1
|
Quinet G, Paz-Cabrera MC, Freire R. Biochemical analysis to study wild-type and polyglutamine-expanded ATXN3 species. PLoS One 2024; 19:e0315868. [PMID: 39715253 DOI: 10.1371/journal.pone.0315868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a cureless neurodegenerative disease recognized as the most prevalent form of dominantly inherited ataxia worldwide. The main hallmark of SCA3 is the expansion of a polyglutamine tract located in the C-terminal of Ataxin-3 (or ATXN3) protein, that triggers the mis-localization and toxic aggregation of ATXN3 in neuronal cells. The propensity of wild type and polyglutamine-expanded ATXN3 proteins to aggregate has been extensively studied over the last decades. In vitro studies with mass spectrometry techniques revealed a time-dependent aggregation of polyglutamine-expanded ATXN3 that occurs in several steps, leading to fibrils formation, a high status of aggregation. For in vivo experiments though, the techniques commonly used to demonstrate aggregation of polyglutamine proteins, such as filter trap assays, SDS-PAGE and SDS-AGE, are unable to unequivocally show all the stages of aggregation of wild type and polyglutamine-expanded ATXN3 proteins. Here we describe a systematic and detailed analysis of different known techniques to detect the various forms of both wild type and pathologic ATXN3 aggregates, and we discuss the power and limitation of each strategy.
Collapse
Affiliation(s)
- Grégoire Quinet
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - María Cristina Paz-Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), La Laguna, Tenerife, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Santa María de Guía, Gran Canaria, Spain
| |
Collapse
|
2
|
Zhang L, Hao P, Chen X, Lv S, Gao W, Li C, Li Z, Zhang W. CRL4B E3 ligase recruited by PRPF19 inhibits SARS-CoV-2 infection by targeting ORF6 for ubiquitin-dependent degradation. mBio 2024; 15:e0307123. [PMID: 38265236 PMCID: PMC10865787 DOI: 10.1128/mbio.03071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
The accessory protein ORF6 of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key interferon (IFN) antagonist that strongly suppresses the production of primary IFN as well as the expression of IFN-stimulated genes. However, how host cells respond to ORF6 remains largely unknown. Our research of ORF6-binding proteins by pulldown revealed that E3 ligase components such as Cullin 4B (CUL4B), DDB1, and RBX1 are potential ORF6-interacting proteins. Further study found that the substrate recognition receptor PRPF19 interacts with CUL4B, DDB1, and RBX1 to form a CRL4B-based E3 ligase, which catalyzes ORF6 ubiquitination and subsequent degradation. Overexpression of PRPF19 promotes ORF6 degradation, releasing ORF6-mediated IFN inhibition, which inhibits SARS-CoV-2 replication. Moreover, we found that activation of CUL4B by the neddylation inducer etoposide alleviates lung lesions in a SARS-CoV-2 mouse infection model. Therefore, targeting ORF6 for degradation may be an effective therapeutic strategy against SARS-CoV-2 infection.IMPORTANCEThe cellular biological function of the ubiquitin-proteasome pathway as an important modulator for the regulation of many fundamental cellular processes has been greatly appreciated. The critical role of the ubiquitin-proteasome pathway in viral pathogenesis has become increasingly apparent. It is a powerful tool that host cells use to defend against viral infection. Some cellular proteins can function as restriction factors to limit viral infection by ubiquitin-dependent degradation. In this research, we identificated of CUL4B-DDB1-PRPF19 E3 Ubiquitin Ligase Complex can mediate proteasomal degradation of ORF6, leading to inhibition of viral replication. Moreover, the CUL4B activator etoposide alleviates disease development in a mouse infection model, suggesting that this agent or its derivatives may be used to treat infections caused by SARS-CoV-2. We believe that these results will be extremely useful for the scientific and clinic communities in their search for cues and preventive measures to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Linran Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiang Chen
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shuai Lv
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenying Gao
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Halim DO, Munson M, Gao FB. The exocyst complex in neurological disorders. Hum Genet 2023; 142:1263-1270. [PMID: 37085629 PMCID: PMC10449956 DOI: 10.1007/s00439-023-02558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Exocytosis is the process by which secretory vesicles fuse with the plasma membrane to deliver materials to the cell surface or to release cargoes to the extracellular space. The exocyst-an evolutionarily conserved octameric protein complex-mediates spatiotemporal control of SNARE complex assembly for vesicle fusion and tethering the secretory vesicles to the plasma membrane. The exocyst participates in diverse cellular functions, including protein trafficking to the plasma membrane, membrane extension, cell polarity, neurite outgrowth, ciliogenesis, cytokinesis, cell migration, autophagy, host defense, and tumorigenesis. Exocyst subunits are essential for cell viability; and mutations or variants in several exocyst subunits have been implicated in human diseases, mostly neurodevelopmental disorders and ciliopathies. These conditions often share common features such as developmental delay, intellectual disability, and brain abnormalities. In this review, we summarize the mutations and variants in exocyst subunits that have been linked to disease and discuss the implications of exocyst dysfunction in other disorders.
Collapse
Affiliation(s)
- Dilara O Halim
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Mary Munson
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
4
|
FUS Alters circRNA Metabolism in Human Motor Neurons Carrying the ALS-Linked P525L Mutation. Int J Mol Sci 2023; 24:ijms24043181. [PMID: 36834591 PMCID: PMC9968238 DOI: 10.3390/ijms24043181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Deregulation of RNA metabolism has emerged as one of the key events leading to the degeneration of motor neurons (MNs) in Amyotrophic Lateral Sclerosis (ALS) disease. Indeed, mutations on RNA-binding proteins (RBPs) or on proteins involved in aspects of RNA metabolism account for the majority of familiar forms of ALS. In particular, the impact of the ALS-linked mutations of the RBP FUS on many aspects of RNA-related processes has been vastly investigated. FUS plays a pivotal role in splicing regulation and its mutations severely alter the exon composition of transcripts coding for proteins involved in neurogenesis, axon guidance, and synaptic activity. In this study, by using in vitro-derived human MNs, we investigate the effect of the P525L FUS mutation on non-canonical splicing events that leads to the formation of circular RNAs (circRNAs). We observed altered levels of circRNAs in FUSP525L MNs and a preferential binding of the mutant protein to introns flanking downregulated circRNAs and containing inverted Alu repeats. For a subset of circRNAs, FUSP525L also impacts their nuclear/cytoplasmic partitioning, confirming its involvement in different processes of RNA metabolism. Finally, we assess the potential of cytoplasmic circRNAs to act as miRNA sponges, with possible implications in ALS pathogenesis.
Collapse
|
5
|
Ma S, Xia T, Wang X, Wang H. Identification and validation of biomarkers based on cellular senescence in mild cognitive impairment. Front Aging Neurosci 2023; 15:1139789. [PMID: 37187578 PMCID: PMC10176455 DOI: 10.3389/fnagi.2023.1139789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Background Mild cognitive impairment (MCI), a syndrome defined as decline of cognitive function greater than expected for an individual's age and education level, occurs in up to 22.7% of elderly patients in United States, causing the heavy psychological and economic burdens to families and society. Cellular senescence (CS) is a stress response that accompanies permanent cell-cycle arrest, which has been reported to be a fundamental pathological mechanism of many age-related diseases. This study aims to explore biomarkers and potential therapeutic targets in MCI based on CS. Methods The mRNA expression profiles of peripheral blood samples from patients in MCI and non-MCI group were download from gene expression omnibus (GEO) database (GSE63060 for training and GSE18309 for external validation), CS-related genes were obtained from CellAge database. Weighted gene co-expression network analysis (WGCNA) was conducted to discover the key relationships behind the co-expression modules. The differentially expressed CS-related genes would be obtained through overlapping among the above datasets. Then, pathway and GO enrichment analyses were performed to further elucidate the mechanism of MCI. The protein-protein interaction network was used to extract hub genes and the logistic regression was performed to distinguish the MCI patients from controls. The hub gene-drug network, hub gene-miRNA network as well as transcription factor-gene regulatory network were used to analyze potential therapeutic targets for MCI. Results Eight CS-related genes were identified as key gene signatures in MCI group, which were mainly enriched in the regulation of response to DNA damage stimulus, Sin3 complex and transcription corepressor activity. The receiver operating characteristic curves of logistic regression diagnostic model were constructed and presented great diagnostic value in both training and validation set. Conclusion Eight CS-related hub genes - SMARCA4, GAPDH, SMARCB1, RUNX1, SRC, TRIM28, TXN, and PRPF19 - serve as candidate biomarkers for MCI and display the excellent diagnostic value. Furthermore, we also provide a theoretical basis for targeted therapy against MCI through the above hub genes.
Collapse
Affiliation(s)
- Songmei Ma
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, The First People’s Hospital of Shangqiu, Shangqiu, Henan, China
| | - Tong Xia
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xinyi Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Haiyun Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- *Correspondence: Haiyun Wang,
| |
Collapse
|
6
|
Bouzón-Arnáiz I, Avalos-Padilla Y, Biosca A, Caño-Prades O, Román-Álamo L, Valle J, Andreu D, Moita D, Prudêncio M, Arce EM, Muñoz-Torrero D, Fernàndez-Busquets X. The protein aggregation inhibitor YAT2150 has potent antimalarial activity in Plasmodium falciparum in vitro cultures. BMC Biol 2022; 20:197. [PMID: 36271358 PMCID: PMC9587658 DOI: 10.1186/s12915-022-01374-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background By 2016, signs of emergence of Plasmodium falciparum resistance to artemisinin and partner drugs were detected in the Greater Mekong Subregion. Recently, the independent evolution of artemisinin resistance has also been reported in Africa and South America. This alarming scenario calls for the urgent development of new antimalarials with novel modes of action. We investigated the interference with protein aggregation, which is potentially toxic for the cell and occurs abundantly in all Plasmodium stages, as a hitherto unexplored drug target in the pathogen. Results Attempts to exacerbate the P. falciparum proteome’s propensity to aggregation by delivering endogenous aggregative peptides to in vitro cultures of this parasite did not significantly affect their growth. In contrast, protein aggregation inhibitors clearly reduced the pathogen’s viability. One such compound, the bis(styrylpyridinium) salt YAT2150, exhibited potent antiplasmodial activity with an in vitro IC50 of 90 nM for chloroquine- and artemisinin-resistant lines, arresting asexual blood parasites at the trophozoite stage, as well as interfering with the development of both sexual and hepatic forms of Plasmodium. At its IC50, this compound is a powerful inhibitor of the aggregation of the model amyloid β peptide fragment 1-40, and it reduces the amount of aggregated proteins in P. falciparum cultures, suggesting that the underlying antimalarial mechanism consists in a generalized impairment of proteostasis in the pathogen. YAT2150 has an easy, rapid, and inexpensive synthesis, and because it fluoresces when it accumulates in its main localization in the Plasmodium cytosol, it is a theranostic agent. Conclusions Inhibiting protein aggregation in Plasmodium significantly reduces the parasite’s viability in vitro. Since YAT2150 belongs to a novel structural class of antiplasmodials with a mode of action that potentially targets multiple gene products, rapid evolution of resistance to this drug is unlikely to occur, making it a promising compound for the post-artemisinin era. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01374-4.
Collapse
Affiliation(s)
- Inés Bouzón-Arnáiz
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, 08036, Barcelona, Spain.,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, 08036, Barcelona, Spain.,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Arnau Biosca
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, 08036, Barcelona, Spain.,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Omar Caño-Prades
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, 08036, Barcelona, Spain.,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Lucía Román-Álamo
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, 08036, Barcelona, Spain.,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Javier Valle
- Department of Medicine and Life Sciences, Barcelona Biomedical Research Park, Pompeu Fabra University, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - David Andreu
- Department of Medicine and Life Sciences, Barcelona Biomedical Research Park, Pompeu Fabra University, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Diana Moita
- Instituto de Medicina Molecular, Fac. Medicina Univ. Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Fac. Medicina Univ. Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Elsa M Arce
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, 08036, Barcelona, Spain. .,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain. .,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
| |
Collapse
|
7
|
Chen ZS, Yan M, Pei W, Yan B, Huang C, Chan HYE. Lignin-carbohydrate complexes suppress SCA3 neurodegeneration via upregulating proteasomal activities. Int J Biol Macromol 2022; 218:690-705. [PMID: 35872311 DOI: 10.1016/j.ijbiomac.2022.07.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/15/2023]
Abstract
Lignin-carbohydrate complexes (LCCs) represent a group of macromolecules with diverse biological functions such as antioxidative properties. Polyglutamine (polyQ) diseases such as spinocerebellar ataxia type 3 (SCA3) comprise a set of neurodegenerative disorders characterized by the formation of polyQ protein aggregates in patient neurons. LCCs have been reported to prevent such protein aggregation. In this study, we identified a potential mechanism underlying the above anti-protein aggregation activity. We isolated and characterized multiple LCC fractions from bamboo and poplar and found that lignin-rich LCCs (BM-LCC-AcOH and PR-LCC-AcOH) effectively eliminated both monomeric and aggregated mutant ataxin-3 (ATXN3polyQ) proteins in neuronal cells and a Drosophila melanogaster SCA3 disease model. In addition, treatment with BM-LCC-AcOH or PR-LCC-AcOH rescued photoreceptor degeneration in vivo. At the mechanistic level, we demonstrated that BM-LCC-AcOH and PR-LCC-AcOH upregulated proteasomal activity. When proteasomal function was impaired, the ability of the LCCs to suppress ATXN3polyQ aggregation was abolished. Thus, we identified a previously undescribed proteasome-inducing function of LCCs and showed that such activity is indispensable for the beneficial effects of LCCs on SCA3 neurotoxicity.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Mingqi Yan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China.
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
8
|
Xia W, Jiang H, Guo H, Liu Y, Gou X. Integrated gene co-expression network analysis reveals unique developmental processes of Aurelia aurita. Gene X 2022; 840:146733. [PMID: 35863715 DOI: 10.1016/j.gene.2022.146733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/04/2022] Open
Abstract
The typical life cycle of the moon jellyfish (Aurelia aurita) includes the planula, polyp, strobila, ephyra, and medusa developmental stages. These stages exhibit huge differences in both external morphology and internal physiological functions. However, the gene co-expression network involved in these post-embryonic developmental processes has not been studied yet. Here, based on 15 RNA sequencing samples covering all five stages of the A. aurita life cycle, we systematically analyzed the gene co-expression network and obtained 35 relevant modules. Furthermore, we identified the highly correlated modules and hub genes for each stage. These hub genes are implicated to play important roles in the developmental processes of A. aurita, which should help improve our understanding of the jellyfish life cycle.
Collapse
Affiliation(s)
- Wangxiao Xia
- Shaanxi Key Laboratory of Brain Disorders,Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Hui Jiang
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Huifang Guo
- Shaanxi Key Laboratory of Infection and Immune Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an 710021, China
| | - Yaowen Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650231, China.
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders,Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an 710021, China.
| |
Collapse
|
9
|
DEC1 represses cardiomyocyte hypertrophy by recruiting PRP19 as an E3 ligase to promote ubiquitination-proteasome-mediated degradation of GATA4. J Mol Cell Cardiol 2022; 169:96-110. [PMID: 35659652 DOI: 10.1016/j.yjmcc.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Although the pro-hypertrophic role of GATA binding protein 4 (GATA4) during cardiac hypertrophy has been well established, the negative regulatory mechanism to counteract its hyperactivation remains elusive. We hypothesized that the hyperactivation of GATA4 could be a result of loss of interaction between GATA4 with specific suppressors. Using high throughput mass spectrometry technology, we carried out a proteomic screen for endogenous suppressor of GATA4, which disassociated with GATA4 during the hypertrophic response in a cultured cardiac myoblast cell line (H9C2 cells). We identified differentiated embryo chondrocyte 1 (DEC1) negatively regulated the function of GATA4 through physical interaction and negatively regulated cardiac hypertrophy both in vivo and in vitro. Particularly, DEC1 promoted the ubiquitination and proteasome-mediated degradation of GATA4, but did not function as an E3 ligase. Again, using mass spectrometry technology, we systematically identified pre-mRNA processing factor 19 (PRP19) as a newfound E3 ligase, which promoted the K6-linked ubiquitination of GATA4 at its lysine 256. Functional experiments performed in cultured neonatal rat ventricular myocytes and H9C2 cells demonstrated that both DEC1 and PRP19 negatively regulated agonist-induced cardiomyocyte hypertrophic responses. Furthermore, rescue experiments performed in these cells revealed that DEC1 and PRP19 suppressed cardiomyocyte hypertrophy by inhibiting the function of GATA4. Our study thus defined the novel DEC1-PRP19-GATA4 axis to be a previously unknown mechanism in regulating cardiomyocyte hypertrophy. Although GATA4 is indispensable for normal cardiac function, harnessing DEC1- or PRP19-mediated negative regulation to counteract the hyperactivation of GATA4 might serve as a novel therapeutic strategy for pathological cardiac hypertrophy.
Collapse
|