1
|
Zhang H, Han B, Tian S, Gong Y, Liu L. ZNF740 facilitates the malignant progression of hepatocellular carcinoma via the METTL3/HIF‑1A signaling axis. Int J Oncol 2024; 65:105. [PMID: 39301659 PMCID: PMC11436261 DOI: 10.3892/ijo.2024.5693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/11/2024] [Indexed: 09/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer‑related death, and efficient treatments to facilitate recovery and enhance long‑term outcomes are lacking. Zinc finger proteins (ZNFs), known as the largest group of transcription factors, have gained interest for their roles in HCC by stimulating the transcription of well‑known tumor‑causing genes. However, the specific roles and molecular mechanisms of ZNF740 in HCC remain unknown. The present study performed bioinformatics analysis and RNA‑sequencing analysis of differentially expressed genes in HCC, detected ZNF740 expression levels in HCC using reverse transcription‑quantitative PCR, western blotting and immunohistochemistry, and explored the effects of ZNF740 on the progression of liver cancer in vitro and in vivo using cellular functionality assays and cell‑derived xenografts. In addition, a dual‑luciferase reporter assay was performed to analyze the binding of ZNF740 with the METTL3 promoter. Furthermore, cell functionality experiments were performed to analyze whether ZNF740 promotes the proliferation of liver cancer cells in a METTL3‑dependent manner. Bioinformatics and immunoprecipitation assays were further used to analyze the molecular mechanism of ZNF740 in liver cancer. The present study demonstrated that ZNF740 expression was upregulated in HCC. Mechanistically, overexpressed ZNF740 interacted with the methyltransferase‑like 3 (METTL3) promoter and increased METTL3 expression, leading to the stabilization of hypoxia‑inducible factor‑1A (HIF1A) mRNA in an N6‑methyladenosine/YTH N6‑methyladenosine RNA‑binding protein 1‑dependent manner. Eventually, the ZNF740/METTL3/HIF1A signaling axis may facilitate the proliferation, invasion and metastasis of liver cancer via METTL3/HIF‑1A signaling. The present findings revealed the important role of ZNF740 and suggested a potential therapeutic approach that might improve clinical therapies for liver cancer.
Collapse
Affiliation(s)
- Hao Zhang
- College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Bing Han
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - She Tian
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Yongjun Gong
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Li Liu
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| |
Collapse
|
2
|
Du F, Xie Y, Wu S, Ji M, Dong B, Zhu C. Expression and Targeted Application of Claudins Family in Hepatobiliary and Pancreatic Diseases. J Hepatocell Carcinoma 2024; 11:1801-1821. [PMID: 39345937 PMCID: PMC11439345 DOI: 10.2147/jhc.s483861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer (CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed.
Collapse
Affiliation(s)
- Fangqian Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Shengze Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Mengling Ji
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Liang J, Yao N, Deng B, Li J, Jiang Y, Liu T, Hu Y, Cao M, Hong J. GINS1 promotes ZEB1-mediated epithelial-mesenchymal transition and tumor metastasis via β-catenin signaling in hepatocellular carcinoma. J Cell Physiol 2024; 239:e31237. [PMID: 38468464 DOI: 10.1002/jcp.31237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
GINS1 regulates DNA replication in the initiation and elongation phases and plays an important role in the progression of various malignant tumors. However, the role of GINS1 in hepatocellular carcinoma (HCC) remains largely unclear. In this study, we investigated the role and underlying mechanisms of GINS1 in contributing to HCC metastasis. We found that GINS1 was significantly upregulated in HCC tissues and cell lines, especially in HCC tissues with vascular invasion and HCC cell lines with highly metastatic properties. Additionally, high expression of GINS1 was positively correlated with the progressive clinical features of HCC patients, including tumor number (multiple), tumor size (>5 cm), advanced tumor stage, vascular invasion and early recurrence, suggesting that GINS1 upregulation was greatly involved in HCC metastasis. Moreover, Kaplan-Meier survival analysis revealed that high GINS1 expression predicted a poor prognosis. Both in vitro and in vivo, silencing of GINS1 inhibited proliferation, migration, invasion and metastasis, while overexpression of GINS1 induced opposite effects. Mechanistically, we found that ZEB1 was a crucial regulator of GINS1-induced epithelial-mesenchymal transition (EMT), and GINS1 promoted EMT and tumor metastasis through β-catenin signaling. Overall, the present study demonstrated that GINS1 promoted ZEB1-mediated EMT and tumor metastasis via β-catenin signaling in HCC.
Collapse
Affiliation(s)
- Junjie Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Nan Yao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Bo Deng
- Department of General Surgery, The Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Jinying Li
- Department of Digestive Endoscopy, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuchuan Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tongzheng Liu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Youzhu Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of General Surgery, The Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Dymerska D, Marusiak AA. Drivers of cancer metastasis - Arise early and remain present. Biochim Biophys Acta Rev Cancer 2024; 1879:189060. [PMID: 38151195 DOI: 10.1016/j.bbcan.2023.189060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Cancer and its metastases arise from mutations of genes, drivers that promote a tumor's growth. Analyses of driver events provide insights into cancer cell history and may lead to a better understanding of oncogenesis. We reviewed 27 metastatic research studies, including pan-cancer studies, individual cancer studies, and phylogenetic analyses, and summarized our current knowledge of metastatic drivers. All of the analyzed studies had a high level of consistency of driver mutations between primary tumors and metastasis, indicating that most drivers appear early in cancer progression and are maintained in metastatic cells. Additionally, we reviewed data from around 50,000 metastatic cancer patients and compiled a list of genes altered in metastatic lesions. We performed Gene Ontology analysis and confirmed that the most significantly enriched processes in metastatic lesions were the epigenetic regulation of gene expression, signal transduction, cell cycle, programmed cell death, DNA damage, hypoxia and EMT. In this review, we explore the most recent discoveries regarding genetic factors in the advancement of cancer, specifically those that drive metastasis.
Collapse
Affiliation(s)
- Dagmara Dymerska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| | - Anna A Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
5
|
Wang W, Zhou Y, Li W, Quan C, Li Y. Claudins and hepatocellular carcinoma. Biomed Pharmacother 2024; 171:116109. [PMID: 38185042 DOI: 10.1016/j.biopha.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high incidence and dismal prognosis, making it a significant global health burden. To change this, the development of new therapeutic strategies is imminent. The claudin (CLDN) family, as key components of tight junctions (TJs), plays an important role in the initiation and development of cancer. Dysregulated expression of CLDNs leads to loss of intercellular adhesion and aberrant cell signaling, which are closely related to cancer cell invasion, migration, and epithelial-mesenchymal transition (EMT). CLDN1, CLDN3, CLDN4, CLDN5, CLDN6, CLDN7, CLDN9, CLDN10, CLDN11, CLDN14, and CLDN17 are aberrantly expressed in HCC, which drives the progression of the disease. Consequently, they have tremendous potential as prognostic indicators and therapeutic targets. This article summarizes the aberrant expression, molecular mechanisms, and clinical application studies of different subtypes of CLDNs in HCC, with a particular emphasis on CLDN1.
Collapse
Affiliation(s)
- Wentao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The Second Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Yi Zhou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China.
| |
Collapse
|
6
|
Wang H, Li Z, Tao Y, Ou S, Ye J, Ran S, Luo K, Guan Z, Xiang J, Yan G, Wang Y, Ma T, Yu S, Song Y, Huang R. Characterization of endoplasmic reticulum stress unveils ZNF703 as a promising target for colorectal cancer immunotherapy. J Transl Med 2023; 21:713. [PMID: 37821882 PMCID: PMC10566095 DOI: 10.1186/s12967-023-04547-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant tumors globally, with high morbidity and mortality. Endoplasmic reticulum is a major organelle responsible for protein synthesis, processing, and transport. Endoplasmic reticulum stress (ERS) refers to the abnormal accumulation of unfolded and misfolded proteins in the endoplasmic reticulum, which are involved in tumorigenesis and cancer immunity. Nevertheless, the clinical significance of ERS remains largely unexplored in CRC. METHODS In present study, we performed an unsupervised clustering to identify two types of ERS-related subtypes [ERS clusters, and ERS-related genes (ERSGs) clusters] in multiple large-scale CRC cohorts. Through the utilization of machine learning techniques, we have successfully developed an uncomplicated yet robust gene scoring system (ERSGs signature). Furthermore, a series of analyses, including GO, KEGG, Tumor Immune Dysfunction and Exclusion (TIDE), the Consensus Molecular Subtypes (CMS), were used to explore the underlying biological differences and clinical significance between these groups. And immunohistochemical and bioinformatics analyses were performed to explore ZNF703, a gene of ERSGs scoring system. RESULTS We observed significant differences in prognosis and tumor immune status between the ERS clusters as well as ERSGs clusters. And the ERSGs scoring system was an independent risk factor for overall survival; and exhibited distinct tumor immune status in multicenter CRC cohorts. Besides, analyses of TNM stages, CMS groups demonstrated that patients in advanced stage and CMS4 had higher ERSGs scores. In addition, the ERSGs scores inversely correlated with positive ICB response predictors (such as, CD8A, CD274 (PD-L1), and TIS), and directly correlated with negative ICB response predictors (such as, TIDE, T cell Exclusion, COX-IS). Notably, immunohistochemical staining and bioinformatics analyses revealed that ZNF70 correlated with CD3 + and CD8 + T cells infiltration. CONCLUSION Based on large-scale and multicenter transcriptomic data, our study comprehensively revealed the essential role of ERS in CRC; and constructed a novel ERSGs scoring system to predict the prognosis of patients and the efficacy of ICB treatment. Furthermore, we identified ZNF703 as a potentially promising target for ICB therapy in CRC.
Collapse
Affiliation(s)
- Hufei Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Zhi Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yangbao Tao
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Suwen Ou
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Jinhua Ye
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Songlin Ran
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Kangjia Luo
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Zilong Guan
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Jun Xiang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Guoqing Yan
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Yang Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Tianyi Ma
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Shan Yu
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China.
| | - Yanni Song
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Rui Huang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China.
| |
Collapse
|
7
|
Wang S, Liu R. Insights into the pleiotropic roles of ZNF703 in cancer. Heliyon 2023; 9:e20140. [PMID: 37810156 PMCID: PMC10559930 DOI: 10.1016/j.heliyon.2023.e20140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Zinc finger proteins (ZNFs) belong to the NET/NLZ protein family. In physiological functions, ZNF703 play significant roles in embryonic development, especially in the nervous system. As an transcription factors with zinc finger domains, abnormal regulation of the ZNF703 protein is associated with enhanced proliferation, invasion, and metastasis as well as drug resistance in many tumors, although mechanisms of action vary depending on the specific tumor microenvironment. ZNF703 lacks a nuclear localization sequence despite its function requiring nuclear DNA binding. The purpose of this review is to summarize the architecture of ZNF703, its roles in tumorigenesis, and tumor progression, as well as future oncology therapeutic prospects, which have implications for understanding tumor susceptibility and progression.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Obstetrics and Gynaecology, Tianjin Central Hospital of Gynecology Obstetrics, No. 156 Nan Kai San Ma Lu, Tianjin, 300000, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300000, China
- Department of Obstetrics and Gynaecology, Nankai University Maternity Hospital, Tianjin, 300000, China
| | - Rong Liu
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
8
|
Zhao J, Wen D, Zhang S, Jiang H, Di X. The role of zinc finger proteins in malignant tumors. FASEB J 2023; 37:e23157. [PMID: 37615242 DOI: 10.1096/fj.202300801r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Zinc finger proteins (ZNFs) are the largest family of transcriptional factors in mammalian cells. Recently, their role in the development, progression, and metastasis of malignant tumors via regulating gene transcription and translation processes has become evident. Besides, their possible involvement in drug resistance has also been found, indicating that ZNFs have the potential to become new biological markers and therapeutic targets. In this review, we summarize the oncogenic and suppressive roles of various ZNFs in malignant tumors, including lung, breast, liver, gastric, colorectal, pancreatic, and other cancers, highlighting their role as prognostic markers, and hopefully provide new ideas for the treatment of malignant tumors in the future.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
9
|
Udu-Ituma S, Adélaïde J, Le TK, Omabe K, Finetti P, Paris C, Guille A, Bertucci F, Birnbaum D, Rocchi P, Chaffanet M. ZNF703 mRNA-Targeting Antisense Oligonucleotide Blocks Cell Proliferation and Induces Apoptosis in Breast Cancer Cell Lines. Pharmaceutics 2023; 15:1930. [PMID: 37514116 PMCID: PMC10384502 DOI: 10.3390/pharmaceutics15071930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The luminal B molecular subtype of breast cancers (BC) accounts for more than a third of BCs and is associated with aggressive clinical behavior and poor prognosis. The use of endocrine therapy in BC treatment has significantly contributed to the decrease in the number of deaths in recent years. However, most BC patients with prolonged exposure to estrogen receptor (ER) selective modulators such as tamoxifen develop resistance and become non-responsive over time. Recent studies have implicated overexpression of the ZNF703 gene in BC resistance to endocrine drugs, thereby highlighting ZNF703 inhibition as an attractive modality in BC treatment, especially luminal B BCs. However, there is no known inhibitor of ZNF703 due to its nuclear association and non-enzymatic activity. Here, we have developed an antisense oligonucleotide (ASO) against ZNF703 mRNA and shown that it downregulates ZNF703 protein expression. ZNF703 inhibition decreased cell proliferation and induced apoptosis. Combined with cisplatin, the anti-cancer effects of ZNF703-ASO9 were improved. Moreover, our work shows that ASO technology may be used to increase the number of targetable cancer genes.
Collapse
Affiliation(s)
- Sandra Udu-Ituma
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
- Department of Biology, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki P.M.B. 1010, Ebonyi State, Nigeria
- European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - José Adélaïde
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Thi Khanh Le
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
- European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Kenneth Omabe
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Pascal Finetti
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Clément Paris
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Arnaud Guille
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - François Bertucci
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Daniel Birnbaum
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Palma Rocchi
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
- European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Max Chaffanet
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| |
Collapse
|
10
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
11
|
Seydi H, Nouri K, Rezaei N, Tamimi A, Hassan M, Mirzaei H, Vosough M. Autophagy orchestrates resistance in hepatocellular carcinoma cells. Biomed Pharmacother 2023; 161:114487. [PMID: 36963361 DOI: 10.1016/j.biopha.2023.114487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
Treatment resistance is one of the major barriers for therapeutic strategies in hepatocellular carcinoma (HCC). Many studies have indicated that chemotherapy and radiotherapy induce autophagy machinery (cell protective autophagy) in HCC cells. In addition, many experiments report a remarkable crosstalk between treatment resistance and autophagy pathways. Thus, autophagy could be one of the key factors enabling tumor cells to hinder induced cell death after medical interventions. Therefore, extensive research on the molecular pathways involved in resistance induction and autophagy have been conducted to achieve the desired therapeutic response. The key molecular pathways related to the therapy resistance are TGF-β, MAPK, NRF2, NF-κB, and non-coding RNAs. In addition, EMT, drug transports, apoptosis evasion, DNA repair, cancer stem cells, and hypoxia could have considerable impact on the hepatoma cell's response to therapies. These mechanisms protect tumor cells against various treatments and many studies have shown that each of them is connected to the molecular pathways of autophagy induction in HCC. Hence, autophagy inhibition may be an effective strategy to improve therapeutic outcome in HCC patients. In this review, we further highlight how autophagy leads to poor response during treatment through a complex molecular network and how it enhances resistance in primary liver cancer. We propose that combinational regimens of approved HCC therapeutic protocols plus autophagy inhibitors may overcome drug resistance in HCC therapy.
Collapse
Affiliation(s)
- Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Kosar Nouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Islamic Republic of Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
12
|
Samavarchi Tehrani S, Esmaeili F, Shirzad M, Goodarzi G, Yousefi T, Maniati M, Taheri-Anganeh M, Anushiravani A. The critical role of circular RNAs in drug resistance in gastrointestinal cancers. Med Oncol 2023; 40:116. [PMID: 36917431 DOI: 10.1007/s12032-023-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Nowadays, drug resistance (DR) in gastrointestinal (GI) cancers, as the main reason for cancer-related mortality worldwide, has become a serious problem in the management of patients. Several mechanisms have been proposed for resistance to anticancer drugs, including altered transport and metabolism of drugs, mutation of drug targets, altered DNA repair system, inhibited apoptosis and autophagy, cancer stem cells, tumor heterogeneity, and epithelial-mesenchymal transition. Compelling evidence has revealed that genetic and epigenetic factors are strongly linked to DR. Non-coding RNA (ncRNA) interferences are the most crucial epigenetic alterations explored so far, and among these ncRNAs, circular RNAs (circRNAs) are the most emerging members known to have unique properties. Due to the absence of 5' and 3' ends in these novel RNAs, the two ends are covalently bonded together and are generated from pre-mRNA in a process known as back-splicing, which makes them more stable than other RNAs. As far as the unique structure and function of circRNAs is concerned, they are implicated in proliferation, migration, invasion, angiogenesis, metastasis, and DR. A clear understanding of the molecular mechanisms responsible for circRNAs-mediated DR in the GI cancers will open a new window to the management of GI cancers. Hence, in the present review, we will describe briefly the biogenesis, multiple features, and different biological functions of circRNAs. Then, we will summarize current mechanisms of DR, and finally, discuss molecular mechanisms through which circRNAs regulate DR development in esophageal cancer, pancreatic cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amir Anushiravani
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Identification of Survival Risk and Immune-Related Characteristics of Kidney Renal Clear Cell Carcinoma. J Immunol Res 2022; 2022:6149369. [PMID: 35832648 PMCID: PMC9273399 DOI: 10.1155/2022/6149369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
Background Immunity exerts momentous functions in the progression and treatment of kidney renal clear cell carcinoma (KIRC). A better understanding of the relationship between KIRC and immunity may make a great contribution to evaluating the prognosis and immune-related therapeutic response of KIRC. Methods A series of information such as RNA sequence, clinical data, and tumor mutation burden (TMB) of KIRC patients were downloaded through The Cancer Genome Atlas (TCGA). Next, combining the survival information and gene expression data of TCGA and Gene Expression Omnibus (GEO), we established an immune gene-related prognosis model (IGRPM) and analyzed it. Then we constructed a nomogram which was convenient for clinicians to judge the prognosis of KIRC. Last but not the least, the expressions of some genes used to construct IGRPM in early KIRC, and adjacent normal tissues were verified through real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). Perl (strawberry-perl-5.30.0.1-64bit), R software (4.0.3), and GraphPad Prism 7 were used to process the relevant data. Results The single-sample gene set enrichment analysis (ssGSEA) showed that there were significant differences in StromalScore, ImmuneScore, ESTIMATEScore, TumorPurity, 22 kinds of human immune cells infiltration, and HLA genes expression between high immunity group (Immunity_H) and low immunity group (Immunity_L). The Immunity_H expressed more immune-related genes and enriched more immune-related functions than the Immunity_L. In addition, compared with the low-risk group, the high-risk group had worse survival outcome and higher TMB. Combining IGRPM-based risk characteristic and TMB, we found that low-TMB + low-risk was the most beneficial to the survival outcome of KIRC patients. The risk characteristic based on IGRPM could be used as an independent prognostic factor for KIRC, and the nomogram constructed for evaluating the prognosis of KIRC showed excellent predictive potential. The RT-qPCR results suggested that not all the genes used to construct IGRPM showed differential expression in early KIRC compared with adjacent normal tissues, but all these genes had significant influence on the prognosis of KIRC. Conclusion These comprehensive immune assessments and survival predictions, integrating multiple aspects of data and clinical information, can provide additional value to the current Tumor Node Metastasis staging system for risk stratification of KIRC and may facilitate the development of KIRC immunotherapy.
Collapse
|
14
|
Wang S, Wang C, Liu O, Hu Y, Li X, Lin B. miRNA-651-3p regulates EMT in ovarian cancer cells by targeting ZNF703 and via the MEK/ERK pathway. Biochem Biophys Res Commun 2022; 619:76-83. [PMID: 35749939 DOI: 10.1016/j.bbrc.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
miRNAs are non-coding single-stranded RNA molecules with many functions. Several miRNAs have been found to be dysregulated in ovarian cancer; however, the role of miR-651-3p in ovarian cancer remains unknown. Here, the expression level of miR-651-3p in ovarian tissue samples was determined via qRT-PCR, and then miR-651-3p was overexpressed and downregulated to study the functional changes in ovarian cancer cells. Based on previous research and database predictions, we analyzed the binding and regulatory effects of miR-651-3p on zinc finger protein 703 (ZNF703). We additionally evaluated the effect of miR-651-3p on epithelial-mesenchymal transition (EMT) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways in ovarian cancer cells. We found that miR-651-3p was downregulated in ovarian cancer tissues. miR-651-3p expression was associated with inhibited proliferation, invasion, and migration of ovarian cancer cells and promoted cell cycle arrest. Additionally, miR-651-3p was found to target ZNF703 and affect EMT in ovarian cancer by activating the MEK/ERK signaling pathway. MiR-651-3p was downregulated in ovarian cancer, and suppressed the malignant biological behavior of ovarian cancer by inhibiting ZNF703 and the MEK/ERK pathway. Our findings on miR-651-3p provided new insights for the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Caixia Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.
| |
Collapse
|
15
|
TGF-β induces GBM mesenchymal transition through upregulation of CLDN4 and nuclear translocation to activate TNF-α/NF-κB signal pathway. Cell Death Dis 2022; 13:339. [PMID: 35418179 PMCID: PMC9008023 DOI: 10.1038/s41419-022-04788-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/06/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor. The unregulated expression of Claudin-4 (CLDN4) plays an important role in tumor progression. However, the biological role of CLDN4 in GBM is still unknown. This study aimed to determine whether CLDN4 mediates glioma malignant progression, if so, it would further explore the molecular mechanisms of carcinogenesis. Our results revealed that CLDN4 was significantly upregulated in glioma specimens and cells. The inhibition of CLND4 expression could inhibit mesenchymal transformation, cell invasion, cell migration and tumor growth in vitro and in vivo. Moreover, combined with in vitro analysis, we found that CLDN4 can modulate tumor necrosis factor-α (TNF-α) signal pathway. Meanwhile, we also validated that the transforming growth factor-β (TGF-β) signal pathway can upregulate the expression of CLDN4, and promote the invasion ability of GBM cells. Conversely, TGF-β signal pathway inhibitor ITD-1 can downregulate the expression of CLDN4, and inhibit the invasion ability of GBM cells. Furthermore, we found that TGF-β can promote the nuclear translocation of CLDN4. In summary, our findings indicated that the TGF-β/CLDN4/TNF-α/NF-κB signal axis plays a key role in the biological progression of glioma. Disrupting the function of this signal axis may represent a new treatment strategy for patients with GBM.
Collapse
|
16
|
Liang W, Chen S, Yang G, Feng J, Ling Q, Wu B, Yan H, Cheng J. Overexpression of zinc-finger protein 677 inhibits proliferation and invasion by and induces apoptosis in clear cell renal cell carcinoma. Bioengineered 2022; 13:5292-5304. [PMID: 35164660 PMCID: PMC8973725 DOI: 10.1080/21655979.2022.2038891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies have demonstrated that zinc-finger protein 677 (ZNF677) acts as a tumor suppressor gene in cancer. However, the expression and function of ZNF677 in clear cell renal cell carcinoma (ccRCC) are still unclear. In this study, we used bioinformatics analysis and in vitro experiments to investigate the expression of ZNF677 in ccRCC tissues and the malignant biological behavior of ZNF677 in 786-0 cells. We demonstrated that ZNF677 is hypermethylated in ccRCC and is associated with clinicopathological features. The results of the functional assays indicate that ZNF677 inhibits tumor cell proliferation and invasion and induces apoptosis. Further prognostic analysis indicated that low expression of ZNF677 is associated with shorter overall survival. Additionally, ZNF677 overexpression suppressed the invasion and epithelial-mesenchymal transition of 786-0 cells by inactivating the PI3K/AKT signaling pathway. This is the first report to evaluate the influence of ZNF677 on ccRCC cells malignant biological behavior. The results indicate that high expression of ZNF677 could be considered as a favorable prognostic indicator for ccRCC.
Collapse
Affiliation(s)
- W Liang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Sh Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Gl Yang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jy Feng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Q Ling
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - B Wu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Hb Yan
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jw Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
17
|
Li X, Han M, Zhang H, Liu F, Pan Y, Zhu J, Liao Z, Chen X, Zhang B. Structures and biological functions of zinc finger proteins and their roles in hepatocellular carcinoma. Biomark Res 2022; 10:2. [PMID: 35000617 PMCID: PMC8744215 DOI: 10.1186/s40364-021-00345-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Zinc finger proteins are transcription factors with the finger domain, which plays a significant role in gene regulation. As the largest family of transcription factors in the human genome, zinc finger (ZNF) proteins are characterized by their different DNA binding motifs, such as C2H2 and Gag knuckle. Different kinds of zinc finger motifs exhibit a wide variety of biological functions. Zinc finger proteins have been reported in various diseases, especially in several cancers. Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death worldwide, especially in China. Most of HCC patients have suffered from hepatitis B virus (HBV) and hepatitis C virus (HCV) injection for a long time. Although the surgical operation of HCC has been extremely developed, the prognosis of HCC is still very poor, and the underlying mechanisms in HCC tumorigenesis are still not completely understood. Here, we summarize multiple functions and recent research of zinc finger proteins in HCC tumorigenesis and progression. We also discuss the significance of zinc finger proteins in HCC diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Xinxin Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jinghan Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| |
Collapse
|
18
|
SPTBN2 regulated by miR-424-5p promotes endometrial cancer progression via CLDN4/PI3K/AKT axis. Cell Death Dis 2021; 7:382. [PMID: 34887379 PMCID: PMC8660803 DOI: 10.1038/s41420-021-00776-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Endometrioid Endometrial Cancer (EEC) is the main subtype of endometrial cancer. In our study, we demonstrated that SPTBN2 was significantly overexpressed in EEC tissues. Upregulated SPTBN2 expression was positively associated with poor prognosis. In addition, we testified that SPTBN2 knockdown significantly inhibited the proliferation, migration, and invasion of EEC cells. Moreover, we found SPTBN2 could interact with CLDN4 to promote endometrial cancer metastasis via PI3K/AKT pathway. Then we further demonstrated that CLDN4 is upregulated in EEC and promotes EEC metastasis. CLDN4 overexpression could partially reversed the decrease in cell migration and invasion caused by SPTBN2 downregulation. In addition, we confirmed that SPTBN2 was a target of miR-424-5p, which plays a tumor suppressor in endometrial cancer. Rescue experiments showed that inhibition of SPTBN2 could partially reverse the effect of miR-424-5p in EEC. In conclusion, we demonstrated that by acting as a significant target of miR-424-5p, SPTBN2 could interact with CLDN4 to promote endometrial cancer metastasis via PI3K/AKT pathway in EEC. Our study revealed the prognostic and metastatic effects of SPTBN2 in EEC, suggesting that SPTBN2 could serve as a prognostic biomarker and a target for metastasis therapy.
Collapse
|
19
|
Yang H, Zhang MZH, Sun HW, Chai YT, Li X, Jiang Q, Hou J. A Novel Microcrystalline BAY-876 Formulation Achieves Long-Acting Antitumor Activity Against Aerobic Glycolysis and Proliferation of Hepatocellular Carcinoma. Front Oncol 2021; 11:783194. [PMID: 34869036 PMCID: PMC8636331 DOI: 10.3389/fonc.2021.783194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
BAY-876 is an effective antagonist of the Glucose transporter type 1 (GLUT1) receptor, a mediator of aerobic glycolysis, a biological process considered a hallmark of hepatocellular carcinoma (HCC) together with cell proliferation, drug-resistance, and metastasis. However, the clinical application of BAY-876 has faced many challenges. In the presence study, we describe the formulation of a novel microcrystalline BAY-876 formulation. A series of HCC tumor models were established to determine not only the sustained release of microcrystalline BAY-876, but also its long-acting antitumor activity. The clinical role of BAY-876 was confirmed by the increased expression of GLUT1, which was associated with the worse prognosis among advanced HCC patients. A single dose of injection of microcrystalline BAY-876 directly in the HCC tissue achieved sustained localized levels of Bay-876. Moreover, the single injection of microcrystalline BAY-876 in HCC tissues not only inhibited glucose uptake and prolonged proliferation of HCC cells, but also inhibited the expression of epithelial-mesenchymal transition (EMT)-related factors. Thus, the microcrystalline BAY-876 described in this study can directly achieve promising localized effects, given its limited diffusion to other tissues, thereby reducing the occurrence of potential side effects, and providing an additional option for advanced HCC treatment.
Collapse
Affiliation(s)
- Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Mu-Zi-He Zhang
- Department of Pharmacy, Medical Security Center of PLA General Hospital, Beijing, China
| | - Hui-Wei Sun
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Tao Chai
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiyu Jiang
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Hou
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Banik K, Khatoon E, Hegde M, Thakur KK, Puppala ER, Naidu VGM, Kunnumakkara AB. A novel bioavailable curcumin-galactomannan complex modulates the genes responsible for the development of chronic diseases in mice: A RNA sequence analysis. Life Sci 2021; 287:120074. [PMID: 34687757 DOI: 10.1016/j.lfs.2021.120074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic diseases or non-communicable diseases are a major burden worldwide due to the lack of highly efficacious treatment modalities and the serious side effects associated with the available therapies. PURPOSE/STUDY DESIGN A novel self-emulsifying formulation of curcumin with fenugreek galactomannan hydrogel scaffold as a water-dispersible non-covalent curcumin-galactomannan molecular complex (curcumagalactomannosides, CGM) has shown better bioavailability than curcumin and can be used for the prevention and treatment of chronic diseases. However, the exact potential of this formulation has not been studied, which would pave the way for its use for the prevention and treatment of multiple chronic diseases. METHODS The whole transcriptome analysis (RNAseq) was used to identify differentially expressed genes (DEGs) in the liver tissues of mice treated with LPS to investigate the potential of CGM on the prevention and treatment of chronic diseases. Expression analysis using DESeq2 package, GO, and pathway analysis of the differentially expressed transcripts was performed using UniProtKB and KEGG-KAAS server. RESULTS The results showed that 559 genes differentially expressed between the liver tissue of control mice and CGM treated mice (100 mg/kg b.wt. for 14 days), with adjusted p-value below 0.05, of which 318 genes were significantly upregulated and 241 were downregulated. Further analysis showed that 33 genes which were upregulated (log2FC > 8) in the disease conditions were significantly downregulated, and 32 genes which were downregulated (log2FC < -8) in the disease conditions were significantly upregulated after the treatment with CGM. CONCLUSION Overall, our study showed CGM has high potential in the prevention and treatment of multiple chronic diseases.
Collapse
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
21
|
Mirzaei S, Abadi AJ, Gholami MH, Hashemi F, Zabolian A, Hushmandi K, Zarrabi A, Entezari M, Aref AR, Khan H, Ashrafizadeh M, Samarghandian S. The involvement of epithelial-to-mesenchymal transition in doxorubicin resistance: Possible molecular targets. Eur J Pharmacol 2021; 908:174344. [PMID: 34270987 DOI: 10.1016/j.ejphar.2021.174344] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
Considering the fact that cancer cells can switch among various molecular pathways and mechanisms to ensure their progression, chemotherapy is no longer effective enough in cancer therapy. As an anti-tumor agent, doxorubicin (DOX) is derived from Streptomyces peucetius and can induce cytotoxicity by binding to topoisomerase enzymes to suppress DNA replication, leading to apoptosis and cell cycle arrest. However, efficacy of DOX in suppressing cancer progression is restricted by development of drug resistance. Cancer cells elevate their metastasis in triggering DOX resistance. The epithelial-to-mesenchymal transition (EMT) mechanism participates in transforming epithelial cells into mesenchymal cells that have fibroblast-like features. The EMT diminishes intercellular adhesion and enhances migration of cells that are necessary for carcinogenesis. Various oncogenic molecular pathways stimulate EMT in cancer. EMT can induce DOX resistance, and in this way, upstream mediators such as ZEB proteins, microRNAs, Twist1 and TGF-β play a significant role. Identification of molecular pathways involved in EMT regulation and DOX resistance has resulted in using gene therapy such as microRNA transfection and siRNA in overcoming chemoresistance. Furthermore, curcumin and formononetin, owing to their cytotoxicity against cancer cells, can suppress EMT in mediating DOX sensitivity. For promoting efficacy in DOX sensitivity, nanoparticles have been developed for boosting ability in EMT inhibition.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Asal Jalal Abadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA, 02210, USA
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
22
|
Shi X, Tu S, Zhu L. Risk characteristics with seven epithelial-mesenchymal transition-related genes are used to predict the prognosis of patients with hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:1884-1894. [PMID: 34532136 DOI: 10.21037/jgo-21-394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/16/2021] [Indexed: 11/06/2022] Open
Abstract
Background Epithelial-mesenchymal transition (EMT)-related genes (ERGs) have been shown to play an important role in cancer invasion, tumor resistance, and tumor metastasis of hepatocellular carcinoma. This study sought to examine the prognostic value of ERGs and other pre-hepatoma genes. Methods Relevant data from The Cancer Genome Atlas (TCGA) were analyzed and synthesized. Specifically, 1,014 ERGs were downloaded and subject to a gene set enrichment analysis; 318 different EAG expressions were found, and the possible molecular mechanism of EAG was predicted by GO analysis and KEGG analysis. To determine the prediction of ERGS, a Cox regression model was used to establish a risk hypothesis. Based on risk patterns, patients were divided into high- or low-risk groups. Kaplan-Meier and receiver operating characteristic (ROC) curves confirmed the predictive value of the model. Results Seven prognostically relevant ERGs (i.e., ECT2, EZH2, MYCN, ROR2, SPP1, SQSTM1, and STC2) were identified. Using Cox's regression analysis method, appropriate cases were selected to establish a new risk prediction model. Under the risk model, the overall survival rate of the low-risk group samples was higher than that of the high-risk group samples (P<0.00001). Conclusions In short, we developed a risk model for liver cancer based on ERGs terminology. This model improve the postpartum treatment of patients with liver cancer.
Collapse
Affiliation(s)
- Xianqing Shi
- Department of Oncology, Liyang People's Hospital, Liyang, China
| | - Shuhuan Tu
- Department of Oncology, Liyang People's Hospital, Liyang, China
| | - Liqun Zhu
- Department of Oncology, Liyang People's Hospital, Liyang, China
| |
Collapse
|
23
|
Qi F, Qin W, Zhang Y, Luo Y, Niu B, An Q, Yang B, Shi K, Yu Z, Chen J, Cao X, Xia J. Sulfarotene, a synthetic retinoid, overcomes stemness and sorafenib resistance of hepatocellular carcinoma via suppressing SOS2-RAS pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:280. [PMID: 34479623 PMCID: PMC8418008 DOI: 10.1186/s13046-021-02085-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recurrent hepatocellular carcinoma (HCC) shows strong resistance to sorafenib, and the tumor-repopulating cells (TRCs) with cancer stem cell-like properties are considered a driver for its high recurrent rate and drug resistance. METHODS Suppression of TRCs may thus be an effective therapeutic strategy for treating this fatal disease. We evaluated the pharmacology and mechanism of sulfarotene, a new type of synthetic retinoid, on the cancer stem cell-like properties of HCC TRCs, and assessed its preclinical efficacy in models of HCC patient-derived xenografts (PDXs). RESULTS Sulfarotene selectively inhibited the growth of HCC TRCs in vitro and significantly deterred TRC-mediated tumor formation and lung metastasis in vivo without apparent toxicity, with an IC50 superior to that of acyclic retinoid and sorafenib, to which the recurrent HCC exhibits significant resistance at advanced stage. Sulfarotene promoted the expression and activation of RARα, which down-regulated SOS2, a key signal mediator associated with RAS activation and signal transduction involved in multiple downstream pathways. Moreover, sulfarotene selectively inhibited tumorigenesis of HCC PDXs with high expression for SOS2. CONCLUSIONS Our study identified sulfarotene as a selective inhibitor for the TRCs of HCC, which targets a novel RARα-SOS2-RAS signal nexus, shedding light on a new, promising strategy of target therapy for advanced liver cancer.
Collapse
Affiliation(s)
- Feng Qi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
| | - Wenxing Qin
- Department of Oncology, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Yao Zhang
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Wuhan, Hubei, China
| | - Yongde Luo
- The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Quanlin An
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
| | - Biwei Yang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
| | - Keqing Shi
- The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Zhijie Yu
- The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Junwei Chen
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Wuhan, Hubei, China.
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.
| | - Jinglin Xia
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China. .,Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China. .,The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.
| |
Collapse
|
24
|
Li TT, Mou J, Pan YJ, Huo FC, Du WQ, Liang J, Wang Y, Zhang LS, Pei DS. MicroRNA-138-1-3p sensitizes sorafenib to hepatocellular carcinoma by targeting PAK5 mediated β-catenin/ABCB1 signaling pathway. J Biomed Sci 2021; 28:56. [PMID: 34340705 PMCID: PMC8327419 DOI: 10.1186/s12929-021-00752-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
Background Sorafenib is a kinase inhibitor that is used as a first-line therapy in advanced hepatocellular carcinoma (HCC) patients. However, the existence of sorafenib resistance has limited its therapeutic effect. Through RNA sequencing, we demonstrated that miR-138-1-3p was downregulated in sorafenib resistant HCC cell lines. This study aimed to investigate the role of miR-138-1-3p in sorafenib resistance of HCC. Methods In this study, quantitative real-time PCR (qPCR) and Western Blot were utilized to detect the levels of PAK5 in sorafenib-resistant HCC cells and parental cells. The biological functions of miR-138-1-3p and PAK5 in sorafenib-resistant cells and their parental cells were explored by cell viability assays and flow cytometric analyses. The mechanisms for the involvement of PAK5 were examined via co-immunoprecipitation (co-IP), immunofluorescence, dual luciferase reporter assay and chromatin immunoprecipitation (ChIP). The effects of miR-138-1-3p and PAK5 on HCC sorafenib resistant characteristics were investigated by a xenotransplantation model. Results We detected significant down-regulation of miR-138-1-3p and up-regulation of PAK5 in sorafenib-resistance HCC cell lines. Mechanistic studies revealed that miR-138-1-3p reduced the protein expression of PAK5 by directly targeting the 3′-UTR of PAK5 mRNA. In addition, we verified that PAK5 enhanced the phosphorylation and nuclear translocation of β-catenin that increased the transcriptional activity of a multidrug resistance protein ABCB1. Conclusions PAK5 contributed to the sorafenib resistant characteristics of HCC via β-catenin/ABCB1 signaling pathway. Our findings identified the correlation between miR-138-1-3p and PAK5 and the molecular mechanisms of PAK5-mediated sorafenib resistance in HCC, which provided a potential therapeutic target in advanced HCC patients.
Collapse
Affiliation(s)
- Tong-Tong Li
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China.,Department of Pathology and Pathophysiology, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Jie Mou
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221006, China
| | - Yao-Jie Pan
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Wen-Qi Du
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jia Liang
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yang Wang
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Lan-Sheng Zhang
- Department of Oncological Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China.
| |
Collapse
|
25
|
Hu X, Zhu H, Shen Y, Zhang X, He X, Xu X. The Role of Non-Coding RNAs in the Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 11:696705. [PMID: 34367979 PMCID: PMC8340683 DOI: 10.3389/fonc.2021.696705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death. Sorafenib is approved by the U.S. Food and Drug Administration to be a first-line chemotherapy agent for patients with advanced HCC. A portion of advanced HCC patients can benefit from the treatment with sorafenib, but many patients ultimately develop sorafenib resistance, leading to a poor prognosis. The molecular mechanisms of sorafenib resistance are sophisticated and indefinite. Notably, non-coding RNAs (ncRNAs), which include long ncRNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), are critically participated in the occurrence and progression of tumors. Moreover, growing evidence has suggested that ncRNAs are crucial regulators in the development of resistance to sorafenib. Herein, we integrally and systematically summarized the molecular mechanisms and vital role of ncRNAs impact sorafenib resistance of HCC, and ultimately explored the potential clinical administrations of ncRNAs as new prognostic biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xinyao Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Shen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoqin He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Hao T, Xu J, Fang S, Jiang J, Chen X, Wu W, Li L, Li M, Zhang C, He Y. Overexpression of ZNF460 predicts worse survival and promotes metastasis through JAK2/STAT3 signaling pathway in patient with colon cancer. J Cancer 2021; 12:3198-3208. [PMID: 33976729 PMCID: PMC8100796 DOI: 10.7150/jca.55079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Zinc finger proteins (ZNFs) are a class of protein containing zinc finger domains, and they play an important role in tumor progression. However, as a member of the ZNFs family, the effect of ZNF460 in colon cancer remains unclear. In this study, we found that the expression of ZNF460 protein were markedly increased in clinical colon cancer tissues compared with para-cancer non-cancerous tissues by tissue immunohistochemistry (IHC) and western blot (WB). We also confirmed this result at the mRNA and protein levels of ZNF460 through bioinformatics analysis. In addition, high expression of ZNF460 was correlated with increased depth of invasion (P<0.05), increased lymph node metastasis (P<0.05), distant metastasis (P<0.05) and high blood serum CA19-9 level (P<0.05). High expression of ZNF460 predicted poor overall survival (OS) and recurrence free survival (RFS) in patients with colon cancer. Moreover, multivariate analyses revealed that ZNF460 was an independent prognostic factor in both OS (hazard ratio [HR]: 1.636; 95% confidence interval [CI], 1.028-2.603; P = 0.038) and RFS (HR: 2.215; 95% CI: 1.227-3.997; P = 0.008). The knockdown of ZNF460 suppressed the invasion and metastasis of colon cancer cells in vitro. Mechanistically, we revealed that ZNF460 promotes the activation of the JAK2/STAT3 signaling pathway in colon cancer cells. Taken together, overexpression of ZNF460 predicted worse survival and promoted metastasis through JAK2/STAT3 signaling pathway in patient with colon cancer, and could be a novel therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Tengfei Hao
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Jiannan Xu
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Sufen Fang
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jianlong Jiang
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xinyuan Chen
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Wenhui Wu
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Liang Li
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Mingzhe Li
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Changhua Zhang
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yulong He
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| |
Collapse
|
27
|
He W, Huang X, Berges BK, Wang Y, An N, Su R, Lu Y. Artesunate Regulates Neurite Outgrowth Inhibitor Protein B Receptor to Overcome Resistance to Sorafenib in Hepatocellular Carcinoma Cells. Front Pharmacol 2021; 12:615889. [PMID: 33716742 PMCID: PMC7946852 DOI: 10.3389/fphar.2021.615889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
The multireceptor tyrosine kinase inhibitor sorafenib is a Food and Drug Administration-approved first-line drug for the treatment of advanced liver cancer that can reportedly extend overall survival in patients with advanced hepatocellular carcinoma (HCC). Primary and acquired resistance to sorafenib are gradually increasing however, leading to failure of HCC treatment with sorafenib. It is therefore crucial to study the potential mechanism of sorafenib resistance. The results of the current study indicate that neurite outgrowth inhibitor protein B receptor (NgBR) is overexpressed in cultured sorafenib-resistant cells, and that its expression is negatively correlated with the sensitivity of liver cancer cells to sorafenib. Artesunate can inhibit the expression of NgBR, and it may block sorafenib resistance. Herein we report that sorafenib treatment in combination with artesunate overcomes HCC resistance to sorafenib alone in a cell culture model.
Collapse
Affiliation(s)
- Wubin He
- Key laboratory of surgery of Liaoning Province of The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Xiaoxu Huang
- Key Laboratory of Molecular Cell Biology and New Drug Development of Jinzhou Medical University, Liaoning, Jinzhou, China
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology of Brigham Young University, Provo, UT, United States
| | - Yue Wang
- Department of Pathlogy of The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Ni An
- Key Laboratory of Molecular Cell Biology and New Drug Development of Jinzhou Medical University, Liaoning, Jinzhou, China
| | - Rongjian Su
- Key Laboratory of Molecular Cell Biology and New Drug Development of Jinzhou Medical University, Liaoning, Jinzhou, China
| | - Yanyan Lu
- Department of Orthopedic Spine Surgery of The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| |
Collapse
|
28
|
Wang S, Wang C, Hu Y, Li X, Jin S, Liu O, Gou R, Zhuang Y, Guo Q, Nie X, Zhu L, Liu J, Lin B. ZNF703 promotes tumor progression in ovarian cancer by interacting with HE4 and epigenetically regulating PEA15. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:264. [PMID: 33246486 PMCID: PMC7693506 DOI: 10.1186/s13046-020-01770-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022]
Abstract
Background It is known that the transcription factor zinc finger protein 703 (ZNF703) plays an important role in physiological functions and the occurrence and development of various tumors. However, the role and mechanism of ZNF703 in ovarian cancer are unclear. Materials and methods Immunohistochemistry was used to analyze the expression of ZNF703 in ovarian cancer patients and to assess the effect of ZNF703 expression on the survival and prognosis of ovarian cancer patients. ZNF703 overexpression and suppression expression experiments were used to evaluate the effect of ZNF703 on malignant biological behavior of ovarian cancer cells in vitro. Detecting the interaction between HE4 and ZNF703 by immunofluorescence colocalization and coprecipitation, and nuclear translocation. Chromatin immunoprecipitation-sequencing (ChIP-Seq), dual luciferase reporter assay, ChIP-PCR, in vivo model were applied to study the molecular mechanism of ZNF703 affecting the development of ovarian cancer. Results ZNF703 was highly expressed in ovarian cancer tissues, and its expression level is related to the prognosis of ovarian cancer patients. In vivo and in vitro experiments confirmed that ZNF703 overexpression/inhibition expression will promoted/inhibited the malignant biological behavior of ovarian cancer. Mechanically, ZNF703 interacted with HE4, and HE4 promoted nuclear translocation of ZNF703. ChIP-Seq identified multiple regulatory targets of ZNF703, of which ZNF703 directly binds to the enhancer region of PEA15 to promote the transcription of PEA15 and thereby promoted the proliferation of cancer cells. Conclusion The results showed that ZNF703 as an oncogene played an important role in the epigenetic modification of ovarian cancer proliferation, and suggested that ZNF703 as a transcription factor may become a prognostic factor and a potential therapeutic target for ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01770-0.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Caixia Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuexin Hu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Shan Jin
- Department of Obstetrics and Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Rui Gou
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Yuan Zhuang
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Qian Guo
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Xin Nie
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China. .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China.
| |
Collapse
|
29
|
Xiong C, Wang G, Bai D. A novel prognostic models for identifying the risk of hepatocellular carcinoma based on epithelial-mesenchymal transition-associated genes. Bioengineered 2020; 11:1034-1046. [PMID: 32951492 PMCID: PMC8291854 DOI: 10.1080/21655979.2020.1822715] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several epithelial-mesenchymal transition (EMT)-associated genes (EAGs) have been confirmed to correlate with the prognosis of hepatocellular carcinoma (HCC) patients. Herein, we explored the value of EAGs in the prognosis of HCC relying on data from The Cancer Genome Atlas (TCGA) database. A total of 200 EMT-associated genes were downloaded from the Gene set enrichment analysis (GSEA) website. Moreover, 96 differentially expressed EAGs were identified. Using Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we forecasted the potential molecular mechanisms of EAGs. To identify prognostic EAGs, Cox regression was used in developing a prognostic risk model. Then, the Kaplan-Meier and receiver operating characteristic (ROC) curves were plotted to validate the prognostic significance of the model. A total of 5 prognostic correlated EAGs (P3H1, SPP1, MMP1, LGALS1, and ITGB5) were screened via Cox regression, which provided the basis for developing a novel prognostic risk model. Based on the risk model, patients were subdivided into high-risk and low-risk groups. The overall survival of the low-risk group was better compared to the high-risk group (P < 0.00001). The ROC curve of the risk model showed a higher AUC (Area under Curve) (AUC = 0.723) compared to other clinical features (AUC ≤ 0.511). A nomogram based on this model was constructed to predict the 1-year, 2-year, and 3-year overall survival rates (OS) of patients. Conclusively, we developed a novel HCC prognostic risk model based on the expression of EAGs, which help advance the prognostic management of HCC patients. Abbreviations: HCC: hepatocellular carcinoma; TCGA: The Cancer Genome Atlas; EMT: epithelial-mesenchymal transition; EAGs: EMT-associated genes; GSEA: gene set enrichment analysis; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: protein-protein interaction; TF: transcription factor; ROC: receiver operating characteristic; K-M: Kaplan-Meier; AUC: the area under the ROC curve; FDR: false discovery rate; TNM: Tumor size/lymph nodes/distance metastasis.
Collapse
Affiliation(s)
- Chen Xiong
- Dalian Medical University , Dalian, P.R. China
| | - Guifu Wang
- Dalian Medical University , Dalian, P.R. China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University , Yangzhou, P.R. China
| |
Collapse
|