1
|
Chen W, Wu S, Chen Y, Li W, Cao Y, Liang Y, Dai X, Chen X, Chen Y, Chen T, Liu S, Yang C, Jiang H. USP20 mediates malignant phenotypic changes in bladder cancer through direct interactions with YAP1. Neoplasia 2024; 60:101102. [PMID: 39674114 PMCID: PMC11699748 DOI: 10.1016/j.neo.2024.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Yes-associated protein 1 (YAP1) has attracted attention for its potential in the treatment of various types of malignancies. The Hippo-YAP1 axis is inhibited in bladder cancer (BC), which is a major driver of BC progression and oncogenesis. Hippo pathway activity is controlled by the phosphorylation cascade in the MST1/2-LATS1/2-YAP1 axis, in addition to other modifications such as ubiquitination of the Hippo pathway proteins through the co-regulation of E3 ligases and deubiquitinases. In this study, we identified USP20 as a Hippo/YAP1 pathway-related deubiquitinase using combined siRNA screening and a deubiquitinase overexpression assay. Further analysis revealed that USP20 directly regulated the expression of YAP1 and its downstream target genes connective tissue growth factor and cysteine-rich angiogenic inducer 61. A tissue microarray assay confirmed that USP20 expression was elevated in tumor tissues and correlated with YAP1 expression. Analysis of the underlying mechanisms revealed that USP20 directly interacted with the YAP1 protein and promoted its stability through inhibition of K48-linked poly-ubiquitination. Our findings revealed that USP20 serves as a deubiquitinase and regulates the Hippo-YAP1 pathway in BC.
Collapse
Affiliation(s)
- Wensun Chen
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Siqi Wu
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Yifan Chen
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Weijian Li
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Yiqing Cao
- Department of Pharmaceutical Analysis, Fudan University, Shanghai 201203, PR China.
| | - Yingchun Liang
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Xiyu Dai
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Xinan Chen
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Yilin Chen
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Tian Chen
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Shenghua Liu
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Chen Yang
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| |
Collapse
|
2
|
Zhang Z, Gao Z, Fang H, Zhao Y, Xing R. Therapeutic importance and diagnostic function of circRNAs in urological cancers: from metastasis to drug resistance. Cancer Metastasis Rev 2024; 43:867-888. [PMID: 38252399 DOI: 10.1007/s10555-023-10152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/31/2023] [Indexed: 01/23/2024]
Abstract
Circular RNAs (circRNAs) are a member of non-coding RNAs with no ability in encoding proteins and their aberrant dysregulation is observed in cancers. Their closed-loop structure has increased their stability, and they are reliable biomarkers for cancer diagnosis. Urological cancers have been responsible for high mortality and morbidity worldwide, and developing new strategies in their treatment, especially based on gene therapy, is of importance since these malignant diseases do not respond to conventional therapies. In the current review, three important aims are followed. At the first step, the role of circRNAs in increasing or decreasing the progression of urological cancers is discussed, and the double-edged sword function of them is also highlighted. At the second step, the interaction of circRNAs with molecular targets responsible for urological cancer progression is discussed, and their impact on molecular processes such as apoptosis, autophagy, EMT, and MMPs is highlighted. Finally, the use of circRNAs as biomarkers in the diagnosis and prognosis of urological cancer patients is discussed to translate current findings in the clinic for better treatment of patients. Furthermore, since circRNAs can be transferred to tumor via exosomes and the interactions in tumor microenvironment provided by exosomes such as between macrophages and cancer cells is of importance in cancer progression, a separate section has been devoted to the role of exosomal circRNAs in urological tumors.
Collapse
Affiliation(s)
- Zhibin Zhang
- College of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, Hebei, China.
| | - Zhixu Gao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Huimin Fang
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Rong Xing
- Chengde Medical College, Chengde, 067000, Hebei, China
| |
Collapse
|
3
|
Cai Y, Ji Y, Liu Y, Zhang D, Gong Z, Li L, Chen X, Liang C, Feng S, Lu J, Qiu Q, Lin Z, Wang Y, Cui L. Microglial circ-UBE2K exacerbates depression by regulating parental gene UBE2K via targeting HNRNPU. Theranostics 2024; 14:4058-4075. [PMID: 38994030 PMCID: PMC11234284 DOI: 10.7150/thno.96890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
Background: Knowledge about the pathogenesis of depression and treatments for this disease are lacking. Epigenetics-related circRNAs are likely involved in the mechanism of depression and have great potential as treatment targets, but their mechanism of action is still unclear. Methods: Circular RNA UBE2K (circ-UBE2K) was screened from peripheral blood of patients with major depressive disorder (MDD) and brain of depression model mice through high-throughput sequencing. Microinjection of circ-UBE2K overexpression lentivirus and adeno-associated virus for interfering with microglial circ-UBE2K into the mouse hippocampus was used to observe the role of circ-UBE2K in MDD. Sucrose preference, forced swim, tail suspension and open filed tests were performed to evaluate the depressive-like behaviors of mice. Immunofluorescence and Western blotting analysis of the effects of circ-UBE2K on microglial activation and immune inflammation. Pull-down-mass spectrometry assay, RNA immunoprecipitation (RIP) test and fluorescence in situ hybridization (FISH) were used to identify downstream targets of circ-UBE2K/ HNRNPU (heterogeneous nuclear ribonucleoprotein U) axis. Results: In this study, through high-throughput sequencing and large-scale screening, we found that circ-UBE2K levels were significantly elevated both in the peripheral blood of patients with MDD and in the brains of depression model mice. Functionally, circ-UBE2K-overexpressing mice exhibited worsened depression-like symptoms, elevated brain inflammatory factor levels, and abnormal microglial activation. Knocking down circ-UBE2K mitigated these changes. Mechanistically, we found that circ-UBE2K binds to heterogeneous nuclear ribonucleoprotein U (HNRNPU) to form a complex that upregulates the expression of the parental gene ubiquitin conjugating enzyme E2 K (UBE2K), leading to abnormal microglial activation and neuroinflammation and promoting the occurrence and development of depression. Conclusions: The findings of the present study revealed that the expression of circUBE2K, which combines with HNRNPU to form the circUBE2K/HNRNPU complex, is increased in microglia after external stress, thus regulating the expression of the parental gene UBE2K and mediating the abnormal activation of microglia to induce neuroinflammation, promoting the development of MDD. These results indicate that circ-UBE2K plays a newly discovered role in the pathogenesis of depression.
Collapse
Affiliation(s)
- Yujie Cai
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yao Ji
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yingxuan Liu
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Dandan Zhang
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zheng Gong
- Institute of Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Li Li
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiongjin Chen
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Chunmei Liang
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Sifan Feng
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jiongtong Lu
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Qinjie Qiu
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan Wang
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Lili Cui
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
4
|
Zengzhao W, Xuan L, Xiaohan M, Encun H, Jibing C, Hongjun G. Molecular mechanism of microRNAs, long noncoding RNAs, and circular RNAs regulating lymphatic metastasis of bladder cancer. Urol Oncol 2024; 42:3-17. [PMID: 37989693 DOI: 10.1016/j.urolonc.2023.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Bladder cancer (BC), a malignancy originating in the epithelial tissue in the inner wall of the bladder, is a common urological cancer type. BC spreads through 3 main pathways: direct infiltration, lymphatic metastasis, and hematogenous metastasis. Lymphatic metastasis is considered a poor prognostic factor for BC and is often associated with lower survival rates. The treatment of BC after lymphatic metastasis is complex and challenging. A deeper understanding of the molecular mechanisms underlying lymphatic metastasis of BC may yield potential targets for its treatment. Here, we summarize the current knowledge on epigenetic factors-including miRNAs, lncRNAs, and circRNAs-associated with lymphatic metastasis in BC. These factors are strongly associated with lymphangiogenesis, cancer cell proliferation and migration, and epithelial-mesenchymal transition processes, providing new insights to develop newer BC treatment strategies.
Collapse
Affiliation(s)
- Wei Zengzhao
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lan Xuan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ma Xiaohan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hou Encun
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China; Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, Guangxi, China.
| | - Chen Jibing
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China; Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, Guangxi, China.
| | - Gao Hongjun
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China; Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Zhou P, Wu Z, Zhang Q, Wang L, Zhang W, Han X. A novel link between circPDE3B and ferroptosis in esophageal squamous cell carcinoma progression. Genomics 2024; 116:110761. [PMID: 38092323 DOI: 10.1016/j.ygeno.2023.110761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/30/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
AIM To unravel whether ferroptosis involves with the actions by circPDE3B-mediated facilitation of esophageal squamous cell carcinoma (ESCC) progression. METHODS Human ESCC tissues and cell lines were prepared for the evaluation of ferroptosis. Cellular iron, ROS, GSH, and MDA levels were measured to assess ferroptosis. Flow cytometry was employed to analyze apoptosis and cell cycle. Subcellular fractionation and fluorescence in situ hybridization (FISH) were conducted to validate the localization of circPDE3B. RNA pull-down, RNA immunoprecipitation (RIP), and luciferase assay were subjected to identify the molecular mechanisms. Nude mouse xenograft model was carried out to evaluate the function of circPDE3B/SLC7A11/CBS in vivo. RESULTS Increased circPDE3B in human ESCC specimens was positively correlated with ferroptosis-related molecules, SLC7A11 and CBS. Functionally, circPDE3B knockdown triggered ferroptosis, apoptosis, and cell cycle arrest in ESCC cells. Whereas, these effects were obviously blocked by miR-516b-5p inhibitor. Mechanistically, not only circPDE3B sponged miR-516b-5p to upregulate CBS, but also directly bound with HNRNPK to stabilize SLC7A11. In mice, depletion of circPDE3B restrained ESCC growth, while this was abolished by overexpression of CBS or SLC7A11. CONCLUSION In summary, circPDE3B promotes ESCC progression by suppressing ferroptosis through recruiting HNRNPK/SLC7A11 and miR-516b-5p/CBS axes.
Collapse
Affiliation(s)
- Pengli Zhou
- Intervention Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Zhengyang Wu
- Intervention Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Qinghui Zhang
- Intervention Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Ling Wang
- Intervention Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Wenguang Zhang
- Intervention Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Xinwei Han
- Intervention Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| |
Collapse
|
6
|
Dai X, Chen X, Chen W, Ou Y, Chen Y, Wu S, Zhou Q, Yang C, Zhang L, Jiang H. CircDHRS3 inhibits prostate cancer cell proliferation and metastasis through the circDHRS3/miR-421/MEIS2 axis. Epigenetics 2023; 18:2178802. [PMID: 36840946 PMCID: PMC9980676 DOI: 10.1080/15592294.2023.2178802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Prostate cancer is the most prevalent type of cancer among men worldwide. The importance of circular RNA (circRNA) in prostate cancer and its connection to malignancy has been steadily recognized. circRNA expression was obtained by circRNA sequencing of prostate cancer. circRNA and its function were further analysed. The results were verified by qRT-PCR, RIP assay, FISH, RNA pulldown, WB, CCK-8, colony formation assay and wound-healing assay. BALB/c Nude mice were used for xenograft hosts. Low expression of circDHRS3 was assessed in prostate cancer. Overexpression of circDHRS3 inhibited prostate cancer growth and migration in vitro. Additionally, miR-421 was shown to be the downstream target of circDHRS3, as shown by fluorescence in situ hybridization and dual-luciferase experiments. The rescue assay results for the PC3 and Du145 cell lines demonstrated that circDHRS3 inhibits prostate cancer cell lines' ability to proliferate and metastasize by modulating MEIS2 expression through the circDHRS3/miR-421/MEIS2 axis. In vivo investigations confirmed that the overexpression of circDHRS3 could inhibit both the lung and bone metastasis of prostate cancer cells. circDHRS3 has the potential to become a biomarker and a targeted therapeutic site for prostate cancer, particularly in the malignant stage. Our study indicates that circDHRS3 inhibits prostate cancer cell proliferation and metastasis through the circDHRS3/miR-421/MEIS2 axis.
Collapse
Affiliation(s)
- Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wensun Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China,CONTACT Chen Yang
| | - Limin Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China,Limin Zhang:
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China,Haowen Jiang: Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Yang C, Ou Y, Zhou Q, Liang Y, Li W, Chen Y, Chen W, Wu S, Chen Y, Dai X, Chen X, Chen T, Jin S, Liu Y, Zhang L, Liu S, Hu Y, Zou L, Mao S, Jiang H. Methionine orchestrates the metabolism vulnerability in cisplatin resistant bladder cancer microenvironment. Cell Death Dis 2023; 14:525. [PMID: 37582769 PMCID: PMC10427658 DOI: 10.1038/s41419-023-06050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Metabolism vulnerability of cisplatin resistance in BCa cells remains to be discovered, which we applied integrated multi-omics analysis to elucidate the metabolism related regulation mechanism in bladder cancer (BCa) microenvironment. Integrated multi-omics analysis of metabolomics and proteomics revealed that MAT2A regulated methionine metabolism contributes to cisplatin resistance in BCa cells. We further validated MAT2A and cancer stem cell markers were up-regulated and circARHGAP10 was down-regulated through the regulation of MAT2A protein stability in cisplatin resistant BCa cells. circARHGAP10 formed a complex with MAT2A and TRIM25 to accelerate the degradation of MAT2A through ubiquitin-proteasome pathway. Knockdown of MAT2A through overexpression of circARHGAP10 and restriction of methionine up-take was sufficient to overcome cisplatin resistance in vivo in immuno-deficiency model but not in immuno-competent model. Tumor-infiltrating CD8+ T cells characterized an exhausted phenotype in tumors with low methionine. High expression of SLC7A6 in BCa negatively correlated with expression of CD8. Synergistic inhibition of MAT2A and SLC7A6 could overcome cisplatin resistance in immuno-competent model in vivo. Cisplatin resistant BCa cells rely on methionine for survival and stem cell renewal. circARHGAP10/TRIM25/MAT2A regulation pathway plays an important role in cisplatin resistant BCa cells while circARHGAP10 and SLC7A6 should be evaluated as one of the therapeutic target of cisplatin resistant BCa.
Collapse
Affiliation(s)
- Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Wensun Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yifan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Tian Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Shengming Jin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yufei Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Limin Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China.
| | - Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Luo H, Peng J, Yuan Y. CircRNA OXCT1 promotes the malignant progression and glutamine metabolism of non-small cell lung cancer by absorbing miR-516b-5p and upregulating SLC1A5. Cell Cycle 2023; 22:1182-1195. [PMID: 35482822 PMCID: PMC10193882 DOI: 10.1080/15384101.2022.2071565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 12/24/2022] Open
Abstract
Previous study has demonstrated the high expression of circular RNA 3-oxoacid CoA-transferase 1 (circ-OXCT1) in lung adenocarcinoma tumor tissues. However, the role and possible mechanism of circ-OXCT1 in non-small cell lung cancer (NSCLC) progression was unclear.Quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry (IHC) staining assay were performed to detect the expression of circ-OXCT1, microRNA-516b-5p (miR-516b-5p), solute carrier family 1 member 5 (SLC1A5) and other indicated protein markers. Cell proliferation was measured by Cell counting kit 8 (CCK8), colony formation and 5-Ethynyl-2'-deoxyuridine (EdU) assays. Flow cytometry was employed to detect the rate of apoptotic cells. Cell migration and invasion were measured using transwell assay. The relative glutamine uptake and α-ketoglutarate (α-KG) production was determined using commercial kits. Interaction between miR-516b-5p and circ-OXCT1 or SLC1A5 was predicted by bioinformatics analysis and confirmed via luciferase reporter and RNA immunoprecipitation (RIP) assays. In vivo assay was implemented to demonstrate the effect of circ-OXCT1 in tumor growth.Circ-OXCT1 and SLC1A5 were upregulated and miR-516b-5p was downregulated in NSCLC tissues and cells. Functional experiments revealed that circ-OXCT1 silencing suppressed cell proliferation, migration and invasion, but promoted cell apoptosis in vitro. Circ-OXCT1 knockdown repressed tumor formation in vivo. Besides, miR-516b-5p was a target of circ-OXCT1, and miR-516b-5p inhibitor could relieve circ-OXCT1 absence-mediated effects in NSCLC cells. SLC1A5 was identified as a target of miR-516b-5p. Circ-OXCT1 promoted SLC1A5 expression by target binding with miR-516b-5p.Circ-OXCT1 facilitated NSCLC progression via miR-516b-5p-dependent regulation of SLC1A5, which provided a possible circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Hua Luo
- Department of Thoracic Surgery, Changsha Central Hospital, Changsha, Hunan, China
| | - Jianming Peng
- Department of Thoracic Surgery, Changsha Central Hospital, Changsha, Hunan, China
| | - Yuexi Yuan
- Department of Thoracic Surgery, Changsha Central Hospital, Changsha, Hunan, China
| |
Collapse
|
9
|
Zhang ZH, Wang Y, Zhang Y, Zheng SF, Feng T, Tian X, Abudurexiti M, Wang ZD, Zhu WK, Su JQ, Zhang HL, Shi GH, Wang ZL, Cao DL, Ye DW. The function and mechanisms of action of circular RNAs in Urologic Cancer. Mol Cancer 2023; 22:61. [PMID: 36966306 PMCID: PMC10039696 DOI: 10.1186/s12943-023-01766-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/17/2023] [Indexed: 03/27/2023] Open
Abstract
Kidney, bladder, and prostate cancer are the three major tumor types of the urologic system that seriously threaten human health. Circular RNAs (CircRNAs), special non-coding RNAs with a stabile structure and a unique back-splicing loop-forming ability, have received recent scientific attention. CircRNAs are widely distributed within the body, with important biologic functions such as sponges for microRNAs, as RNA binding proteins, and as templates for regulation of transcription and protein translation. The abnormal expression of circRNAs in vivo is significantly associated with the development of urologic tumors. CircRNAs have now emerged as potential biomarkers for the diagnosis and prognosis of urologic tumors, as well as targets for the development of new therapies. Although we have gained a better understanding of circRNA, there are still many questions to be answered. In this review, we summarize the properties of circRNAs and detail their function, focusing on the effects of circRNA on proliferation, metastasis, apoptosis, metabolism, and drug resistance in kidney, bladder, and prostate cancers.
Collapse
Affiliation(s)
- Zi-Hao Zhang
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Yue Wang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ya Zhang
- Department of Nephrology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Sheng-Feng Zheng
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Tao Feng
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Xi Tian
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Mierxiati Abudurexiti
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Zhen-Da Wang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Wen-Kai Zhu
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Jia-Qi Su
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Hai-Liang Zhang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Guo-Hai Shi
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Zi-Liang Wang
- Institute of Cancer Research, Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Da-Long Cao
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ding-Wei Ye
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China.
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
10
|
Chen W, Tan M, Yu C, Liao G, Kong D, Bai J, Yang B, Gong H. ARHGAP6 inhibits bladder cancer cell viability, migration, and invasion via β-catenin signaling and enhances mitomycin C sensitivity. Hum Cell 2023; 36:786-797. [PMID: 36715867 DOI: 10.1007/s13577-023-00860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
The Rho/ROCK pathway regulates diverse cellular processes and contributes to the development and advancement of several types of human cancers. This study investigated the role of specific Rho GTPase-activating proteins (RhoGAP), ARHGAP6, in bladder cancer (BC). In this study, ARHGAP6 expression in BC and its clinical significance were investigated. In vitro and in vivo assays were used to explore the tumor-related function and the underlying molecular mechanism ARHGAP6 of in BC. The mRNA and protein levels of ARHGAP6 significantly reduced in human BC tissues and cell lines compared with corresponding adjacent non-cancerous tissues and normal urothelial cells. In vitro, ARHGAP6 overexpression markedly decreased the viability, migration, and invasion of BC cells. Interestingly, low ARHGAP6 expression in BC strongly correlated with poor patient survival and was highly associated with metastasis and β-catenin signaling. Furthermore, ARHGAP6 expression strongly influenced the sensitivity of BC cells to mitomycin C treatment. Together, our results demonstrate that ARHGAP6 plays critical roles in regulating the proliferation, migration, invasion, and metastasis of BC cells possibly via the modulation of β-catenin and strongly influences the chemosensitivity of BC cells.
Collapse
Affiliation(s)
- Weihua Chen
- Department of Urology, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, Shanghai, China
| | - Chao Yu
- Department of Urology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guoqiang Liao
- Department of Urology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong, 201318, Shanghai, China
| | - Dehui Kong
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jie Bai
- Department of Urology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Bo Yang
- Department of Urology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong, 201318, Shanghai, China.
| | - Hua Gong
- Department of Urology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong, 201318, Shanghai, China.
| |
Collapse
|
11
|
Wang Y, Liu P, Chen X, Yang W. Circ_CHMP5 aggravates oxidized low-density lipoprotein-induced damage to human umbilical vein endothelial cells through miR-516b-5p/TGFβR2 axis. Clin Hemorheol Microcirc 2023; 85:325-339. [PMID: 37212088 DOI: 10.3233/ch-231722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Atherosclerosis (AS) was one of the main causes of death in the elderly, and lesions in human umbilical vein endothelial cells (HUVECs) could lead to AS. CircRNA-charged multivesicular body protein 5 (circ_CHMP5) was reported to participate in the progression of AS. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the levels of circ_CHMP5, miR-516b-5p, and transforming growth factor beta receptor 2 (TGFβR2) in AS patients or ox-LDL-induced HUVECs. 5-Ethynyl-2'-deoxyuridine and cell counting kit-8 assays were performed to detect cell proliferation. Proteins expression was assessed by western blot assay. Cell apoptosis was examined by flow cytometry. Tube formation assay was utilized to measure the tube formation ability of HUVCEs. The targeting relationships between miR-516b-5p and circ_CHMP5 or TGFβR2 were confirmed by dual-luciferase reporter assay and RNA-pull down assay. RESULTS Circ_CHMP5 was enhanced in the serum of AS patients and ox-LDL-exposure HUVECs. Ox-LDL blocked proliferation and tube formation of HUVECs and induced cell apoptosis, and circ_CHMP5 knockdown reversed these effects. In addition, circ_CHMP5 regulated the growth of ox-LDL-induced HUVECs through miR-516b-5p and TGFβR2. Moreover, the effects of circ_CHMP5 knockdown on ox-LDL-induced HUVECs were obviously recovered by downregulation of miR-516b-5p, and overexpression of TGFβR2 restored the effects of miR-516b-5p upregulation on ox-LDL-stimulated HUVECs. CONCLUSION Silence of circ_CHMP5 overturned ox-LDL-treated inhibition of HUVECs proliferation and angiogenesis by miR-516b-5p and TGFβR2. These results provided new solutions for the treatment of AS.
Collapse
Affiliation(s)
- Yueru Wang
- Department of Internal Medicine-Cardiovascular, Shanxi Provincial People's Hospital, Taiyuan City, Shanxi, China
| | - Ping Liu
- Shanxi Provincial Medical Service Evaluation Center, Taiyuan City, Shanxi, China
| | - Xiaoyan Chen
- Department of Ultrasound, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Wuxiao Yang
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan City, Shanxi, China
| |
Collapse
|
12
|
Cao C, Wang Y, Wu X, Li Z, Guo J, Sun W. The roles and mechanisms of circular RNAs related to mTOR in cancers. J Clin Lab Anal 2022; 36:e24783. [PMID: 36426933 PMCID: PMC9757007 DOI: 10.1002/jcla.24783] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/13/2022] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are stable molecules with covalently closed structures that have an irreplaceable role in the occurrence, progression, and even treatment of plenty of cancers. Mammalian/mechanistic target of rapamycin (mTOR) is a key regulator in cancers and plays several biological functions, such as proliferation, migration, invasion, autophagy, and apoptosis. METHODS All data were collected through PubMed and CNKI, using terms including "circRNA," "mTOR," "caner," "signaling pathway," "biomarker," "diagnosis," "treatment." Articles published in Chinese and English were included. RESULTS In this review, the expression, function, and mechanism of circRNA-associated mTOR in cancers were described. CircRNA-associated-mTOR can regulate the progression and therapy of a variety of cancers in multiple signaling pathways, such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mTOR, mitogen-activated protein kinase (MAPK)/mTOR, and AMP-activated protein kinase (AMPK)/mTOR axis. These cancers including esophageal carcinoma (circLPAR3, ciRS-7), gastric cancer (circNRIP1, hsa_circ_0010882, hsa_circ_0000117, hsa_circ_0072309, and circST3GAL6), colorectal cancer (hsa_circ_0000392, hsa_circ_0084927, hsa_circ_0104631, and circFBXW7), liver cancer (circC16orf62, hsa_circ_100338, hsa_circ_0004001, hsa_circ_0004123, hsa_circ_0075792, hsa_circ_0079299, and hsa_circ_0002130), pancreatic cancer (circ-IARS and circRHOBTB3), renal carcinoma (ciRS-7), bladder cancer (circUBE2K), prostate cancer (circMBOAT2 and circ-ITCH), ovarian cancer (circEEF2, circRAB11FIP1, circMYLK, and circTPCN), endometrial cancer (hsa_circ_0002577 and circWHSC1), lung cancer (circHIPK3, hsa_circ_0001666), thyroid cancer (hsa_circ_0007694 and hsa_circ_0008274), glioma (circGFRA1, circ-MAPK4, circPCMTD1, and hsa_circ_0037251), osteosarcoma (circTCF25), leukemia (circ-PRKDC), and breast cancer (hsa_circ_0000199, circUBAP2, and circWHSC1).
Collapse
Affiliation(s)
- Chunli Cao
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
- The Affiliated People's HospitalNingbo UniversityNingboChina
| | - Yao Wang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
- Department of GastroenterologyThe Affiliated Hospital of Medical School, Ningbo UniversityNingboChina
| | - Xinxin Wu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
- Department of GastroenterologyThe Affiliated Hospital of Medical School, Ningbo UniversityNingboChina
| | - Zhe Li
- Department of GastroenterologyThe Affiliated Hospital of Medical School, Ningbo UniversityNingboChina
| | - Junming Guo
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
- Department of GastroenterologyThe Affiliated Hospital of Medical School, Ningbo UniversityNingboChina
- Institute of Digestive Diseases of Ningbo UniversityNingboChina
| | - Weiliang Sun
- The Affiliated People's HospitalNingbo UniversityNingboChina
| |
Collapse
|
13
|
Wang S, Cheng L, Wu H, Li G. Mechanisms and prospects of circular RNAs and their interacting signaling pathways in colorectal cancer. Front Oncol 2022; 12:949656. [PMID: 35992800 PMCID: PMC9382640 DOI: 10.3389/fonc.2022.949656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is the leading malignant tumor in terms of morbidity and mortality worldwide, and its pathogenesis involves multiple factors, including environment, lifestyle, and genetics. Continuing evidence suggests that circular RNAs (circRNAs), as a novel non-coding RNA, constitute an important genetic variable in the pathogenesis of CRC. These circRNAs with covalently closed-loop structures exist objectively in organisms. They not only have the biological functions of regulating the expression of target genes, changing the activity of proteins, and translating proteins, but also play a key role in the proliferation, invasion, migration, and apoptosis of tumor cells. CRC is one of the most common cancers in which circRNAs are involved in tumorigenesis, metastasis, and drug resistance, and circRNAs have been demonstrated to function through crosstalk with multiple signaling pathways. Therefore, this review summarizes the biological and carcinogenic functions of circRNAs and their related PI3K/AKT, MAPK, Notch, JAK/STAT, Hippo/YAP, WNT/β-catenin, and VEGF signaling pathways in CRC. We further explore the clinical value of circRNAs and important signaling proteins in the diagnosis, prognosis, and treatment of CRC.
Collapse
|
14
|
Zhang YB, Zheng SF, Ma LJ, Lin P, Shang-Guan HC, Lin YX, Kang DZ, Yao PS. Elevated Hexose-6-Phosphate Dehydrogenase Regulated by OSMR-AS1/hsa-miR-516b-5p Axis Correlates with Poor Prognosis and Dendritic Cells Infiltration of Glioblastoma. Brain Sci 2022; 12:brainsci12081012. [PMID: 36009075 PMCID: PMC9405636 DOI: 10.3390/brainsci12081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Objective Glioblastoma (GBM), a type of malignant glioma, is the most aggressive type of brain tumor and is associated with high mortality. Hexose-6-phosphate dehydrogenase (H6PD) has been detected in multiple tumors and is involved in tumor initiation and progression. However, the specific role and mechanism of H6PD in GBM remain unclear. Methods We performed pan-cancer analysis of expression and prognosis of H6PD in GBM using the Genotype-Tissue Expression Project (GTEx) and The Cancer Genome Atlas (TCGA). Subsequently, noncoding RNAs regulating H6PD expression were obtained by comprehensive analysis, including gene expression, prognosis, correlation, and immune infiltration. Finally, tumor immune infiltrates related to H6PD and survival were performed. Results Higher expression of H6PD was statistically significantly associated with an unfavorable outcome in GBM. Downregulation of hsa-miR-124-3p and hsa-miR-516b-5p in GBM was detected from GSE90603. Subsequently, OSMR-AS1 was observed in the regulation of H6PD via hsa-miR-516b-5p. Moreover, higher H6PD expression significantly correlated with immune infiltration of dendritic cells, immune checkpoint expression, and biomarkers of dendritic cells. Conclusions The OSMR-AS1/ miR-516b-5p axis was identified as the highest-potential upstream ncRNA-related pathway of H6PD in GBM. Furthermore, the present findings demonstrated that H6PD blockading might possess antitumor roles via regulating dendritic cell infiltration and immune checkpoint expression.
Collapse
Affiliation(s)
- Yi-Bin Zhang
- Department of Neurosurgery, Neurosurgical Research Institute, First Affiliated Hospital, Fujian Medical University, Fuzhou 350004, China; (Y.-B.Z.); (S.-F.Z.); (H.-C.S.-G.); (Y.-X.L.)
| | - Shu-Fa Zheng
- Department of Neurosurgery, Neurosurgical Research Institute, First Affiliated Hospital, Fujian Medical University, Fuzhou 350004, China; (Y.-B.Z.); (S.-F.Z.); (H.-C.S.-G.); (Y.-X.L.)
| | - Lin-Jie Ma
- Department of Neurology and Neurosurgery, Changji Traditional Chinese Medicine Hospital, Changji 831100, China;
| | - Peng Lin
- Department of Pain, First Affiliated Hospital, Fujian Medical University, Fuzhou 350004, China;
| | - Huang-Cheng Shang-Guan
- Department of Neurosurgery, Neurosurgical Research Institute, First Affiliated Hospital, Fujian Medical University, Fuzhou 350004, China; (Y.-B.Z.); (S.-F.Z.); (H.-C.S.-G.); (Y.-X.L.)
| | - Yuan-Xiang Lin
- Department of Neurosurgery, Neurosurgical Research Institute, First Affiliated Hospital, Fujian Medical University, Fuzhou 350004, China; (Y.-B.Z.); (S.-F.Z.); (H.-C.S.-G.); (Y.-X.L.)
- Fujian Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - De-Zhi Kang
- Department of Neurosurgery, Neurosurgical Research Institute, First Affiliated Hospital, Fujian Medical University, Fuzhou 350004, China; (Y.-B.Z.); (S.-F.Z.); (H.-C.S.-G.); (Y.-X.L.)
- Fujian Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Correspondence: (D.-Z.K.); (P.-S.Y.); Tel.: +8613859099988 (D.-Z.K.); +8618650084102 (P.-S.Y.); Fax: +86-591-83569369 (D.-Z.K. &P.-S.Y.)
| | - Pei-Sen Yao
- Department of Neurosurgery, Neurosurgical Research Institute, First Affiliated Hospital, Fujian Medical University, Fuzhou 350004, China; (Y.-B.Z.); (S.-F.Z.); (H.-C.S.-G.); (Y.-X.L.)
- Department of Neurology and Neurosurgery, Changji Traditional Chinese Medicine Hospital, Changji 831100, China;
- Correspondence: (D.-Z.K.); (P.-S.Y.); Tel.: +8613859099988 (D.-Z.K.); +8618650084102 (P.-S.Y.); Fax: +86-591-83569369 (D.-Z.K. &P.-S.Y.)
| |
Collapse
|
15
|
Zhang J, Yu Y, Yin X, Feng L, Li Z, Liu X, Yu X, Li B. A Circ-0007022/miR-338-3p/Neuropilin-1 Axis Reduces the Radiosensitivity of Esophageal Squamous Cell Carcinoma by Activating Epithelial-To-Mesenchymal Transition and PI3K/AKT Pathway. Front Genet 2022; 13:854097. [PMID: 35571014 PMCID: PMC9100939 DOI: 10.3389/fgene.2022.854097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy resistance is an important cause of treatment failure in esophageal squamous cell carcinoma (ESCC). Circular RNAs have attracted a lot of attention in cancer research, but their role in ESCC radiosensitivity has not been elucidated yet. Here, we aimed to evaluated the functional impacts of circ-0007022 on ESCC radiosensitivity. In this study, a stable radiotherapy-resistant cell line was established and verified by a series of functional experiments. Subsequently, high-throughput sequencing revealed that circ-0007022 was significantly overexpressed in the radiotherapy-resistant cell line and this conclusion was verified in ESCC patients’ tumor tissues by real-time quantitative PCR. Moreover, loss-of-function and overexpression experiments in vitro and in vivo revealed that, after irradiation, the abilities of proliferation and migration in circ-0007022-overexpressing stable transgenic strain were significantly higher than that in circ-0007022-knockdown stable transgenic strain. Additionally, RNA Immunoprecipitation, RNA pull-down, luciferase reporter assays, and fluorescence in situ hybridization experiments demonstrated the mechanism of how circ-0007022 could sponge miR-338-3p and upregulate downstream target of miR-338-3p, neuropilin-1 (NRP1). Moreover, NRP1 led to poor prognosis for ESCC patients receiving radiotherapy, and NRP1 knock-down enhanced radiosensitivity of ESCC cells. Furthermore, circ-0007022 overexpression activated Epithelial-to-mesenchymal transition and PI3K/Akt pathway, and NRP1 knock-down could reversed this phenomenon. Finally, Akt Inhibitor reversed circ-0007022s role in radiotherapy in ESCC cells. Taken together, the circ-0007022/miR-338-3p/NRP1 axis enhances the radiation resistance of ESCC cells via regulating EMT and PI3K/Akt pathway. The new circRNA circ-0007022 is thus expected to be a therapeutic target for ESCC patients.
Collapse
Affiliation(s)
- Junpeng Zhang
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanyan Yu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaoyang Yin
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lei Feng
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhe Li
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaomeng Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xinshuang Yu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Baosheng Li,
| |
Collapse
|
16
|
Zhang Y, Zhang X, Xu Y, Fang S, Ji Y, Lu L, Xu W, Qian H, Liang ZF. Circular RNA and Its Roles in the Occurrence, Development, Diagnosis of Cancer. Front Oncol 2022; 12:845703. [PMID: 35463362 PMCID: PMC9021756 DOI: 10.3389/fonc.2022.845703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding single-stranded covalently closed circular RNA, mainly produced by reverse splicing of exons of precursor mRNAs (pre-mRNAs). The characteristics of high abundance, strong specificity, and good stability of circRNAs have been discovered. A large number of studies have reported its various functions and mechanisms in biological events, such as the occurrence and development of cancer. In this review, we focus on the classification, characterization, biogenesis, functions of circRNAs, and the latest advances in cancer research. The development of circRNAs as biomarkers in cancer diagnosis and treatment also provides new ideas for studying circRNAs research.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yumeng Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shikun Fang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ling Lu
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhao Feng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Zhang S, Zheng N, Chen X, Du K, Yang J, Shen L. Establishment and Validation of a Ferroptosis-Related Long Non-Coding RNA Signature for Predicting the Prognosis of Stomach Adenocarcinoma. Front Genet 2022; 13:818306. [PMID: 35242169 PMCID: PMC8886230 DOI: 10.3389/fgene.2022.818306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Ferroptosis is a form of regulated cell death that follows cell membrane damage and mostly depends on iron-mediated oxidative. Long non-coding RNAs (LncRNAs) are associated with the development of a variety of tumors. Till date, LncRNAs have been reported to intervene in ferroptosis. Therefore, we intended to provide a prognostic ferroptosis-related-lncRNA signature in stomach adenocarcinoma (STAD). Methods: We downloaded ferroptosis-related genes from the FerrDb database and RNA sequencing data and clinicopathological characteristics from The Cancer Genome Atlas. Gene differential expression analysis was performed using the “limma” package. We used Cox regression analysis to determine the ferroptosis-related lncRNAs signature with the lowest AIC value. The Kaplan–Meier curve, ROC curve, and nomogram were used to evaluate the prognostic value of the risk score. Gene set enrichment analysis (GSEA) was used to explore the biologic functions of the three ferroptosis-related lncRNAs. LINC01615 expression in gastric cancer cell lines and tissues was measured by real-time PCR. A nuclear-cytoplasmic fractionation assay was used to analyze the subcellular localization for LINC01615. Furthermore, we used bioinformatics to predict potential target microRNAs (miRNAs) of LINC01615 and their target ferroptosis-related mRNAs. Results: Three ferroptosis-related-lncRNA signatures (AP000695.2, AL365181.3, and LINC01615) were identified, and then Kaplan–Meier, Cox regression analyses, and ROC curve confirmed that the ferroptosis-related-lncRNA model could predict the prognosis of STAD. The GSEA indicated that the three ferroptosis-related lncRNAs might be related to the extracellular matrix and cellular activities. LINC01615 is highly expressed in gastric cancer cell lines and tissues. A nuclear-cytoplasmic fractionation assay confirmed that in gastric cancer cell lines, most LINC01615 was enriched in the cytoplasm. Bioinformatics further predicts four potential target miRNAs of LINC01615 and then figured out 26 target ferroptosis-related mRNAs. Conclusion: We established a three-ferroptosis-related-lncRNA model (AP000695.2, AL365181.3, and LINC01615) that can predict the prognosis of STAD patients. We also expected to provide a promising target for LINC01615 for research in the future, which was highly expressed in gastric cancer and cell lines and acted as a ceRNA to get involved in ferroptosis.
Collapse
Affiliation(s)
- Shuqiong Zhang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naisheng Zheng
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaocui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Du
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Faculty of Medical Laboratory Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Xin Hua Children's Hospital, Shanghai, China
| |
Collapse
|
18
|
Yang C, Wu S, Mou Z, Zhou Q, Dai X, Ou Y, Chen X, Chen Y, Xu C, Hu Y, Zhang L, Zou L, Jin S, Hu J, Mao S, Jiang H. Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments. Mol Ther 2022; 30:1054-1070. [PMID: 35038580 PMCID: PMC8899700 DOI: 10.1016/j.ymthe.2022.01.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/10/2021] [Accepted: 01/12/2022] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) play critical roles in different diseases. Exosomes are important intermediates of intercellular communication. While both have been widely reported in cancers, exosome-derived circRNAs are rarely studied. In this work, we identified the differently expressed circRNAs in bladder cancer (BCa) tissue and exosomes through high-throughput sequencing. RNA pull-down, RNA immunoprecipitation, and luciferase reporter assays were used to investigate the interactions between specific circRNAs, microRNAs (miRNAs), and mRNAs. Wound-healing, Transwell, Cell Counting Kit-8 (CCK8), and colony-formation assays were used to study the biological roles in vitro. Metabolomics were used to explore the mechanism of how specific circRNAs influenced BCa cell behavior. Flow cytometry was used to study how specific circRNAs affected the function of CD8+ T cells in tumor microenvironments. We identified that exosome-derived hsa_circ_0085361 (circTRPS1) was correlated with aggressive phenotypes of BCa cells via sponging miR-141-3p. Metabolomics and RNA sequencing (RNA-seq) identified GLS1-mediated glutamine metabolism was involved in circTRPS1-mediated alterations. Exosomes derived from circTRPS1 knocked down BCa cells, prevented CD8+ T cells from exhaustion, and repressed the malignant phenotype of BCa cells. In conclusion, exosome-derived circTRPS1 from BCa cells can modulate the intracellular reactive oxygen species (ROS) balance and CD8+ T cell exhaustion via the circTRPS1/miR141-3p/GLS1 axis. Our work may provide a potential biomarker and therapeutic target for BCa.
Collapse
Affiliation(s)
- Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Limin Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengming Jin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jimeng Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
CircCYP24A1 hampered malignant phenotype of renal cancer carcinoma through modulating CMTM-4 expression via sponging miR-421. Cell Death Dis 2022; 13:190. [PMID: 35220395 PMCID: PMC8882186 DOI: 10.1038/s41419-022-04623-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 01/28/2023]
Abstract
Renal cell carcinoma (RCC) is a lethal urinary malignancy. Circular RNAs (circRNAs) contribute to the malignant phenotype and progression of several types of human cancers, including RCC. In this study, we identified relatively low hsa_circ_0060927 (circCYP24A1) expression in RCC tissue through high-throughput sequencing and RT-qPCR. Fluorescence in situ hybridization (FISH) was used to validate the expression and subcellular localization of circCYP24A1 in RCC tissues. CCK-8, Transwell, EdU, and wound-healing assays indicated that circCYP24A1 overexpression inhibited the proliferation, invasion, and migration of RCC cells. Dual-luciferase reporter, RNA immunoprecipitation (RIP), FISH, and RNA-pulldown assays verified that circCYP24A1 inhibited RCC progression by sponging miR-421, thus inducing CMTM-4 expression. Xenograft assays and metastasis models further indicated that circCYP24A1 significantly inhibited the metastasis and proliferation of RCC cells in vivo. Taken together, circCYP24A1 is a prognosis-related circRNA in RCC that functions through the circCYP24A1/miR-421/CMTM-4 axis to modulate RCC progression.
Collapse
|
20
|
Wang T, Zhang C, Wang S. Ginsenoside Rg3 inhibits osteosarcoma progression by reducing circ_0003074 expression in a miR-516b-5p/KPNA4-dependent manner. J Orthop Surg Res 2021; 16:724. [PMID: 34930332 PMCID: PMC8686618 DOI: 10.1186/s13018-021-02868-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/05/2021] [Indexed: 12/21/2022] Open
Abstract
Background Previous data have suggested that ginsenoside Rg3 (Rg3), isolated from the roots of Panax ginseng, plays a repressing role in multiple cancers, including osteosarcoma (OS). However, there is no any literature available about the role of circular RNA (circRNA) in Rg3-mediated OS development. The study aimed to explore the function of circ_0003074 in the anti-cancer effects of Rg3 on OS. Methods RNA expression of circ_0003074, miR-516b-5p and karyopherin subunit alpha 4 (KPNA4) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was evaluated by Western blotting or immunohistochemistry assay. Cell viability, proliferation, apoptosis, migration and invasion were investigated by cell counting kit-8, 5-ethynyl-29-deoxyuridine (EdU), flow cytometry analysis, wound-healing and transwell invasion assays, respectively. Dual-luciferase reporter and/or RNA immunoprecipitation assay was performed to confirm the interplay between miR-516b-5p and circ_0003074 or KPNA4. Xenograft mouse model assay was conducted to reveal the effect of Rg3 treatment on tumor formation. Results Circ_0003074 and KPNA4 expression was significantly upregulated, while miR-516b-5p was downregulated in OS tissues and cells compared with controls. Rg3 treatment dramatically decreased circ_0003074 expression in OS cells. Rg3 treatment led to decreased cell proliferation, migration and invasion but increased cell apoptosis, which was attenuated after circ_0003074 overexpression. Besides, miR-516b-5p was a target miRNA of circ_0003074 and partially restored circ_0003074-mediated action under Rg3 treatment. Decreasing miR-516b-5p expression also promoted Rg3-treated OS cell malignancy through KPNA4, which was identified as a target mRNA of miR-516b-5p. Besides, circ_0003074 induced KPNA4 production owing to the decrease of miR-516b-5p expression. Furthermore, Rg3 treatment inhibited tumor formation by regulating circ_0003074 in vivo. Conclusion Rg3 inhibited OS progression through circ_0003074/miR-516b-5p/KPNA4 axis, showing the potential of Rg3 as a therapeutic agent for OS. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02868-7. Circ_0003074 expression was upregulated in OS tissues and cells. Rg3 treatment significantly decreased circ_0003074 expression in OS cells. Circ_0003074 overexpression rescued Rg3-induced inhibition in OS progression. Circ_0003074 induced KPNA4 production through miR-516b-5p under Rg3 treatment.
Collapse
Affiliation(s)
- Tehasi Wang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Chengguang Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Shuren Wang
- Department of Tramotology and Orthopedics, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|