57BL/6J). Results 238 DETh17RGs were identified, of which 212 genes were positively correlated while only 26 genes were negatively correlated. Six genes (CD44, CDC42, TIMP1, BMP7, RHOC, FLT1) were identified as Hub DETh17RGs. Because DR and DN have a strong correlation in clinical practice, the verification of multiple independent datasets related to DR and DN proved that Hub DETh17RGs can not only distinguish PDR patients from normal people, but also distinguish DN patients from normal people. It can also identify the initial and advanced stages of the two diseases (NPDR vs DME, Early DN vs Advanced DN). Except for CDC42 and TIMP1, the qPCR transcription levels and trends of other Hub DETh17RGs in STZ-induced DR model mice were consistent with the human transcriptome level in this study. Conclusion This study will improve our understanding of Th17 cell-related molecular mechanisms in the progression of DME. At the same time, it also provides an updated basis for the molecular mechanism of Th17 cell crosstalk in the eye and kidney in diabetes.
Collapse
Affiliation(s)
- Jing Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Center of National Ocular Disease Clinical Research Center, Nanchang, China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Center of National Ocular Disease Clinical Research Center, Nanchang, China
| |
Collapse
|
5
|
Malmhäll-Bah E, Andersson KME, Erlandsson MC, Akula MK, Brisslert M, Wiel C, El Zowalaty AE, Sayin VI, Bergö MO, Bokarewa MI. Rho-GTPase dependent leukocyte interaction generates pro-inflammatory thymic Tregs and causes arthritis. J Autoimmun 2022; 130:102843. [PMID: 35643017 DOI: 10.1016/j.jaut.2022.102843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/23/2022]
Abstract
Conditional mutation of protein geranylgeranyltransferase type I (GGTase-I) in macrophages (GLC) activates Rho-GTPases and causes arthritis in mice. Knocking out Rag1 in GLC mice alleviates arthritis which indicates that lymphocytes are required for arthritis development in those mice. To study GLC dependent changes in the adaptive immunity, we isolated CD4+ T cells from GLC mice (CD4+GLCs). Spleen and joint draining lymph nodes (dLN) CD4+GLCs exhibited high expression of Cdc42 and Rac1, which repressed the caudal HOXA proteins and activated the mechanosensory complex to facilitate migration. These CDC42/RAC1 rich CD4+GLCs presented a complete signature of GARP+NRP1+IKZF2+FOXP3+ regulatory T cells (Tregs) of thymic origin. Activation of the β-catenin/Lef1 axis promoted a pro-inflammatory Th1 phenotype of Tregs, which was strongly associated with arthritis severity. Knockout of Cdc42 in macrophages of GLC mice affected CD4+ cell biology and triggered development of non-thymic Tregs. Knockout of Rac1 and RhoA had no such effects on CD4+ cells although it alleviated arthritis in GLC mice. Disrupting macrophage and T cell interaction with CTLA4 fusion protein reduced the Th1-driven inflammation and enrichment of thymic Tregs into dLNs. Antigen challenge reinforced the CD4+GLC phenotype in non-arthritic heterozygote GLC mice and increased accumulation of Rho-GTPase expressing thymic Tregs in dLNs. Our study demonstrates an unexpected role of macrophages in stimulating the development of pro-inflammatory thymic Tregs and reveal activation of Rho-GTPases behind their arthritogenic phenotype.
Collapse
Affiliation(s)
- Eric Malmhäll-Bah
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530, Gothenburg, Sweden
| | - Karin M E Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530, Gothenburg, Sweden
| | - Malin C Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530, Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gröna Stråket 16, 41346, Gothenburg, Sweden
| | - Murali K Akula
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Brisslert
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530, Gothenburg, Sweden
| | - Clotilde Wiel
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Ahmed E El Zowalaty
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Volkan I Sayin
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Martin O Bergö
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, 14183, Huddinge, Sweden
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, 40530, Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gröna Stråket 16, 41346, Gothenburg, Sweden.
| |
Collapse
|
6
|
Yan J, Wan D. Dysregulation of circulating CDC42 and its correlation with demographic characteristics, comorbidities, tumor features, chemotherapeutic regimen and survival profile in non-small-cell lung cancer patients. J Clin Lab Anal 2021; 36:e24140. [PMID: 34952984 DOI: 10.1002/jcla.24140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Cell division control protein 42 (CDC42) induces the immune escape, represses the CD8+ T-cell activation, and further leads to the tumor metastasis in various neoplasms, whereas the correlation of circulating CDC42 with clinical features and prognosis of non-small-cell lung cancer (NSCLC) remains elusive. Hence, the current study aimed to investigate this topic. METHODS Peripheral blood mononuclear cells from 263 NSCLC patients before treatment and 50 health controls (HC) were used for CDC42 determination by reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. RESULTS CDC42 expression was higher in NSCLC patients than HCs (p < 0.001). Besides, elevated CDC42 expression was correlated with the occurrence of lymph node (LYN) metastasis (p = 0.003) and advanced TNM stage (p = 0.007), but not related to other tumor features, demographic characteristics, comorbidities, nor neoadjuvant/adjuvant chemotherapy (all p > 0.05). Additionally, elevated CDC42 expression was correlated with unfavorable accumulating disease-free survival (DFS) (p < 0.001) and overall survival (OS) (p = 0.025). More importantly, multivariate Cox's proportional hazard regression analysis revealed that elevated CDC42 expression (hazard ratio (HR): 1.284, p < 0.001) and higher TNM stage (HR: 1.428, p = 0.003) were independently associated with shorter DFS, meanwhile elevated CDC42 expression (HR: 1.193, p = 0.035), higher pathological grade (HR: 1.558, p = 0.003), higher TNM stage (HR: 1.703, p = 0.001) and higher Eastern Cooperative Oncology Group performance status (ECOG PS) score (HR: 1.538, p = 0.038) were independently correlated with unsatisfying OS. CONCLUSION Circulating CDC42 is highly expressed with its overexpression linked with LYN metastasis, poor DFS, and OS in NSCLC patients.
Collapse
Affiliation(s)
- Jie Yan
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital, (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| | - Daihong Wan
- Department of Surgical Anesthesiology, Huangshi Central Hospital, (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| |
Collapse
|
7
|
Ding DX, Li Q, Shi K, Li H, Guo Q, Zhang YQ. LncRNA NEAT1-miR-101-3p/miR-335-5p/miR-374a-3p/miR-628-5p-TRIM6 axis identified as the prognostic biomarker for lung adenocarcinoma via bioinformatics and meta-analysis. Transl Cancer Res 2021; 10:4870-4883. [PMID: 35116339 PMCID: PMC8798981 DOI: 10.21037/tcr-21-2181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Overexpression of the tripartite motif containing 6 (TRIM6) is associated with dismal prognosis in cancer patients, but its exact roles in lung adenocarcinoma (LUAD) have not been reported. METHODS The roles of TRIM6 are identified by using The Cancer Genome Atlas (TCGA), TIMER2, Gene Expression Omnibus (GEO), etc., and the regulatory networks and related-prognostic biomarkers of TRIM6 are identified via the ENCORI and LNCAR databases in the LUAD progression. RESULTS TRIM6 expression level in LUAD tissues was significantly increased. TRIM6 over-expression level in LUAD patients was associated with smoking, clinical stage, histological type, lymph node metastasis, TP53 mutation and dismal prognosis, and related to prognosis-related age, race, sex, clinical stage and tumor purity of LUAD patients. TRIM6 overexpression was associated with the levels of CD8+ T cells, macrophages, neutrophils and myeloid dendritic cells, and correlated with the levels of LUAD immune cell markers CD8A, IRF5, CD163, VSIG4, MS4A4A, ITGAM, HLA-DPA1, NRP1, ITGAX, etc. TRIM6 might influence the progression of LUAD by regulating homologous recombination, oocyte meiosis, and ubiquitin-mediated proteolysis. LUAD patients with overexpression of miR-101-3p, miR-335-5p, miR-374a-3p, miR-628-5p, and NEAT1 had a poor prognosis. CONCLUSIONS NEAT1-miR-101-3p/335-5p/374a-3p/628-5p-TRIM6 network, which we constructed from our results, might be an important factor in the dismal prognosis of LUAD patients.
Collapse
Affiliation(s)
- Dong-Xiao Ding
- Department of Thoracic Surgery, Beilun District People’s Hospital of Ningbo, Ningbo, China
| | - Qiao Li
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ke Shi
- Department of Thoracic Surgery, Beilun District People’s Hospital of Ningbo, Ningbo, China
| | - Hui Li
- Women and Children’s Hospital of Ningbo, Ningbo, China
| | - Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yun-Qiang Zhang
- Department of Thoracic Surgery, Beilun District People’s Hospital of Ningbo, Ningbo, China
| |
Collapse
|
8
|
Zeng J, Li M, Shi H, Guo J. Upregulation of FGD6 Predicts Poor Prognosis in Gastric Cancer. Front Med (Lausanne) 2021; 8:672595. [PMID: 34291059 PMCID: PMC8288026 DOI: 10.3389/fmed.2021.672595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The aim of this study was to investigate the prognostic significance of faciogenital dysplasia 6 (FGD6) in gastric cancer (GC). Methods: The data of GC patients from The Cancer Genome Atlas (TCGA) database were used for the primary study. Then, our data were validated by the GEO database and RuiJin cohort. The relationship between the FGD6 level and various clinicopathological features was analyzed by logistic regression and univariate Cox regression. Multivariate Cox regression analysis was used to evaluate whether FGD6 was an independent prognostic factor for survival of patients with GC. The relationship between FGD6 and overall survival time was explored by the Kaplan–Meier method. In addition, gene set enrichment analysis (GSEA) was performed to investigate the possible biological processes of FGD6. Results: The FGD6 level was significantly overexpressed in GC tissues, compared with adjacent normal tissues. The high expression of FGD6 was related to a high histological grade, stage, and T classification and poor prognosis of GC. Multivariate Cox regression analysis showed that FGD6 was an independent prognostic factor for survival of patients with GC. GSEA identified that the high expression of FGD6 was mainly enriched in regulation of actin cytoskeleton. Conclusion: FGD6 may be a prognostic biomarker for predicting the outcome of patients with GC.
Collapse
Affiliation(s)
- Jianmin Zeng
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Man Li
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huasheng Shi
- Medical College, Qingdao University, Qingdao, China
| | - Jianhui Guo
- Second Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
9
|
Pradhan R, Ngo PA, Martínez-Sánchez LDC, Neurath MF, López-Posadas R. Rho GTPases as Key Molecular Players within Intestinal Mucosa and GI Diseases. Cells 2021; 10:cells10010066. [PMID: 33406731 PMCID: PMC7823293 DOI: 10.3390/cells10010066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.
Collapse
|