1
|
Masetto F, Mafficini A, Saka B, Armutlu A, Chatterjee D, Jang KT, Zen Y, Navale P, Fassan M, Bacchi CE, Mattiolo P, Simbolo M, Ruzzenente A, Lawlor RT, Reid M, Basturk O, Adsay V, Scarpa A, Luchini C. Tubulocystic Carcinoma of Bile Ducts: A Distinct Type of Cholangiocarcinoma Associated With Adenofibroma-type Lesions. Am J Surg Pathol 2024; 48:1082-1092. [PMID: 38946053 DOI: 10.1097/pas.0000000000002278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A type of cholangiocarcinoma (CCA) characterized by peculiar histologic patterns and underlying adenofibromatous lesions has been reported in the literature mostly as individual case reports. This study aims to further clarify the defining characteristics of this spectrum of lesions. Clinicopathologic analysis of 8 biliary tumors with tubulocystic architecture arising in the background of adenofibroma-type lesions was performed. Three of these were also investigated with next-generation sequencing with a 174 genes panel. The patients were 5 males and 3 females, with a mean age of 64.6. All tumors were intrahepatic except for one perihilar that protruded into soft tissues. The mean size was 4.4 cm. At histology, all cases showed a peculiar and cytologically bland tubulocystic pattern that closely resembled tubulocystic-type kidney cancers, including back-to-back microcystic units that formed relatively demarcated nodules, and occurring in the background of adenofibromatous lesions. One case showed perineural invasion by otherwise deceptively benign-appearing microcystic structures, one had areas transitioning to intraductal tubulopapillary neoplasm, and 3 cases harbored more conventional small-duct CCA foci. In those 3 cases, both the tubulocystic and conventional CCA components were investigated by next-generation sequencing separately, and they shared the molecular alterations, including recurrent mutations in chromatin remodeling genes, such as ARID1A , BAP1 , and PBRM1 , and the actionable FGFR2-MCU fusion gene. In the limited follow-up, all but one were alive and free of disease after surgical resection. In conclusion, we described a distinct entity of CCA with specific histo-molecular features, for which we propose the designation of tubulocystic carcinoma of bile ducts.
Collapse
Affiliation(s)
- Francesca Masetto
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona
- ARC-Net Research Center, University and Hospital Trust of Verona
| | - Burcu Saka
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ayse Armutlu
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Deyali Chatterjee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Pooja Navale
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, and Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | | | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona
| | - Andrea Ruzzenente
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Division of General and Hepatobiliary Surgery, University and Hospital Trust of Verona
| | - Rita T Lawlor
- ARC-Net Research Center, University and Hospital Trust of Verona
- Department of Engineering for Innovative Medicine (DIMI), University of Verona, Verona
| | - Michelle Reid
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Volkan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona
- ARC-Net Research Center, University and Hospital Trust of Verona
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona
- ARC-Net Research Center, University and Hospital Trust of Verona
| |
Collapse
|
2
|
Niu S, Zhang Y, Li Z, Wang T. Prognostic value of FGFR2 alterations in patients with iCCA undergoing surgery or systemic treatments: A meta-analysis. Liver Int 2024; 44:2208-2219. [PMID: 38829010 DOI: 10.1111/liv.15984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Over recent years, there has been a notable rise in the incidence of intrahepatic cholangiocarcinoma (iCCA), which presents a significant challenge in treatment due to its complex disease characteristics and prognosis. Notably, the identification of fibroblast growth factor receptor 2 (FGFR2) fusion/rearrangement, a potential oncogenic driver primarily observed in iCCA, raises questions about its impact on the prognostic outcomes of patients undergoing surgical intervention or other therapeutic approaches. METHODS A comprehensive search from inception to July 2023 was conducted across PubMed, Embase, Web of Science, and the Cochrane Library databases. The objective was to identify relevant publications comparing the prognosis of FGFR2 alterations and no FGFR2 alterations groups among patients with iCCA undergoing surgical resection or other systemic therapies. The primary outcome indicators, specifically Overall Survival (OS) and Disease-Free Survival (DFS), were estimated using Hazard Ratios (HRs) with 95% confidence intervals (CIs), and statistical significance was defined as p < .05. Study quality was assessed using the Newcastle-Ottawa Quality Assessment Scale. Statistical analyses were performed using Review Manager 5.4 software and Stata, version 12.0. RESULTS Six studies, involving 1314 patients (FGFR2 alterations group n = 173 and no FGFR2 alterations group n = 1141), were included in the meta-analysis. The analysis revealed that the FGFR2 alterations group exhibited a significantly better OS prognosis compared to the no FGFR2 alterations group, with a fixed-effects combined effect size HR = 1.31, 95%CI = 1.001-1.715, p = .049. Furthermore, meta-regression and subgroup analysis showed that the length of the follow-up period did not introduce heterogeneity into the results. This finding indicates the stability and reliability of the study outcomes. CONCLUSION The current study provides compelling evidence that FGFR2 alterations are frequently associated with improved survival outcomes for patients with iCCA undergoing surgical resection or other systemic treatments. Additionally, the study suggests that FGFR2 holds promise as a safe and dependable therapeutic target for managing metastatic, locally advanced or unresectable iCCA. This study offers a novel perspective in the realm of targeted therapy for iCCA, presenting a new and innovative approach to its treatment.
Collapse
Affiliation(s)
- Sen Niu
- Department of General Surgery, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ye Zhang
- Department of General Surgery, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zengyao Li
- Department of General Surgery, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Tong Wang
- Department of General Surgery, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
3
|
Chu Z, Zhang B, Zhou X, Yuan H, Gao C, Liu L, Xiao Y, Zhang J, Hong J, Liang J, Chen D, Yao N. A DNA/RNA heteroduplex oligonucleotide coupling asparagine depletion restricts FGFR2 fusion-driven intrahepatic cholangiocarcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102047. [PMID: 37869260 PMCID: PMC10589379 DOI: 10.1016/j.omtn.2023.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
Pemigatinib, a pan-FGFR inhibitor, is approved to treat intrahepatic cholangiocarcinoma (ICC) harboring FGFR2 fusion mutations. Improving its targeting of FGFR2 fusions remains an unmet clinical need due to its pan selectivity and resistance. Here, we report a cholesterol-conjugated DNA/RNA heteroduplex oligonucleotide targeting the chimeric site in FGFR2-AHCYL1 (F-A Cho-HDO) that accumulates in ICC through endocytosis of low-density lipoprotein receptor (LDLR), which is highly expressed in both human and murine ICC. F-A Cho-HDO was determined to be a highly specific, sustainable, and well-tolerated agent for inhibiting ICC progression through posttranscriptional suppression of F-A in ICC patient-derived xenograft mouse models. Moreover, we identified an EGFR-orchestrated bypass signaling axis that partially offset the efficacy of F-A Cho-HDO. Mechanistically, EGFR-induced STAT1 upregulation promoted asparagine (Asn) synthesis through direct transcriptional upregulation of asparagine synthetase (ASNS) and dictated cell survival by preventing p53-dependent cell cycle arrest. Asn restriction with ASNase or ASNS inhibitors reduced the intracellular Asn, thereby reactivating p53 and sensitizing ICC to F-A Cho-HDO. Our findings highlight the application of genetic engineering therapies in ICC harboring FGFR2 fusions and reveal an axis of adaptation to FGFR2 inhibition that presents a rationale for the clinical evaluation of a strategy combining FGFR2 inhibitors with Asn depletion.
Collapse
Affiliation(s)
- Zhenzhen Chu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Baohuan Zhang
- Morphology Experimental Teaching Center, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xuxuan Zhou
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hui Yuan
- Department of Gastroenterology, Huizhou Municipal Central Hospital, Huizhou, Guangdong 516001, China
| | - Chongqing Gao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lihao Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yang Xiao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jichun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Dong Chen
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Nan Yao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
4
|
Lamarca A, Ostios L, McNamara MG, Garzon C, Gleeson JP, Edeline J, Herrero A, Hubner RA, Moreno V, Valle JW. Resistance mechanism to fibroblast growth factor receptor (FGFR) inhibitors in cholangiocarcinoma. Cancer Treat Rev 2023; 121:102627. [PMID: 37925878 DOI: 10.1016/j.ctrv.2023.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
Precision medicine is a major achievement that has impacted on management of patients diagnosed with advanced cholangiocarcinoma (CCA) over the last decade. Molecular profiling of CCA has identified targetable alterations, such as fibroblast growth factor receptor-2 (FGFR-2) fusions, and has thus led to the development of a wide spectrum of compounds. Despite favourable response rates, especially with the latest generation FGFRi, there are still a proportion of patients who will not achieve a radiological response to treatment, or who will have disease progression as the best response. In addition, for patients who do respond to treatment, secondary resistance frequently develops and mechanisms of such resistance are not fully understood. This review will summarise the current state of development of FGFR inhibitors in CCA, their mechanism of action, activity, and the hypothesised mechanisms of resistance.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology - OncoHealth Institute - Instituto de Investigaciones Sanitarias FJD, Fundación Jiménez Díaz University Hospital, Madrid, Spain; Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom.
| | - Lorena Ostios
- START-FJD Phase I Unit, Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Mairéad G McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Carlos Garzon
- Department of Medical Oncology, Infanta Elena University Hospital, Madrid, Spain
| | - Jack P Gleeson
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom; Cancer Res @UCC, University College Cork, Cork, Ireland
| | - Julien Edeline
- Department of Medical Oncology, Centre Eugène Marquis, Rennes, France
| | - Ana Herrero
- Department of Medical Oncology, Villalba University Hospital, Madrid, Spain
| | - Richard A Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Victor Moreno
- START-FJD Phase I Unit, Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Pu X, Qi L, Yan JW, Ai Z, Wu P, Yang F, Fu Y, Li X, Zhang M, Sun B, Yue S, Chen J. Oncogenic activation revealed by FGFR2 genetic alterations in intrahepatic cholangiocarcinomas. Cell Biosci 2023; 13:208. [PMID: 37964396 PMCID: PMC10644541 DOI: 10.1186/s13578-023-01156-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Except for gene fusions, FGFR2 genetic alterations in intrahepatic cholangiocarcinomas (ICCs) have received limited attention, leaving patients harboring activating FGFR2 gene mutations with inadequate access to targeted therapies. EXPERIMENTAL DESIGN We sought to survey FGFR2 genetic alterations in ICC and pan-cancers using fluorescence in situ hybridization and next-generation sequencing. We conducted an analysis of the clinical and pathological features of ICCs with different FGFR2 alterations, compared FGFR2 lesion spectrum through public databases and multicenter data, and performed cellular experiments to investigate the oncogenic potential of different FGFR2 mutants. RESULTS FGFR2 gene fusions were identified in 30 out of 474 ICC samples, while five FGFR2 genetic alterations aside from fusion were present in 290 ICCs. The tumors containing FGFR2 translocations exhibited unique features, which we designated as the "FGFR2 fusion subtypes of ICC". Molecular analysis revealed that FGFR2 fusions were not mutually exclusive with other oncogenic driver genes/mutations, whereas FGFR2 in-frame deletions and site mutations often co-occurred with TP53 mutations. Multicenter and pan-cancer studies demonstrated that FGFR2 in-frame deletions were more prevalent in ICCs (0.62%) than in other cancers, and were not limited to the extracellular domain. We selected representative FGFR2 genetic alterations, including in-frame deletions, point mutations, and frameshift mutations, to analyze their oncogenic activity and responsiveness to targeted drugs. Cellular experiments revealed that different FGFR2 genetic alterations promoted ICC tumor growth, invasion, and metastasis but responded differently to FGFR-selective small molecule kinase inhibitors (SMKIs). CONCLUSIONS FGFR2 oncogenic alterations have different clinicopathological features and respond differently to SMKIs.
Collapse
Affiliation(s)
- Xiaohong Pu
- Department of Pathology, Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Liang Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Jia Wu Yan
- Department of Hepatobiliary Surgery, Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Zihe Ai
- Department of Medical Genetics, Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Ping Wu
- Department of Medical Genetics, Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Fei Yang
- Department of Hepatobiliary Surgery, Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Yao Fu
- Department of Pathology, Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Xing Li
- Shanghai Origimed Limited Company, Shanghai, 20000, China
| | - Min Zhang
- Beijing Gene Plus Limited Company, Beijing, 10000, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Shen Yue
- Department of Medical Genetics, Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| | - Jun Chen
- Department of Pathology, Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
6
|
Wekking D, Pretta A, Martella S, D'Agata AP, Joeun Choe J, Denaro N, Solinas C, Scartozzi M. Fibroblast growth factor receptors as targets for anticancer therapy in cholangiocarcinomas and urothelial carcinomas. Heliyon 2023; 9:e19541. [PMID: 37681152 PMCID: PMC10481293 DOI: 10.1016/j.heliyon.2023.e19541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Cholangiocarcinomas and urothelial carcinomas are lethal tumors worldwide and only a minority of patients are eligible for surgery at diagnosis. Moreover, patients are poorly responsive to current therapeutic strategies, including chemotherapy, radiotherapy, immunotherapy, and multimodality treatments. Recently, several advances have been made in precision medicine and these results are modifying the treatment paradigm for patients diagnosed with cholangiocarcinomas and urothelial carcinoma. These histotypes exhibit a high rate of multiple fibroblast growth factor receptor (FGFR) genetic alterations and numerous preclinical and clinical studies support FGFR as a highly attractive novel therapeutic target. Moreover, identifying specific genetic alterations may predict the tumor's response to conventional and novel FGFR-targeted drugs. Recent clinical studies showed promising data for FGFR-targeted therapy in reducing tumor volume and led to the United States Food and Drug Administration (FDA) approval of, e.g., pemigatinib, infigratinib, futibatinib, and erdafitinib. Moreover, FGFR inhibitors show promising results in the first-line setting of cholangiocarcinomas and urothelial carcinomas. Pemigatinib (FIGHT-302) and futibatinib (FOENIX-CAA3) are being evaluated in phase III trials that compare these agents to current first-line gemcitabine and cisplatin in FGFR2-rearranged cholangiocarcinoma. However, complexity in targeting the FGFR signaling pathway is observed. Herein, we describe the characteristics of the FDA-approved and other investigational FGFR-targeted therapeutics, evaluate the most recent preclinical and clinical studies focusing on targeting FGFR genomic alterations in the treatment of cholangiocarcinomas and urothelial cancer, and provide insight into factors involved in response and (acquired) resistance to FGFR inhibition.
Collapse
Affiliation(s)
- Demi Wekking
- Amsterdam UMC, Location Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, Italy
| | - Serafina Martella
- Medical Oncology, University Hospital Policlinico G.Rodolico-San Marco, 95123, Catania, Italy
| | | | - Joanna Joeun Choe
- Cancer Outcomes Research and Education, Massachusetts General Hospital, Boston, MA, USA
| | | | - Cinzia Solinas
- Medical Oncology AOU Cagliari Policlinico Duilio Casula, Monserrato, CA, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Italy
- Medical Oncology AOU Cagliari Policlinico Duilio Casula, Monserrato, CA, Italy
| |
Collapse
|
7
|
Pappas L, Baiev I, Reyes S, Bocobo AG, Jain A, Spencer K, Le TM, Rahma OE, Maurer J, Stanton J, Zhang K, De Armas AD, Deleon TT, Roth M, Peters MLB, Zhu AX, Boyhen K, VanCott C, Patel T, Roberts LR, Lindsey S, Horick N, Lennerz JK, Iafrate AJ, Goff LW, Mody K, Borad MJ, Shroff RT, Javle MM, Kelley RK, Goyal L. The Cholangiocarcinoma in the Young (CITY) Study: Tumor Biology, Treatment Patterns, and Survival Outcomes in Adolescent Young Adults With Cholangiocarcinoma. JCO Precis Oncol 2023; 7:e2200594. [PMID: 37561981 PMCID: PMC10581631 DOI: 10.1200/po.22.00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/06/2023] [Accepted: 04/06/2023] [Indexed: 08/12/2023] Open
Abstract
PURPOSE Increased awareness of the distinct tumor biology for adolescents and young adults (AYAs) with cancer has led to improvement in outcomes for this population. However, in cholangiocarcinoma (CCA), a paucity of data exist on the AYA population. To our knowledge, we present the largest study to date on AYA disease biology, treatment patterns, and survival outcomes in CCA. METHODS A multi-institutional cohort of patients with CCA diagnosed with intrahepatic cholangiocarcinoma (ICC) or extrahepatic cholangiocarcinoma (ECC) was used for analysis. Retrospective chart review was conducted on patients who were 50 years old and younger (young; n = 124) and older than 50 years (older; n = 723). RESULTS Among 1,039 patients screened, 847 patients met eligibility (72% ICC, 28% ECC). Young patients had a larger median tumor size at resection compared with older patients (4.2 v 3.6 cm; P = .048), more commonly had N1 disease (65% v 43%; P = .040), and were more likely to receive adjuvant therapy (odds ratio, 4.0; 95% CI, 1.64 to 9.74). Tumors of young patients were more likely to harbor an FGFR2 fusion, BRAF mutation, or ATM mutation (P < .05 for each). Young patients were more likely to receive palliative systemic therapy (96% v 69%; P < .001), targeted therapy (23% v 8%; P < .001), and treatment on a clinical trial (31% v 19%; P = .004). Among patients who presented with advanced disease, young patients had a higher median overall survival compared with their older counterparts (17.7 v 13.5 months; 95% CI, 12.6 to 22.6 v 11.4 to 14.8; P = .049). CONCLUSION Young patients with CCA had more advanced disease at resection, more commonly received both adjuvant and palliative therapies, and demonstrated improved survival compared with older patients. Given the low clinical trial enrollment and poor outcomes among some AYA cancer populations, data to the contrary in CCA are highly encouraging.
Collapse
Affiliation(s)
- Leontios Pappas
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Islam Baiev
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
| | | | - Andrea Grace Bocobo
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Apurva Jain
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kristen Spencer
- Department of Medicine, NYU Langone Health Perlmutter Cancer Center, NYU School of Medicine, New York, NY
| | - Tri Minh Le
- Department of Medicine, University of Virginia Comprehensive Cancer Center, Charlottesville, VA
| | - Osama E. Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jordan Maurer
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Jen Stanton
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Karen Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Anaemy Danner De Armas
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Marc Roth
- Department of Medical Oncology, St Luke's Cancer Institute, Kansas City, MO
| | | | - Andrew X. Zhu
- Jiahui International Cancer Center, Jiahui Health, Shanghai, China
- I-MAB Biopharma, Shanghai, China
| | | | | | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | | | - Nora Horick
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Jochen K. Lennerz
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - A. John Iafrate
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | | | - Kabir Mody
- Division of Hematology/Oncology, Mayo Clinic, Jacksonville, FL
| | - Mitesh J. Borad
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ
| | - Rachna T. Shroff
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Milind M. Javle
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - R. Katie Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Lipika Goyal
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Division of Oncology, Stanford Cancer Center, Palo Alto, CA
| |
Collapse
|
8
|
Zhang L, Zheng H, Xu L, You S, Shen Y, Han Y, Anderson S. A Robust FISH Assay to Detect FGFR2 Translocations in Intrahepatic Cholangiocarcinoma Patients. Diagnostics (Basel) 2023; 13:2088. [PMID: 37370984 DOI: 10.3390/diagnostics13122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
FGFR fusions retaining the FGFR kinase domain are active kinases that are either overexpressed or constitutively activated throughout diverse cancer types. The presence of FGFR translocations enhances tumor cell proliferation and contributes to significant sensitivity to FGFR kinase inhibitors. FGFR2 as an actionable target in intrahepatic cholangiocarcinoma (iCCA) has been tested in many clinical trials. FISH (fluorescence in situ hybridization) and NGS (next-generation sequence) are well-known tools to investigate the translocations of FGFR with multiple or unknown translocation partners. A rapid and robust FISH assay was developed and validated to detect FGFR2 translocations from FFPE specimens in iCCA. The analytical performance of the FISH assay was evaluated for probe localization, probe sensitivity and specificity, and assay precision. Twenty-five archival FFPE specimens from local iCCA patients were tested for FGFR2 translocations. FISH results were correlated with that of NGS on some samples. Biallelic translocations and a novel FGFR2 translocation involving the partner gene, SHROOM3, t(4;10) (q21;q26), were identified in a local iCCA patient.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| | - Hao Zheng
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| | - Linyu Xu
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| | - Si You
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| | - Yuanyuan Shen
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| | - Yang Han
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| | - Steve Anderson
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| |
Collapse
|
9
|
Leowattana W, Leowattana T, Leowattana P. Paradigm shift of chemotherapy and systemic treatment for biliary tract cancer. World J Gastrointest Oncol 2023; 15:959-972. [PMID: 37389105 PMCID: PMC10302992 DOI: 10.4251/wjgo.v15.i6.959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 06/14/2023] Open
Abstract
Biliary tract cancers (BTC) are frequently identified at late stages and have a poor prognosis due to limited systemic treatment regimens. For more than a decade, the combination of gemcitabine and cis-platin has served as the first-line standard treatment. There are few choices for second-line chemo-therapy. Targeted treatment with fibroblast growth factor receptor 2 inhibitors, neurotrophic tyrosine receptor kinase inhibitors, and isocitrate dehydrogenase 1 inhibitors has had important results. Immune checkpoint inhibitors (ICI) such as pembrolizumab are only used in first-line treatment for microsatellite instability high patients. The TOPAZ-1 trial's outcome is encouraging, and there are several trials underway that might soon put targeted treatment and ICI combos into first-line options. Newer targets and agents for existing goals are being studied, which may represent a paradigm shift in BTC management. Due to a scarcity of targetable mutations and the higher toxicity profile of the current medications, the new category of drugs may occupy a significant role in BTC therapies.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Wattana 10110, Bangkok, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| |
Collapse
|
10
|
Chen W, Xu D, Liu Q, Wu Y, Wang Y, Yang J. Unraveling the heterogeneity of cholangiocarcinoma and identifying biomarkers and therapeutic strategies with single-cell sequencing technology. Biomed Pharmacother 2023; 162:114697. [PMID: 37060660 DOI: 10.1016/j.biopha.2023.114697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a common malignant tumor of the biliary tract that carries a high burden of morbidity and a poor prognosis. Due to the lack of precise diagnostic methods, many patients are often diagnosed at advanced stages of the disease. The current treatment options available are of varying efficacy, underscoring the urgency for the discovery of more effective biomarkers for early diagnosis and improved treatment. Recently, single-cell sequencing (SCS) technology has gained popularity in cancer research. This technology has the ability to analyze tumor tissues at the single-cell level, thus providing insights into the genomics and epigenetics of tumor cells. It also serves as a practical approach to study the mechanisms of cancer progression and to explore therapeutic strategies. In this review, we aim to assess the heterogeneity of CCA using single-cell sequencing technology, with the ultimate goal of identifying possible biomarkers and potential treatment targets.
Collapse
Affiliation(s)
- Wangyang Chen
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Dongchao Xu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Qiang Liu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Yirong Wu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Yu Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Jianfeng Yang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
11
|
Brown ZJ, Ruff SM, Pawlik TM. Developments in FGFR and IDH inhibitors for cholangiocarcinoma therapy. Expert Rev Anticancer Ther 2023; 23:257-264. [PMID: 36744395 DOI: 10.1080/14737140.2023.2176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an uncommon malignancy originating from epithelial cells of the biliary tract. Regardless of the site of origin within the biliary tree, CCAs are generally aggressive with a poor survival. Surgical resection remains the only chance for cure, yet a majority of patients are not surgical candidates at presentation. Unfortunately, systemic therapies are often ineffective and complicated by side effects. As such, more effective targeted therapies are required in order to improve survival. AREA COVERED Genetic analysis of CCA has allowed for a better understanding of the genomic landscape of CCA. Isocitrate dehydrogenase (IDH) and fibroblast growth factor receptor (FGFR) mutations have emerged as the most promising molecular targets for CCA. Inhibitors of IDH and FGFR have proven to have therapeutic benefit with an acceptable safety profile. However, patients often develop resistance rendering the therapy ineffective. EXPERT OPINION Understanding the molecular pathways of IDH and FGFR may lead to a better understanding of the mechanisms of resistance. Thus, novel therapies may be developed to improve the efficacy of these therapies. Developing novel biomarkers may improve patient selection and further enhance effectiveness of targeted therapies.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, Summit Health, Berkeley Heights, NJ, USA
| | - Samantha M Ruff
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
12
|
Testa U, Pelosi E, Castelli G. The clinical value of identifying genetic abnormalities that can be targeted in cholangiocarcinomas. Expert Rev Anticancer Ther 2023; 23:147-162. [PMID: 36654529 DOI: 10.1080/14737140.2023.2170878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Cholangiocarcinomas (CCAs) are a heterogenous group of epithelial malignancies originating at any level of the biliary tree and are subdivided according to their location into intrahepatic (iCCA) and extrahepatic (eCCA). AREAS COVERED This review provides an updated analysis of studies of genetic characterization of CCA at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION With the development of genetic sequencing, several driver mutations have been identified and targeted as novel therapeutic approaches, including FGFR2, IDH1, BRAF, NTRK, HER2, ROS, and RET. Furthermore, identification of the cellular and molecular structure of the tumor microenvironment has contributed to the development of novel therapies, such as tumor immunotherapy. Combination therapies of chemotherapy plus targeted molecules or immunotherapy are under evaluation and offer the unique opportunity to improve the outcomes of CCA patients with advanced disease.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|
13
|
Shi GM, Huang XY, Wen TF, Song TQ, Kuang M, Mou HB, Bao LQ, Zhao HT, Zhao H, Feng XL, Zhang BX, Peng T, Zhang YB, Li XC, Yu HS, Cao Y, Liu LX, Zhang T, Wang WL, Ran JH, Liu YB, Gong W, Chen MX, Cao L, Luo Y, Wang Y, Zhou H, Yang GH, Fan J, Zhou J. Pemigatinib in previously treated Chinese patients with locally advanced or metastatic cholangiocarcinoma carrying FGFR2 fusions or rearrangements: A phase II study. Cancer Med 2023; 12:4137-4146. [PMID: 36127767 PMCID: PMC9972033 DOI: 10.1002/cam4.5273] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE This study evaluated the antitumor activity and safety of pemigatinib in previously treated Chinese patients with advanced cholangiocarcinoma and fibroblast growth factor receptor 2 (FGFR2) fusions or rearrangements. BACKGROUND Pemigatinib provided clinical benefits for previously treated patients with cholangiocarcinoma carrying FGFR2 fusions or rearrangements and was approved for this indication in multiple countries. METHODS In this ongoing, multicenter, single-arm, phase II study, adult patients with locally advanced or metastatic cholangiocarcinoma carrying centrally confirmed FGFR2 fusions or rearrangements who had progressed on ≥1 systemic therapy received 13.5 mg oral pemigatinib once daily (3-week cycle; 2 weeks on, 1 week off) until disease progression, unacceptable toxicity, or consent withdrawal. The primary endpoint was objective response rate (ORR) assessed by an independent radiology review committee. RESULTS As of January 29, 2021, 31 patients were enrolled. The median follow-up was 5.1 months (range, 1.5-9.3). Among 30 patients with FGFR2 fusions or rearrangements evaluated for efficacy, 15 patients achieved partial response (ORR, 50.0%; 95% confidence interval [CI], 31.3-68.7); 15 achieved stable disease, contributing to a disease control rate of 100% (95% CI, 88.4-100). The median time to response was 1.4 months (95% CI, 1.3-1.4), the median duration of response was not reached, and the median progression-free survival was 6.3 months (95% CI, 4.9-not estimable [NE]). Eight (25.8%) of 31 patients had ≥grade 3 treatment-emergent adverse events. Hyperphosphatemia, hypophosphatasemia, nail toxicities, and ocular disorders were mostly <grade 3, except for 2 events ≥grade 3. CONCLUSIONS The encouraging antitumor activity and favorable safety profile support the use of pemigatinib as a treatment in previously treated Chinese patients with cholangiocarcinoma and FGFR2 rearrangements.
Collapse
Affiliation(s)
- Guo-Ming Shi
- Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Yong Huang
- Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tian-Fu Wen
- Hepatobiliary Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tian-Qiang Song
- Hepatobiliary Surgery, Tianjin Cancer Hospital, Tian Jin, China
| | - Ming Kuang
- Department of Oncology, Hepatobiliary and Pancreatic Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hai-Bo Mou
- Medical Oncology, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Le-Qun Bao
- Hepatobiliary Surgery, Hubei Cancer Hospital, Wuhan, China
| | - Hai-Tao Zhao
- Liver Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hong Zhao
- Hematological Surgery Department, Cancer Hospital of Chinese Academy of Medical Science, Beijing, China
| | - Xie-Lin Feng
- Hepatobiliary and Pancreatic Surgery, Sichuan Cancer Hospital, Chengdu, China
| | - Bi-Xiang Zhang
- Hepatobiliary Surgery, Tongji Hospital, Tongji Medical College of HUST, Wuhan, China
| | - Tao Peng
- Hepatological Surgery Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu-Bao Zhang
- Hepatobiliary and Pancreatic Surgery, Cancer Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Xiang-Cheng Li
- Liver Surgery, Jiangsu Province Hospital, Nanjing, China
| | - Hong-Sheng Yu
- Oncology Department, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Cao
- Phase 1 Clinical Research Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lian-Xin Liu
- Hepatobiliary Surgery Department, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Ti Zhang
- Hepatobiliary Surgery Department, Tianjin Cancer Hospital, Tianjin, China
| | - Wei-Lin Wang
- Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiang-Hua Ran
- Hepatopancreatobiliary Surgery, The First Hospital of Kunming, Kunming, China
| | - Ying-Bin Liu
- General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Gong
- General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Xia Chen
- Department of Medical Science and Oncological Strategy, Innovent Biologics Inc., Suzhou, China
| | - Lian Cao
- Department of Medical Science and Oncological Strategy, Innovent Biologics Inc., Suzhou, China
| | - Yang Luo
- Department of Medical Science and Oncological Strategy, Innovent Biologics Inc., Suzhou, China
| | - Yan Wang
- Department of Medical Science and Oncological Strategy, Innovent Biologics Inc., Suzhou, China
| | - Hui Zhou
- Department of Medical Science and Oncological Strategy, Innovent Biologics Inc., Suzhou, China
| | - Guo-Huan Yang
- Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
FGFR Inhibitors in Cholangiocarcinoma-A Novel Yet Primary Approach: Where Do We Stand Now and Where to Head Next in Targeting This Axis? Cells 2022; 11:cells11233929. [PMID: 36497187 PMCID: PMC9737583 DOI: 10.3390/cells11233929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinomas (CCAs) are rare but aggressive tumours with poor diagnosis and limited treatment options. Molecular targeted therapies became a promising proposal for patients after progression under first-line chemical treatment. In light of an escalating prevalence of CCA, it is crucial to fully comprehend its pathophysiology, aetiology, and possible targets in therapy. Such knowledge would play a pivotal role in searching for new therapeutic approaches concerning diseases' symptoms and their underlying causes. Growing evidence showed that fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) pathway dysregulation is involved in a variety of processes during embryonic development and homeostasis as well as tumorigenesis. CCA is known for its close correlation with the FGF/FGFR pathway and targeting this axis has been proposed in treatment guidelines. Bearing in mind the significance of molecular targeted therapies in different neoplasms, it seems most reasonable to move towards intensive research and testing on these in the case of CCA. However, there is still a need for more data covering this topic. Although positive results of many pre-clinical and clinical studies are discussed in this review, many difficulties lie ahead. Furthermore, this review presents up-to-date literature regarding the outcomes of the latest clinical data and discussion over future directions of FGFR-directed therapies in patients with CCA.
Collapse
|
15
|
Capuozzo M, Santorsola M, Landi L, Granata V, Perri F, Celotto V, Gualillo O, Nasti G, Ottaiano A. Evolution of Treatment in Advanced Cholangiocarcinoma: Old and New towards Precision Oncology. Int J Mol Sci 2022; 23:15124. [PMID: 36499450 PMCID: PMC9740631 DOI: 10.3390/ijms232315124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant neoplasm arising in the epithelium of the biliary tract. It represents the second most common primary liver cancer in the world, after hepatocellular carcinoma, and it constitutes 10-15% of hepatobiliary neoplasms and 3% of all gastrointestinal tumors. As in other types of cancers, recent studies have revealed genetic alterations underlying the establishment and progression of CCA. The most frequently involved genes are APC, ARID1A, AXIN1, BAP1, EGFR, FGFRs, IDH1/2, RAS, SMAD4, and TP53. Actionable targets include alterations of FGFRs, IDH1/2, BRAF, NTRK, and HER2. "Precision oncology" is emerging as a promising approach for CCA, and it is possible to inhibit the altered function of these genes with molecularly oriented drugs (pemigatinib, ivosidenib, vemurafenib, larotrectinib, and trastuzumab). In this review, we provide an overview of new biologic drugs (their structures, mechanisms of action, and toxicities) to treat metastatic CCA, providing readers with panoramic information on the trajectory from "old" chemotherapies to "new" target-oriented drugs.
Collapse
Affiliation(s)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Loris Landi
- Sanitary District, Ds. 58 ASL-Naples-3, 80056 Ercolano, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Venere Celotto
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| |
Collapse
|
16
|
Hehir-Kwa JY, Koudijs MJ, Verwiel ETP, Kester LA, van Tuil M, Strengman E, Buijs A, Kranendonk MEG, Hiemcke-Jiwa LS, de Haas V, van de Geer E, de Leng W, van der Lugt J, Lijnzaad P, Holstege FCP, Kemmeren P, Tops BBJ. Improved Gene Fusion Detection in Childhood Cancer Diagnostics Using RNA Sequencing. JCO Precis Oncol 2022; 6:e2000504. [PMID: 35085008 PMCID: PMC8830514 DOI: 10.1200/po.20.00504] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Gene fusions play a significant role in cancer etiology, making their detection crucial for accurate diagnosis, prognosis, and determining therapeutic targets. Current diagnostic methods largely focus on either targeted or low-resolution genome-wide techniques, which may be unable to capture rare events or both fusion partners. We investigate if RNA sequencing can overcome current limitations with traditional diagnostic techniques to identify gene fusion events. METHODS We first performed RNA sequencing on a validation cohort of 24 samples with a known gene fusion event, after which a prospective pan-pediatric cancer cohort (n = 244) was tested by RNA sequencing in parallel to existing diagnostic procedures. This cohort included hematologic malignancies, tumors of the CNS, solid tumors, and suspected neoplastic samples. All samples were processed in the routine diagnostic workflow and analyzed for gene fusions using standard-of-care methods and RNA sequencing. RESULTS We identified a clinically relevant gene fusion in 83 of 244 cases in the prospective cohort. Sixty fusions were detected by both routine diagnostic techniques and RNA sequencing, and one fusion was detected only in routine diagnostics, but an additional 24 fusions were detected solely by RNA sequencing. RNA sequencing, therefore, increased the diagnostic yield by 38%-39%. In addition, RNA sequencing identified both gene partners involved in the gene fusion, in contrast to most routine techniques. For two patients, the newly identified fusion by RNA sequencing resulted in treatment with targeted agents. CONCLUSION We show that RNA sequencing is sufficiently robust for gene fusion detection in routine diagnostics of childhood cancers and can make a difference in treatment decisions.
Collapse
Affiliation(s)
| | - Marco J. Koudijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Laboratories, Pharmacy and Biomedical Genetics, Section of Genome Diagnostics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Lennart A. Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marc van Tuil
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Eric Strengman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Arjan Buijs
- Department of Laboratories, Pharmacy and Biomedical Genetics, Section of Genome Diagnostics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Valerie de Haas
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ellen van de Geer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Wendy de Leng
- Department of Laboratories, Pharmacy and Biomedical Genetics, Section Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | |
Collapse
|
17
|
NOV/CCN3 Promotes Cell Migration and Invasion in Intrahepatic Cholangiocarcinoma via miR-92a-3p. Genes (Basel) 2021; 12:genes12111659. [PMID: 34828265 PMCID: PMC8621878 DOI: 10.3390/genes12111659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a common type of human cancer with a poor prognosis, and investigating the potential molecular mechanisms that can contribute to gene diagnosis and therapy. Herein, based on the recently concerned vertebrate-specific Cyr61/CTGF/NOV (CCN) gene family because of its important roles in diverse diseases, we obtained NOV/CCN3 to query for its potential roles in tumorigenesis via bioinformatics analysis. Experimental validations confirmed that both NOV mRNA and protein are up-regulated in two ICC cell lines, suggesting that it may promote cell migration and invasion by promoting EMT. To elucidate the detailed regulatory mechanism, miR-92a-3p is screened and identified as a negative regulatory small RNA targeting NOV, and further experimental validation demonstrates that miR-92a-3p contributes to NOV-mediated migration and invasion of ICC via the Notch signaling pathway. Our study reveals that NOV may be a potential target for diagnosing and treating ICC, which will provide experimental data and molecular theoretical foundation for cancer treatment, particularly for future precision medicine.
Collapse
|